
Chapter 4

Hypothesis Testing in

Linear Regression Models

4.1 Introduction

As we saw in Chapter 3, the vector of OLS parameter estimates β̂ is a random
vector. Since it would be an astonishing coincidence if β̂ were equal to the
true parameter vector β0 in any finite sample, we must take the randomness
of β̂ into account if we are to make inferences about β. In classical economet-
rics, the two principal ways of doing this are performing hypothesis tests and
constructing confidence intervals or, more generally, confidence regions. We
will discuss the first of these topics in this chapter, as the title implies, and the
second in the next chapter. Hypothesis testing is easier to understand than
the construction of confidence intervals, and it plays a larger role in applied
econometrics.

In the next section, we develop the fundamental ideas of hypothesis testing
in the context of a very simple special case. Then, in Section 4.3, we review
some of the properties of several distributions which are related to the nor-
mal distribution and are commonly encountered in the context of hypothesis
testing. We will need this material for Section 4.4, in which we develop a
number of results about hypothesis tests in the classical normal linear model.
In Section 4.5, we relax some of the assumptions of that model and introduce
large-sample tests. An alternative approach to testing under relatively weak
assumptions is bootstrap testing, which we introduce in Section 4.6. Finally,
in Section 4.7, we discuss what determines the ability of a test to reject a
hypothesis that is false.

4.2 Basic Ideas

The very simplest sort of hypothesis test concerns the (population) mean from
which a random sample has been drawn. To test such a hypothesis, we may
assume that the data are generated by the regression model

yt = β + ut, ut ∼ IID(0, σ2), (4.01)
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124 Hypothesis Testing in Linear Regression Models

where yt is an observation on the dependent variable, β is the population
mean, which is the only parameter of the regression function, and σ2 is the
variance of the error term ut. The least squares estimator of β and its variance,
for a sample of size n, are given by

β̂ = 1−
n

n�

t=1

yt and Var(β̂) = 1−
n
σ2. (4.02)

These formulas can either be obtained from first principles or as special cases
of the general results for OLS estimation. In this case, X is just an n--vector
of 1s. Thus, for the model (4.01), the standard formulas β̂ = (X�X)−1X�y
and Var(β̂) = σ2(X�X)−1 yield the two formulas given in (4.02).

Now suppose that we wish to test the hypothesis that β = β0, where β0 is
some specified value of β.1 The hypothesis that we are testing is called the
null hypothesis. It is often given the label H0 for short. In order to test H0,
we must calculate a test statistic, which is a random variable that has a known
distribution when the null hypothesis is true and some other distribution when
the null hypothesis is false. If the value of this test statistic is one that might
frequently be encountered by chance under the null hypothesis, then the test
provides no evidence against the null. On the other hand, if the value of the
test statistic is an extreme one that would rarely be encountered by chance
under the null, then the test does provide evidence against the null. If this
evidence is sufficiently convincing, we may decide to reject the null hypothesis
that β = β0.

For the moment, we will restrict the model (4.01) by making two very strong
assumptions. The first is that ut is normally distributed, and the second
is that σ is known. Under these assumptions, a test of the hypothesis that
β = β0 can be based on the test statistic

z =
β̂ − β0�

Var(β̂)
�1/2

=
n1/2

σ
(β̂ − β0). (4.03)

It turns out that, under the null hypothesis, z must be distributed as N(0, 1).
It must have mean 0 because β̂ is an unbiased estimator of β, and β = β0

under the null. It must have variance unity because, by (4.02),

E(z2) =
n

σ2
E

�
(β̂ − β0)2

�
=

n

σ2

σ2

n
= 1.

1 It may be slightly confusing that a 0 subscript is used here to denote the value
of a parameter under the null hypothesis as well as its true value. So long
as it is assumed that the null hypothesis is true, however, there should be no
possible confusion.
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Finally, to see that z must be normally distributed, note that β̂ is just the
average of the yt, each of which must be normally distributed if the corre-
sponding ut is; see Exercise 1.7. As we will see in the next section, this
implies that z is also normally distributed. Thus z has the first property that
we would like a test statistic to possess: It has a known distribution under
the null hypothesis.

For every null hypothesis there is, at least implicitly, an alternative hypothesis,
which is often given the label H1. The alternative hypothesis is what we are
testing the null against, in this case the model (4.01) with β �= β0. Just as
important as the fact that z follows the N(0, 1) distribution under the null is
the fact that z does not follow this distribution under the alternative. Suppose
that β takes on some other value, say β1. Then it is clear that β̂ = β1 + γ̂,
where γ̂ has mean 0 and variance σ2/n; recall equation (3.05). In fact, γ̂
is normal under our assumption that the ut are normal, just like β̂, and so
γ̂ ∼ N(0, σ2/n). It follows that z is also normal (see Exercise 1.7 again), and
we find from (4.03) that

z ∼ N(λ, 1), with λ =
n1/2

σ
(β1 − β0). (4.04)

Therefore, provided n is sufficiently large, we would expect the mean of z to
be large and positive if β1 > β0 and large and negative if β1 < β0. Thus we
will reject the null hypothesis whenever z is sufficiently far from 0. Just how
we can decide what “sufficiently far” means will be discussed shortly.

Since we want to test the null that β = β0 against the alternative that β �= β0,
we must perform a two-tailed test and reject the null whenever the absolute
value of z is sufficiently large. If instead we were interested in testing the
null hypothesis that β ≤ β0 against the alternative that β > β0, we would
perform a one-tailed test and reject the null whenever z was sufficiently large
and positive. In general, tests of equality restrictions are two-tailed tests, and
tests of inequality restrictions are one-tailed tests.

Since z is a random variable that can, in principle, take on any value on the
real line, no value of z is absolutely incompatible with the null hypothesis,
and so we can never be absolutely certain that the null hypothesis is false.
One way to deal with this situation is to decide in advance on a rejection rule,
according to which we will choose to reject the null hypothesis if and only if
the value of z falls into the rejection region of the rule. For two-tailed tests,
the appropriate rejection region is the union of two sets, one containing all
values of z greater than some positive value, the other all values of z less than
some negative value. For a one-tailed test, the rejection region would consist
of just one set, containing either sufficiently positive or sufficiently negative
values of z, according to the sign of the inequality we wish to test.

A test statistic combined with a rejection rule is sometimes called simply a
test. If the test incorrectly leads us to reject a null hypothesis that is true,
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126 Hypothesis Testing in Linear Regression Models

we are said to make a Type I error. The probability of making such an error
is, by construction, the probability, under the null hypothesis, that z falls
into the rejection region. This probability is sometimes called the level of
significance, or just the level, of the test. A common notation for this is α.
Like all probabilities, α is a number between 0 and 1, although, in practice, it
is generally much closer to 0 than 1. Popular values of α include .05 and .01.
If the observed value of z, say ẑ, lies in a rejection region associated with a
probability under the null of α, we will reject the null hypothesis at level α,
otherwise we will not reject the null hypothesis. In this way, we ensure that
the probability of making a Type I error is precisely α.

In the previous paragraph, we implicitly assumed that the distribution of the
test statistic under the null hypothesis is known exactly, so that we have what
is called an exact test. In econometrics, however, the distribution of a test
statistic is often known only approximately. In this case, we need to draw a
distinction between the nominal level of the test, that is, the probability of
making a Type I error according to whatever approximate distribution we are
using to determine the rejection region, and the actual rejection probability,
which may differ greatly from the nominal level. The rejection probability is
generally unknowable in practice, because it typically depends on unknown
features of the DGP.2

The probability that a test will reject the null is called the power of the test.
If the data are generated by a DGP that satisfies the null hypothesis, the
power of an exact test is equal to its level. In general, power will depend on
precisely how the data were generated and on the sample size. We can see
from (4.04) that the distribution of z is entirely determined by the value of λ,
with λ = 0 under the null, and that the value of λ depends on the parameters
of the DGP. In this example, λ is proportional to β1 − β0 and to the square
root of the sample size, and it is inversely proportional to σ.

Values of λ different from 0 move the probability mass of the N(λ, 1) distribu-
tion away from the center of the N(0, 1) distribution and into its tails. This
can be seen in Figure 4.1, which graphs the N(0, 1) density and the N(λ, 1)
density for λ = 2. The second density places much more probability than the
first on values of z greater than 2. Thus, if the rejection region for our test
was the interval from 2 to +∞, there would be a much higher probability in
that region for λ = 2 than for λ = 0. Therefore, we would reject the null
hypothesis more often when the null hypothesis is false, with λ = 2, than
when it is true, with λ = 0.

2 Another term that often arises in the discussion of hypothesis testing is the size
of a test. Technically, this is the supremum of the rejection probability over all
DGPs that satisfy the null hypothesis. For an exact test, the size equals the
level. For an approximate test, the size is typically difficult or impossible to
calculate. It is often, but by no means always, greater than the nominal level
of the test.
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Figure 4.1 The normal distribution centered and uncentered

Mistakenly failing to reject a false null hypothesis is called making a Type II
error. The probability of making such a mistake is equal to 1 minus the
power of the test. It is not hard to see that, quite generally, the probability of
rejecting the null with a two-tailed test based on z increases with the absolute
value of λ. Consequently, the power of such a test will increase as β1 − β0

increases, as σ decreases, and as the sample size increases. We will discuss
what determines the power of a test in more detail in Section 4.7.

In order to construct the rejection region for a test at level α, the first step
is to calculate the critical value associated with the level α. For a two-tailed
test based on any test statistic that is distributed as N(0, 1), including the
statistic z defined in (4.04), the critical value cα is defined implicitly by

Φ(cα) = 1− α/2. (4.05)

Recall that Φ denotes the CDF of the standard normal distribution. In terms
of the inverse function Φ−1, cα can be defined explicitly by the formula

cα = Φ−1(1− α/2). (4.06)

According to (4.05), the probability that z > cα is 1− (1− α/2) = α/2, and
the probability that z < −cα is also α/2, by symmetry. Thus the probability
that |z| > cα is α, and so an appropriate rejection region for a test at level α
is the set defined by |z| > cα. Clearly, cα increases as α approaches 0. As
an example, when α = .05, we see from (4.06) that the critical value for a
two-tailed test is Φ−1(.975) = 1.96. We would reject the null at the .05 level
whenever the observed absolute value of the test statistic exceeds 1.96.

P Values

As we have defined it, the result of a test is yes or no: Reject or do not
reject. A more sophisticated approach to deciding whether or not to reject
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128 Hypothesis Testing in Linear Regression Models

the null hypothesis is to calculate the P value, or marginal significance level,
associated with the observed test statistic ẑ. The P value for ẑ is defined as the
greatest level for which a test based on ẑ fails to reject the null. Equivalently,
at least if the statistic z has a continuous distribution, it is the smallest level
for which the test rejects. Thus, the test rejects for all levels greater than the
P value, and it fails to reject for all levels smaller than the P value. Therefore,
if the P value associated with ẑ is denoted p(ẑ), we must be prepared to accept
a probability p(ẑ) of Type I error if we choose to reject the null.

For a two-tailed test, in the special case we have been discussing,

p(ẑ) = 2
�
1− Φ(|ẑ|)

�
. (4.07)

To see this, note that the test based on ẑ rejects at level α if and only if
|ẑ| > cα. This inequality is equivalent to Φ(|ẑ|) > Φ(cα), because Φ(·) is
a strictly increasing function. Further, Φ(cα) = 1 − α/2, by (4.05). The
smallest value of α for which the inequality holds is thus obtained by solving
the equation

Φ(|ẑ|) = 1− α/2,

and the solution is easily seen to be the right-hand side of (4.07).

One advantage of using P values is that they preserve all the information
conveyed by a test statistic, while presenting it in a way that is directly
interpretable. For example, the test statistics 2.02 and 5.77 would both lead
us to reject the null at the .05 level using a two-tailed test. The second of
these obviously provides more evidence against the null than does the first,
but it is only after they are converted to P values that the magnitude of the
difference becomes apparent. The P value for the first test statistic is .0434,
while the P value for the second is 7.93× 10−9, an extremely small number.

Computing a P value transforms z from a random variable with the N(0, 1)
distribution into a new random variable p(z) with the uniform U(0, 1) dis-
tribution. In Exercise 4.1, readers are invited to prove this fact. It is quite
possible to think of p(z) as a test statistic, of which the observed realization
is p(ẑ). A test at level α rejects whenever p(ẑ) < α. Note that the sign of
this inequality is the opposite of that in the condition |ẑ| > cα. Generally,
one rejects for large values of test statistics, but for small P values.

Figure 4.2 illustrates how the test statistic ẑ is related to its P value p(ẑ).
Suppose that the value of the test statistic is 1.51. Then

Pr(z > 1.51) = Pr(z < −1.51) = .0655. (4.08)

This implies, by equation (4.07), that the P value for a two-tailed test based
on ẑ is .1310. The top panel of the figure illustrates (4.08) in terms of the
PDF of the standard normal distribution, and the bottom panel illustrates it
in terms of the CDF. To avoid clutter, no critical values are shown on the
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Figure 4.2 P values for a two-tailed test

figure, but it is clear that a test based on ẑ will not reject at any level smaller
than .131. From the figure, it is also easy to see that the P value for a one-
tailed test of the hypothesis that β ≤ β0 is .0655. This is just Pr(z > 1.51).
Similarly, the P value for a one-tailed test of the hypothesis that β ≥ β0 is
Pr(z < 1.51) = .9345.

In this section, we have introduced the basic ideas of hypothesis testing. How-
ever, we had to make two very restrictive assumptions. The first is that the
error terms are normally distributed, and the second, which is grossly unreal-
istic, is that the variance of the error terms is known. In addition, we limited
our attention to a single restriction on a single parameter. In Section 4.4, we
will discuss the more general case of linear restrictions on the parameters of
a linear regression model with unknown error variance. Before we can do so,
however, we need to review the properties of the normal distribution and of
several distributions that are closely related to it.
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130 Hypothesis Testing in Linear Regression Models

4.3 Some Common Distributions

Most test statistics in econometrics follow one of four well-known distribu-
tions, at least approximately. These are the standard normal distribution,
the chi-squared (or χ2) distribution, the Student’s t distribution, and the
F distribution. The most basic of these is the normal distribution, since the
other three distributions can be derived from it. In this section, we discuss the
standard, or central, versions of these distributions. Later, in Section 4.7, we
will have occasion to introduce noncentral versions of all these distributions.

The Normal Distribution

The normal distribution, which is sometimes called the Gaussian distribu-
tion in honor of the celebrated German mathematician and astronomer Carl
Friedrich Gauss (1777–1855), even though he did not invent it, is certainly
the most famous distribution in statistics. As we saw in Section 1.2, there
is a whole family of normal distributions, all based on the standard normal
distribution, so called because it has mean 0 and variance 1. The PDF of the
standard normal distribution, which is usually denoted by φ(·), was defined
in (1.06). No elementary closed-form expression exists for its CDF, which is
usually denoted by Φ(·). Although there is no closed form, it is perfectly easy
to evaluate Φ numerically, and virtually every program for doing econometrics
and statistics can do this. Thus it is straightforward to compute the P value
for any test statistic that is distributed as standard normal. The graphs of
the functions φ and Φ were first shown in Figure 1.1 and have just reappeared
in Figure 4.2. In both tails, the PDF rapidly approaches 0. Thus, although
a standard normal r.v. can, in principle, take on any value on the real line,
values greater than about 4 in absolute value occur extremely rarely.

In Exercise 1.7, readers were asked to show that the full normal family can be
generated by varying exactly two parameters, the mean and the variance. A
random variable X that is normally distributed with mean µ and variance σ2

can be generated by the formula

X = µ+ σZ, (4.09)

where Z is standard normal. The distribution of X, that is, the normal
distribution with mean µ and variance σ2, is denoted N(µ, σ2). Thus the
standard normal distribution is the N(0, 1) distribution. As readers were
asked to show in Exercise 1.8, the PDF of the N(µ, σ2) distribution, evaluated
at x, is

1−σφ
�x− µ

σ

�
=

1
σ
√
2π

exp
�
− (x− µ)2

2σ2

�
, (4.10)

In expression (4.10), as in Section 1.2, we have distinguished between the
random variable X and a value x that it can take on. However, for the
following discussion, this distinction is more confusing than illuminating. For
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the rest of this section, we therefore use lower-case letters to denote both
random variables and the arguments of their PDFs or CDFs, depending on
context. No confusion should result. Adopting this convention, then, we
see that, if x is distributed as N(µ, σ2), we can invert (4.09) and obtain
z = (x− µ)/σ, where z is standard normal. Note also that z is the argument
of φ in the expression (4.10) of the PDF of x. In general, the PDF of a
normal variable x with mean µ and variance σ2 is 1/σ times φ evaluated at
the corresponding standard normal variable, which is z = (x− µ)/σ.

Although the normal distribution is fully characterized by its first two mo-
ments, the higher moments are also important. Because the distribution is
symmetric around its mean, the third central moment, which measures the
skewness of the distribution, is always zero.3 This is true for all of the odd
central moments. The fourth moment of a symmetric distribution provides a
way to measure its kurtosis, which essentially means how thick the tails are.
In the case of the N(µ, σ2) distribution, the fourth central moment is 3σ4; see
Exercise 4.2.

Linear Combinations of Normal Variables

An important property of the normal distribution, used in our discussion in
the preceding section, is that any linear combination of independent normally
distributed random variables is itself normally distributed. To see this, it
is enough to show it for independent standard normal variables, because,
by (4.09), all normal variables can be generated as linear combinations of
standard normal ones plus constants. We will tackle the proof in several
steps, each of which is important in its own right.

To begin with, let z1 and z2 be standard normal and mutually independent,
and consider w ≡ b1z1 + b2z2. For the moment, we suppose that b21 + b22 = 1,
although we will remove this restriction shortly. If we reason conditionally
on z1, then we find that

E(w | z1) = b1z1 + b2E(z2 | z1) = b1z1 + b2E(z2) = b1z1.

The first equality follows because b1z1 is a deterministic function of the condi-
tioning variable z1, and so can be taken outside the conditional expectation.
The second, in which the conditional expectation of z2 is replaced by its un-
conditional expectation, follows because of the independence of z1 and z2 (see
Exercise 1.9). Finally, E(z2) = 0 because z2 is N(0, 1).

The conditional variance of w is given by

E
��
w − E(w | z1)

�2 �� z1

�
= E

�
(b2z2)2 | z1

�
= E

�
(b2z2)2

�
= b22,

3 A distribution is said to be skewed to the right if the third central moment is
positive, and to the left if the third central moment is negative.
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where the last equality again follows because z2 ∼ N(0, 1). Conditionally
on z1, w is the sum of the constant b1z1 and b2 times a standard normal
variable z2, and so the conditional distribution of w is normal. Given the
conditional mean and variance we have just computed, we see that the con-
ditional distribution must be N(b1z1, b

2
2). The PDF of this distribution is the

density of w conditional on z1, and, by (4.10), it is

f(w | z1) =
1
b2

φ
�w − b1z1

b2

�
. (4.11)

In accord with what we noted above, the argument of φ here is equal to z2,
which is the standard normal variable corresponding to w conditional on z1.

The next step is to find the joint density of w and z1. By (1.15), the density
of w conditional on z1 is the ratio of the joint density of w and z1 to the
marginal density of z1. This marginal density is just φ(z1), since z1 ∼ N(0, 1),
and so we see that the joint density is

f(w, z1) = f(z1) f(w | z1) = φ(z1)
1
b2

φ
�w − b1z1

b2

�
. (4.12)

If we use (1.06) to get an explicit expression for this joint density, then we
obtain

1
2πb2

exp
�
− 1
2b22

�
b22z

2
1 + w2 − 2b1z1w + b21z

2
1

��

=
1

2πb2
exp

�
− 1
2b22

�
z2
1 − 2b1z1w + w2

��
,

(4.13)

since we assumed that b21+ b22 = 1. The right-hand side of (4.13) is symmetric
with respect to z1 and w. Thus the joint density can also be expressed as
in (4.12), but with z1 and w interchanged, as follows:

f(w, z1) =
1
b2

φ(w)φ
�z1 − b1w

b2

�
. (4.14)

We are now ready to compute the unconditional, or marginal, density of w.
To do so, we integrate the joint density (4.14) with respect to z1; see (1.12).
Note that z1 occurs only in the last factor on the right-hand side of (4.14).
Further, the expression (1/b2)φ

�
(z1 − b1w)/b2

�
, like expression (4.11), is a

probability density, and so it integrates to 1. Thus we conclude that the
marginal density of w is f(w) = φ(w), and so it follows that w is standard
normal, unconditionally, as we wished to show.

It is now simple to extend this argument to the case for which b21 + b22 �= 1.
We define r2 = b21 + b22, and consider w/r. The argument above shows that
w/r is standard normal, and so w ∼ N(0, r2). It is equally simple to extend
the result to a linear combination of any number of mutually independent
standard normal variables. If we now let w be defined as b1z1 + b2z2 + b3z3,
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where z1, z2, and z3 are mutually independent standard normal variables, then
b1z1+b2z2 is normal by the result for two variables, and it is independent of z3.
Thus, by applying the result for two variables again, this time to b1z1 + b2z2

and z3, we see that w is normal. This reasoning can obviously be extended
by induction to a linear combination of any number of independent standard
normal variables. Finally, if we consider a linear combination of independent
normal variables with nonzero means, the mean of the resulting variable is
just the same linear combination of the means of the individual variables.

The Multivariate Normal Distribution

The results of the previous subsection can be extended to linear combina-
tions of normal random variables that are not necessarily independent. In
order to do so, we introduce the multivariate normal distribution. As the
name suggests, this is a family of distributions for random vectors, with the
scalar normal distributions being special cases of it. The pair of random
variables z1 and w considered above follow the bivariate normal distribution,
another special case of the multivariate normal distribution. As we will see
in a moment, all these distributions, like the scalar normal distribution, are
completely characterized by their first two moments.

In order to construct the multivariate normal distribution, we begin with a
set of m mutually independent standard normal variables, zi, i = 1, . . . ,m,
which we can assemble into a random m--vector z. Then any m--vector x
of linearly independent linear combinations of the components of z follows
a multivariate normal distribution. Such a vector x can always be written
as Az, for some nonsingular m ×m matrix A. As we will see in a moment,
the matrix A can always be chosen to be lower-triangular.

We denote the components of x as xi, i = 1, . . . ,m. From what we have seen
above, it is clear that each xi is normally distributed, with (unconditional)
mean zero. Therefore, from results proved in Section 3.4, it follows that the
covariance matrix of x is

Var(x) = E(xx�) = AE(zz�)A�= AIA�= AA�.

Here we have used the fact that the covariance matrix of z is the identity
matrix I. This is true because the variance of each component of z is 1,
and, since the zi are mutually independent, all the covariances are 0; see
Exercise 1.11.

Let us denote the covariance matrix of x by Ω. Recall that, according to
a result mentioned in Section 3.4 in connection with Crout’s algorithm, for
any positive definite matrix Ω, we can always find a lower-triangular A such
that AA� = Ω. Thus the matrix A may always be chosen to be lower-
triangular. The distribution of x is multivariate normal with mean vector 0
and covariance matrix Ω. We write this as x ∼ N(0,Ω). If we add an
m--vector µ of constants to x, the resulting vector must follow the N(µ,Ω)
distribution.
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σ1 = 1.5, σ2 = 1, ρ = −0.9

Figure 4.3 Contours of two bivariate normal densities

It is clear from this argument that any linear combination of random variables
that are jointly multivariate normal is itself normally distributed. Thus, if
x ∼ N(µ,Ω), any scalar a�x, where a is an m--vector of fixed coefficients, is
normally distributed with mean a�µ and variance a�Ωa.

We saw a moment ago that z ∼ N(0, I) whenever the components of the
vector z are independent. Another crucial property of the multivariate nor-
mal distribution is that the converse of this result is also true: If x is any
multivariate normal vector with zero covariances, the components of x are
mutually independent. This is a very special property of the multivariate
normal distribution, and readers are asked to prove it, for the bivariate case,
in Exercise 4.5. In general, a zero covariance between two random variables
does not imply that they are independent.

It is important to note that the results of the last two paragraphs do not hold
unless the vector x is multivariate normal, that is, constructed as a set of linear
combinations of independent normal variables. In most cases, when we have
to deal with linear combinations of two or more normal random variables, it is
reasonable to assume that they are jointly distributed as multivariate normal.
However, as Exercise 1.12 illustrates, it is possible for two or more random
variables not to be multivariate normal even though each one individually
follows a normal distribution.

Figure 4.3 illustrates the bivariate normal distribution, of which the PDF is
given in Exercise 4.5 in terms of the variances σ2

1 and σ2
2 of the two variables,

and their correlation ρ. Contours of the density are plotted, on the right for
σ1 = σ2 = 1.0 and ρ = 0.5, on the left for σ1 = 1.5, σ2 = 1.0, and ρ = −0.9.
The contours of the bivariate normal density can be seen to be elliptical. The
ellipses slope upward when ρ > 0 and downward when ρ < 0. They do so
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more steeply the larger is the ratio σ2/σ1. The closer |ρ| is to 1, for given
values of σ1 and σ2, the more elongated are the elliptical contours.

The Chi-Squared Distribution

Suppose, as in our discussion of the multivariate normal distribution, that
the random vector z is such that its components z1, . . . , zm are mutually
independent standard normal random variables. An easy way to express this
is to write z ∼ N(0, I). Then the random variable

y ≡ �z�2 = z�z =
m�

i=1

z2
i (4.15)

is said to follow the chi-squared distribution with m degrees of freedom. A
compact way of writing this is: y ∼ χ2(m). From (4.15), it is clear that
m must be a positive integer. In the case of a test statistic, it will turn out
to be equal to the number of restrictions being tested.

The mean and variance of the χ2(m) distribution can easily be obtained from
the definition (4.15). The mean is

E(y) =
m�

i=1

E(z2
i ) =

m�

i=1

1 = m. (4.16)

Since the zi are independent, the variance of the sum of the z2
i is just the sum

of the (identical) variances:

Var(y) =
m�

i=1

Var(z2
i ) = mE

�
(z2

i − 1)2
�

= mE(z4
i − 2z2

i + 1) = m(3− 2 + 1) = 2m.

(4.17)

The third equality here uses the fact that E(z4
i ) = 3; see Exercise 4.2.

Another important property of the chi-squared distribution, which follows
immediately from (4.15), is that, if y1 ∼ χ2(m1) and y2 ∼ χ2(m2), and y1

and y2 are independent, then y1 + y2 ∼ χ2(m1 + m2). To see this, rewrite
(4.15) as

y = y1 + y2 =
m1�

i=1

z2
i +

m1+m2�

i=m1+1

z2
i =

m1+m2�

i=1

z2
i ,

from which the result follows.

Figure 4.4 shows the PDF of the χ2(m) distribution for m = 1, m = 3,
m = 5, and m = 7. The changes in the location and height of the density
function as m increases are what we should expect from the results (4.16) and
(4.17) about its mean and variance. In addition, the PDF, which is extremely
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Figure 4.4 Various chi-squared PDFs

skewed to the right for m = 1, becomes less skewed as m increases. In fact, as
we will see in Section 4.5, the χ2(m) distribution approaches the N(m, 2m)
distribution as m becomes large.

In Section 3.4, we introduced quadratic forms. As we will see, many test
statistics can be written as quadratic forms in normal vectors, or as functions
of such quadratic forms. The following theorem states two results about
quadratic forms in normal vectors that will prove to be extremely useful.

Theorem 4.1.

1. If the m--vector x is distributed as N(0,Ω), then the quadratic
form x�Ω−1x is distributed as χ2(m);

2. If P is a projection matrix with rank r and z is an n--vector
that is distributed as N(0, I), then the quadratic form z�Pz is
distributed as χ2(r).

Proof: Since the vector x is multivariate normal with mean vector 0, so is the
vector A−1x, where, as before, AA�= Ω. Moreover, the covariance matrix
of A−1x is

E
�
A−1xx�(A�)−1

�
= A−1Ω (A�)−1 = A−1AA�(A�)−1 = Im.

Thus we have shown that the vector z ≡ A−1x is distributed as N(0, I).

The quadratic form x�Ω−1x is equal to x�(A�)−1A−1x = z�z. As we have
just shown, this is equal to the sum of m independent, squared, standard
normal random variables. From the definition of the chi-squared distribution,
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we know that such a sum is distributed as χ2(m). This proves the first part
of the theorem.

Since P is a projection matrix, it must project orthogonally on to some sub-
space of En. Suppose, then, that P projects on to the span of the columns of
an n× r matrix Z. This allows us to write

z�Pz = z�Z(Z�Z)−1Z�z.

The r --vector x ≡ Z�z evidently follows the N(0,Z�Z) distribution. There-
fore, z�Pz is seen to be a quadratic form in the multivariate normal r --vector
x and (Z�Z)−1, which is the inverse of its covariance matrix. That this
quadratic form is distributed as χ2(r) follows immediately from the the first
part of the theorem.

The Student’s t Distribution

If z ∼ N(0, 1) and y ∼ χ2(m), and z and y are independent, then the random
variable

t ≡ z

(y/m)1/2
(4.18)

is said to follow the Student’s t distribution with m degrees of freedom. A
compact way of writing this is: t ∼ t(m). The Student’s t distribution looks
very much like the standard normal distribution, since both are bell-shaped
and symmetric around 0.

The moments of the t distribution depend on m, and only the first m − 1
moments exist. Thus the t(1) distribution, which is also called the Cauchy
distribution, has no moments at all, and the t(2) distribution has no variance.
From (4.18), we see that, for the Cauchy distribution, the denominator of t
is just the absolute value of a standard normal random variable. Whenever
this denominator happens to be close to zero, the ratio is likely to be a very
big number, even if the numerator is not particularly large. Thus the Cauchy
distribution has very thick tails. As m increases, the chance that the denom-
inator of (4.18) is close to zero diminishes (see Figure 4.4), and so the tails
become thinner.

In general, if t is distributed as t(m) with m > 2, then Var(t) = m/(m− 2).
Thus, as m → ∞, the variance tends to 1, the variance of the standard
normal distribution. In fact, the entire t(m) distribution tends to the standard
normal distribution as m→∞. By (4.15), the chi-squared variable y can be
expressed as

�m
i=1 z

2
i , where the zi are independent standard normal variables.

Therefore, by a law of large numbers, such as (3.16), y/m, which is the average
of the z2

i , tends to its expectation as m → ∞. By (4.16), this expectation is
just m/m = 1. It follows that the denominator of (4.18), (y/m)1/2, also tends
to 1, and hence that t→ z ∼ N(0, 1) as m→∞.

Figure 4.5 shows the PDFs of the standard normal, t(1), t(2), and t(5) distri-
butions. In order to make the differences among the various densities in the
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Figure 4.5 PDFs of the Student’s t distribution

figure apparent, all the values of m are chosen to be very small. However, it
is clear from the figure that, for larger values of m, the PDF of t(m) will be
very similar to the PDF of the standard normal distribution.

The F Distribution

If y1 and y2 are independent random variables distributed as χ2(m1) and
χ2(m2), respectively, then the random variable

F ≡ y1/m1

y2/m2
(4.19)

is said to follow the F distribution with m1 and m2 degrees of freedom. A
compact way of writing this is: F ∼ F (m1,m2). The notation F is used in
honor of the well-known statistician R. A. Fisher. The F (m1,m2) distribution
looks a lot like a rescaled version of the χ2(m1) distribution. As for the
t distribution, the denominator of (4.19) tends to unity as m2 → ∞, and
so m1F → y1 ∼ χ2(m1) as m2 → ∞. Therefore, for large values of m2, a
random variable that is distributed as F (m1,m2) will behave very much like
1/m1 times a random variable that is distributed as χ2(m1).

The F distribution is very closely related to the Student’s t distribution. It is
evident from (4.19) and (4.18) that the square of a random variable which is
distributed as t(m2) will be distributed as F (1,m2). In the next section, we
will see how these two distributions arise in the context of hypothesis testing
in linear regression models.
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4.4 Exact Tests in the Classical Normal Linear Model

In the example of Section 4.2, we were able to obtain a test statistic z that was
distributed as N(0, 1). Tests based on this statistic are exact. Unfortunately,
it is possible to perform exact tests only in certain special cases. One very
important special case of this type arises when we test linear restrictions on
the parameters of the classical normal linear model, which was introduced in
Section 3.1. This model may be written as

y = Xβ + u, u ∼ N(0, σ2I), (4.20)

where X is an n × k matrix of regressors, so that there are n observations
and k regressors, and it is assumed that the error vector u is statistically
independent of the matrix X. Notice that in (4.20) the assumption which in
Section 3.1 was written as ut ∼ NID(0, σ2) is now expressed in matrix notation
using the multivariate normal distribution. In addition, since the assumption
that u and X are independent means that the generating process for X is
independent of that for y, we can express this independence assumption by
saying that the regressors X are exogenous in the model (4.20); the concept
of exogeneity4 was introduced in Section 1.3 and discussed in Section 3.2.

Tests of a Single Restriction

We begin by considering a single, linear restriction on β. This could, in
principle, be any sort of linear restriction, for example, that β1 = 5 or β3 = β4.
However, it simplifies the analysis, and involves no loss of generality, if we
confine our attention to a restriction that one of the coefficients should equal 0.
If a restriction does not naturally have the form of a zero restriction, we can
always apply suitable linear transformations to y and X, of the sort considered
in Sections 2.3 and 2.4, in order to rewrite the model so that it does; see
Exercises 4.6 and 4.7.

Let us partition β as [β1
.... β2], where β1 is a (k − 1)--vector and β2 is a

scalar, and consider a restriction of the form β2 = 0. When X is partitioned
conformably with β, the model (4.20) can be rewritten as

y = X1β1 + β2x2 + u, u ∼ N(0, σ2I), (4.21)

where X1 denotes an n × (k − 1) matrix and x2 denotes an n--vector, with
X = [X1 x2].

By the FWL Theorem, the least squares estimate of β2 from (4.21) is the
same as the least squares estimate from the FWL regression

M1y = β2M1x2 + residuals, (4.22)

4 This assumption is usually called strict exogeneity in the literature, but, since
we will not discuss any other sort of exogeneity in this book, it is convenient
to drop the word “strict”.
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where M1 ≡ I−X1(X1
�X1)−1X1

� is the matrix that projects on to S⊥(X1).
By applying the standard formulas for the OLS estimator and covariance
matrix to regression (4.22), under the assumption that the model (4.21) is
correctly specified, we find that

β̂2 =
x2
�M1y

x2
�M1x2

and Var(β̂2) = σ2(x2
�M1x2)−1.

In order to test the hypothesis that β2 equals any specified value, say β0
2 , we

have to subtract β0
2 from β̂2 and divide by the square root of the variance. For

the null hypothesis that β2 = 0, this yields a test statistic analogous to (4.03),

zβ2 ≡
x2
�M1y

σ(x2
�M1x2)1/2

, (4.23)

which can be computed only under the unrealistic assumption that σ is known.

If the data are actually generated by the model (4.21) with β2 = 0, then

M1y = M1(X1β1 + u) = M1u.

Therefore, the right-hand side of (4.23) becomes

x2
�M1u

σ(x2
�M1x2)1/2

. (4.24)

It is now easy to see that zβ2 is distributed as N(0, 1). Because we can
condition on X, the only thing left in (4.24) that is stochastic is u. Since
the numerator is just a linear combination of the components of u, which is
multivariate normal, the entire test statistic must be normally distributed.
The variance of the numerator is

E(x2
�M1uu�M1x2) = x2

�M1E(uu�)M1x2

= x2
�M1σ

2 IM1x2 = σ2x2
�M1x2.

Since the denominator of (4.24) is just the square root of the variance of
the numerator, we conclude that zβ2 is distributed as N(0, 1) under the null
hypothesis.

The test statistic zβ2 defined in (4.23) has exactly the same distribution under
the null hypothesis as the test statistic z defined in (4.03). The analysis of
Section 4.2 therefore applies to it without any change. Thus we now know
how to test the hypothesis that any coefficient in the classical normal linear
model is equal to 0, or to any specified value, but only if we know the variance
of the error terms.

In order to handle the more realistic case in which we do not know the variance
of the error terms, we need to replace σ in (4.23) by s, the usual least squares
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standard error estimator for model (4.21), defined in (3.49). If, as usual, MX

is the orthogonal projection on to S⊥(X), we have s2 = y�MXy/(n−k), and
so we obtain the test statistic

tβ2 ≡
x2
�M1y

s(x2
�M1x2)1/2

=
�

y�MXy

n− k

�−1/2
x2
�M1y

(x2
�M1x2)1/2

. (4.25)

As we will now demonstrate, this test statistic is distributed as t(n−k) under
the null hypothesis. Not surprisingly, it is called a t statistic.

As we discussed in the last section, for a test statistic to have the t(n − k)
distribution, it must be possible to write it as the ratio of a standard normal
variable z to the square root of y/(n − k), where y is independent of z and
distributed as χ2(n− k). The t statistic defined in (4.25) can be rewritten as

tβ2 =
zβ2�

y�MXy/((n− k)σ2)
�1/2

, (4.26)

which has the form of such a ratio. We have already shown that zβ2 ∼ N(0, 1).
Thus it only remains to show that y�MXy/σ2 ∼ χ2(n − k) and that the
random variables in the numerator and denominator of (4.26) are independent.

Under any DGP that belongs to (4.21),

y�MXy

σ2
=

u�MXu

σ2
= ε�MXε, (4.27)

where ε ≡ u/σ is distributed as N(0, I). Since MX is a projection matrix
with rank n − k, the second part of Theorem 4.1 shows that the rightmost
expression in (4.27) is distributed as χ2(n− k).

To see that the random variables zβ2 and ε�MXε are independent, we note
first that ε�MXε depends on y only through MXy. Second, from (4.23), it
is not hard to see that zβ2 depends on y only through PXy, since

x2
�M1y = x2

�PXM1y = x2
�(PX − PXP1)y = x2

�M1PXy;

the first equality here simply uses the fact that x2 ∈ S(X), and the third
equality uses the result (2.36) that PXP1 = P1PX . Independence now follows
because, as we will see directly, PXy and MXy are independent.

We saw above that MXy = MXu. Further, from (4.20), PXy = Xβ+PXu,
from which it follows that the centered version of PXy is PXu. The n × n
matrix of covariances of components of PXu and MXu is thus

E(PXuu�MX) = σ2PXMX = O,

by (2.26), because PX and MX are complementary projections. These zero
covariances imply that PXu and MXu are independent, since both are mul-
tivariate normal. Geometrically, these vectors have zero covariance because
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they lie in orthogonal subspaces, namely, the images of PX and MX . Thus,
even though the numerator and denominator of (4.26) both depend on y, this
orthogonality implies that they are independent.

We therefore conclude that the t statistic (4.26) for β2 = 0 in the model (4.21)
has the t(n−k) distribution. Performing one-tailed and two-tailed tests based
on tβ2 is almost the same as performing them based on zβ2 . We just have to
use the t(n − k) distribution instead of the N(0, 1) distribution to compute
P values or critical values. An interesting property of t statistics is explored
in Exercise 14.8.

Tests of Several Restrictions

Economists frequently want to test more than one linear restriction. Let us
suppose that there are r restrictions, with r ≤ k, since there cannot be more
equality restrictions than there are parameters in the unrestricted model. As
before, there will be no loss of generality if we assume that the restrictions
take the form β2 = 0. The alternative hypothesis is the model (4.20), which
has been rewritten as

H1 : y = X1β1 +X2β2 + u, u ∼ N(0, σ2I). (4.28)

Here X1 is an n× k1 matrix, X2 is an n× k2 matrix, β1 is a k1--vector, β2 is
a k2--vector, k = k1+k2, and the number of restrictions r = k2. Unless r = 1,
it is no longer possible to use a t test, because there will be one t statistic for
each element of β2, and we want to compute a single test statistic for all the
restrictions at once.

It is natural to base a test on a comparison of how well the model fits when
the restrictions are imposed with how well it fits when they are not imposed.
The null hypothesis is the regression model

H0 : y = X1β1 + u, u ∼ N(0, σ2I), (4.29)

in which we impose the restriction that β2 = 0. As we saw in Section 3.8,
the restricted model (4.29) must always fit worse than the unrestricted model
(4.28), in the sense that the SSR from (4.29) cannot be smaller, and will
almost always be larger, than the SSR from (4.28). However, if the restrictions
are true, the reduction in SSR from adding X2 to the regression should be
relatively small. Therefore, it seems natural to base a test statistic on the
difference between these two SSRs. If USSR denotes the unrestricted sum
of squared residuals, from (4.28), and RSSR denotes the restricted sum of
squared residuals, from (4.29), the appropriate test statistic is

Fβ2 ≡
(RSSR−USSR)/r
USSR/(n− k)

. (4.30)

Under the null hypothesis, as we will now demonstrate, this test statistic fol-
lows the F distribution with r and n−k degrees of freedom. Not surprisingly,
it is called an F statistic.

Copyright c� 1999, Russell Davidson and James G. MacKinnon



4.4 Exact Tests in the Classical Normal Linear Model 143

The restricted SSR is y�M1y, and the unrestricted one is y�MXy. One
way to obtain a convenient expression for the difference between these two
expressions is to use the FWL Theorem. By this theorem, the USSR is the
SSR from the FWL regression

M1y = M1X2β2 + residuals. (4.31)

The total sum of squares from (4.31) is y�M1y. The explained sum of squares
can be expressed in terms of the orthogonal projection on to the r --dimensional
subspace S(M1X2), and so the difference is

USSR = y�M1y − y�M1X2(X2
�M1X2)−1X2

�M1y. (4.32)

Therefore,

RSSR−USSR = y�M1X2(X2
�M1X2)−1X2

�M1y,

and the F statistic (4.30) can be written as

Fβ2 =
y�M1X2(X2

�M1X2)−1X2
�M1y/r

y�MXy/(n− k)
. (4.33)

Under the null hypothesis, MXy = MXu and M1y = M1u. Thus, under
this hypothesis, the F statistic (4.33) reduces to

ε�M1X2(X2
�M1X2)−1X2

�M1ε/r

ε�MXε/(n− k)
, (4.34)

where, as before, ε ≡ u/σ. We saw in the last subsection that the quadratic
form in the denominator of (4.34) is distributed as χ2(n − k). Since the
quadratic form in the numerator can be written as ε�PM1X2ε, it is distributed
as χ2(r). Moreover, the random variables in the numerator and denominator
are independent, because MX and PM1X2 project on to mutually orthogonal
subspaces: MXM1X2 = MX(X2−P1X2) = O. Thus it is apparent that the
statistic (4.34) follows the F (r, n− k) distribution under the null hypothesis.

A Threefold Orthogonal Decomposition

Each of the restricted and unrestricted models generates an orthogonal de-
composition of the dependent variable y. It is illuminating to see how these
two decompositions interact to produce a threefold orthogonal decomposi-
tion. It turns out that all three components of this decomposition have useful
interpretations. From the two models, we find that

y = P1y + M1y and y = PXy + MXy. (4.35)

Copyright c� 1999, Russell Davidson and James G. MacKinnon



144 Hypothesis Testing in Linear Regression Models

In Exercise 2.17, it was seen that PX−P1 is an orthogonal projection matrix,
equal to PM1X2 . It follows that

PX = P1 + PM1X2 , (4.36)

where the two projections on the right-hand side are obviously mutually or-
thogonal, since P1 annihilates M1X2. From (4.35) and (4.36), we obtain the
threefold orthogonal decomposition

y = P1y + PM1X2y + MXy. (4.37)

The first term is the vector of fitted values from the restricted model, X1β̃1. In
this and what follows, we use a tilde (˜) to denote the restricted estimates, and
a hat (ˆ) to denote the unrestricted estimates. The second term is the vector
of fitted values from the FWL regression (4.31). It equals M1X2β̂2, where,
by the FWL Theorem, β̂2 is a subvector of estimates from the unrestricted
model. Finally, MXy is the vector of residuals from the unrestricted model.

Since PXy = X1β̂1 +X2β̂2, the vector of fitted values from the unrestricted
model, we see that

X1β̂1 +X2β̂2 = X1β̃1 +M1X2β̂2. (4.38)

In Exercise 4.9, this result is exploited to show how to obtain the restricted
estimates in terms of the unrestricted estimates.

The F statistic (4.33) can be written as the ratio of the squared norm of the
second component in (4.37) to the squared norm of the third, each normalized
by the appropriate number of degrees of freedom. Under both hypotheses, the
third component MXy equals MXu, and so it consists of random noise. Its
squared norm is a χ2(n − k) variable times σ2, which serves as the (unre-
stricted) estimate of σ2 and can be thought of as a measure of the scale of
the random noise. Since u ∼ N(0, σ2I), every element of u has the same
variance, and so every component of (4.37), if centered so as to leave only the
random part, should have the same scale.

Under the null hypothesis, the second component is PM1X2y = PM1X2u,
which just consists of random noise. But, under the alternative, PM1X2y =
M1X2β2 + PM1X2u, and it thus contains a systematic part related to X2.
The length of the second component will be greater, on average, under the
alternative than under the null, since the random part is there in all cases, but
the systematic part is present only under the alternative. The F test compares
the squared length of the second component with the squared length of the
third. It thus serves to detect the possible presence of systematic variation,
related to X2, in the second component of (4.37).

All this means that we want to reject the null whenever the numerator of
the F statistic, RSSR−USSR, is relatively large. Consequently, the P value
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corresponding to a realized F statistic F̂ is computed as 1−Fr,n−k(F̂ ), where
Fr,n−k(·) denotes the CDF of the F distribution with the appropriate numbers
of degrees of freedom. Thus we compute the P value as if for a one-tailed
test. However, F tests are really two-tailed tests, because they test equality
restrictions, not inequality restrictions. An F test for β2 = 0 will reject the
null hypothesis whenever β̂2 is sufficiently far from 0, whether the individual
elements of β̂2 are positive or negative.

There is a very close relationship between F tests and t tests. In the previous
section, we saw that the square of a random variable with the t(n− k) distri-
bution must have the F (1, n − k) distribution. The square of the t statistic
tβ2 , defined in (4.25), is

t2β2
=

y�M1x2(x2
�M1x2)−1x2

�M1y

y�MXy/(n− k)
.

This test statistic is evidently a special case of (4.33), with the vector x2

replacing the matrix X2. Thus, when there is only one restriction, it makes
no difference whether we use a two-tailed t test or an F test.

An Example of the F Test

The most familiar application of the F test is testing the hypothesis that all
the coefficients in a classical normal linear model, except the constant term,
are zero. The null hypothesis is that β2 = 0 in the model

y = β1ι+X2β2 + u, u ∼ N(0, σ2I), (4.39)

where ι is an n--vector of 1s and X2 is n× (k− 1). In this case, using (4.32),
the test statistic (4.33) can be written as

Fβ2 =
y�MιX2(X2

�MιX2)−1X2
�Mιy/(k − 1)�

y�Mιy − y�MιX2(X2
�MιX2)−1X2

�Mιy
�
/(n− k)

, (4.40)

where Mι is the projection matrix that takes deviations from the mean, which
was defined in (2.32). Thus the matrix expression in the numerator of (4.40)
is just the explained sum of squares, or ESS, from the FWL regression

Mιy = MιX2β2 + residuals.

Similarly, the matrix expression in the denominator is the total sum of squares,
or TSS, from this regression, minus the ESS. Since the centered R2 from (4.39)
is just the ratio of this ESS to this TSS, it requires only a little algebra to
show that

Fβ2 =
n− k

k − 1
× R2

c

1−R2
c

.

Therefore, the F statistic (4.40) depends on the data only through the cen-
tered R2, of which it is a monotonically increasing function.
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Testing the Equality of Two Parameter Vectors

It is often natural to divide a sample into two, or possibly more than two,
subsamples. These might correspond to periods of fixed exchange rates and
floating exchange rates, large firms and small firms, rich countries and poor
countries, or men and women, to name just a few examples. We may then
ask whether a linear regression model has the same coefficients for both the
subsamples. It is natural to use an F test for this purpose. Because the classic
treatment of this problem is found in Chow (1960), the test is often called a
Chow test; later treatments include Fisher (1970) and Dufour (1982).

Let us suppose, for simplicity, that there are only two subsamples, of lengths
n1 and n2, with n = n1 + n2. We will assume that both n1 and n2 are
greater than k, the number of regressors. If we separate the subsamples by
partitioning the variables, we can write

y ≡
�

y1

y2

�
, and X ≡

�
X1

X2

�
,

where y1 and y2 are, respectively, an n1--vector and an n2--vector, while X1

and X2 are n1 × k and n2 × k matrices. Even if we need different para-
meter vectors, β1 and β2, for the two subsamples, we can nonetheless put the
subsamples together in the following regression model:

�
y1

y2

�
=

�
X1

X2

�
β1 +

�
O
X2

�
γ + u, u ∼ N(0, σ2I). (4.41)

It can readily be seen that, in the first subsample, the regression functions
are the components of X1β1, while, in the second, they are the components
of X2(β1 + γ). Thus γ is to be defined as β2 − β1. If we define Z as an
n × k matrix with O in its first n1 rows and X2 in the remaining n2 rows,
then (4.41) can be rewritten as

y = Xβ1 +Zγ + u, u ∼ N(0, σ2I). (4.42)

This is a regression model with n observations and 2k regressors. It has
been constructed in such a way that β1 is estimated directly, while β2 is
estimated using the relation β2 = γ + β1. Since the restriction that β1 = β2

is equivalent to the restriction that γ = 0 in (4.42), the null hypothesis has
been expressed as a set of k zero restrictions. Since (4.42) is just a classical
normal linear model with k linear restrictions to be tested, the F test provides
the appropriate way to test those restrictions.

The F statistic can perfectly well be computed as usual, by running (4.42)
to get the USSR and then running the restricted model, which is just the
regression of y on X, to get the RSSR. However, there is another way to
compute the USSR. In Exercise 4.10, readers are invited to show that it
is simply the sum of the two SSRs obtained by running two independent
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regressions on the two subsamples. If SSR1 and SSR2 denote the sums of
squared residuals from these two regressions, and RSSR denotes the sum of
squared residuals from regressing y on X, the F statistic becomes

Fγ =
(RSSR− SSR1 − SSR2)/k
(SSR1 + SSR2)/(n− 2k)

. (4.43)

This Chow statistic, as it is often called, is distributed as F (k, n− 2k) under
the null hypothesis that β1 = β2.

4.5 Large-Sample Tests in Linear Regression Models

The t and F tests that we developed in the previous section are exact only
under the strong assumptions of the classical normal linear model. If the
error vector were not normally distributed or not independent of the matrix
of regressors, we could still compute t and F statistics, but they would not
actually follow their namesake distributions in finite samples. However, like
a great many test statistics in econometrics which do not follow any known
distribution exactly, they would in many cases approximately follow known
distributions in large samples. In such cases, we can perform what are called
large-sample tests or asymptotic tests, using the approximate distributions to
compute P values or critical values.

Asymptotic theory is concerned with the distributions of estimators and test
statistics as the sample size n tends to infinity. It often allows us to obtain
simple results which provide useful approximations even when the sample size
is far from infinite. In this book, we do not intend to discuss asymptotic the-
ory at the advanced level of Davidson (1994) or White (1984). A rigorous
introduction to the fundamental ideas may be found in Gallant (1997), and a
less formal treatment is provided in Davidson and MacKinnon (1993). How-
ever, it is impossible to understand large parts of econometrics without having
some idea of how asymptotic theory works and what we can learn from it. In
this section, we will show that asymptotic theory gives us results about the
distributions of t and F statistics under much weaker assumptions than those
of the classical normal linear model.

Laws of Large Numbers

There are two types of fundamental results on which asymptotic theory is
based. The first type, which we briefly discussed in Section 3.3, is called a law
of large numbers, or LLN. A law of large numbers may apply to any quantity
which can be written as an average of n random variables, that is, 1/n times
their sum. Suppose, for example, that

x̄ ≡ 1−
n

n�

t=1

xt,
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Figure 4.6 EDFs for several sample sizes

where the xt are independent random variables, each with its own bounded
finite variance σ2

t and with a common mean µ. Then a fairly simple LLN
assures us that, as n→∞, x̄ tends to µ.

An example of how useful a law of large numbers can be is the Fundamental
Theorem of Statistics, which concerns the empirical distribution function,
or EDF, of a random sample. The EDF was introduced in Exercises 1.1
and 3.4. Suppose that X is a random variable with CDF F (X) and that
we obtain a random sample of size n with typical element xt, where each
xt is an independent realization of X. The empirical distribution defined by
this sample is the discrete distribution that puts a weight of 1/n at each of
the xt, t = 1, . . . , n. The EDF is the distribution function of the empirical
distribution, and it can be expressed algebraically as

F̂ (x) ≡ 1−
n

n�

t=1

I(xt ≤ x), (4.44)

where I(·) is the indicator function, which takes the value 1 when its argument
is true and takes the value 0 otherwise. Thus, for a given argument x, the
sum on the right-hand side of (4.44) counts the number of realizations xt that
are smaller than or equal to x. The EDF has the form of a step function: The
height of each step is 1/n, and the width is equal to the difference between two
successive values of xt. According to the Fundamental Theorem of Statistics,
the EDF consistently estimates the CDF of the random variable X.
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Figure 4.6 shows the EDFs for three samples of sizes 20, 100, and 500 drawn
from three normal distributions, each with variance 1 and with means 0, 2,
and 4, respectively. These may be compared with the CDF of the standard
normal distribution in the lower panel of Figure 4.2. There is not much
resemblance between the EDF based on n = 20 and the normal CDF from
which the sample was drawn, but the resemblance is somewhat stronger for
n = 100 and very much stronger for n = 500. It is a simple matter to
simulate data from an EDF, as we will see in the next section, and this type
of simulation can be very useful.

It is very easy to prove the Fundamental Theorem of Statistics. For any real
value of x, each term in the sum on the right-hand side of (4.44) depends only
on xt. The expectation of I(xt ≤ x) can be found by using the fact that it
can take on only two values, 1 and 0. The expectation is

E
�
I(xt ≤ x)

�
= 0 · Pr

�
I(xt ≤ x) = 0

�
+ 1 · Pr

�
I(xt ≤ x) = 1

�

= Pr
�
I(xt ≤ x) = 1

�
= Pr(xt ≤ x) = F (x).

Since the xt are mutually independent, so too are the terms I(xt ≤ x). Since
the xt all follow the same distribution, so too must these terms. Thus (4.44) is
the mean of n IID random terms, each with finite expectation. The simplest
of all LLNs (due to Khinchin) applies to such a mean, and we conclude that,
for every x, F̂ (x) is a consistent estimator of F (x).

There are many different LLNs, some of which do not require that the indi-
vidual random variables have a common mean or be independent, although
the amount of dependence must be limited. If we can apply a LLN to any
random average, we can treat it as a nonrandom quantity for the purpose of
asymptotic analysis. In many cases, this means that we must divide the quan-
tity of interest by n. For example, the matrix X�X that appears in the OLS
estimator generally does not converge to anything as n → ∞. In contrast,
the matrix n−1X�X will, under many plausible assumptions about how X is
generated, tend to a nonstochastic limiting matrix SX�X as n→∞.

Central Limit Theorems

The second type of fundamental result on which asymptotic theory is based
is called a central limit theorem, or CLT. Central limit theorems are crucial
in establishing the asymptotic distributions of estimators and test statistics.
They tell us that, in many circumstances, 1/

√
n times the sum of n centered

random variables will approximately follow a normal distribution when n is
sufficiently large.

Suppose that the random variables xt, t = 1, . . . , n, are independently and
identically distributed with mean µ and variance σ2. Then, according to the
Lindeberg-Lévy central limit theorem, the quantity

z ≡ 1√
n

n�

t=1

xt − µ

σ
(4.45)
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is asymptotically distributed as N(0, 1). This means that, as n → ∞, the
random variable z tends to a random variable which follows the N(0, 1) dis-
tribution. It may seem curious that we divide by

√
n instead of by n in (4.45),

but this is an essential feature of every CLT. To see why, we calculate the var-
iance of z. Since the terms in the sum in (4.45) are independent, the variance
of z is just the sum of the variances of the n terms:

Var(z) = nVar
� 1√

n

xt − µ

σ

�
=

n

n
= 1.

If we had divided by n, we would, by a law of large numbers, have obtained a
random variable with a plim of 0 instead of a random variable with a limiting
standard normal distribution. Thus, whenever we want to use a CLT, we
must ensure that a factor of n−1/2 = 1/

√
n is present.

Just as there are many different LLNs, so too are there many different CLTs,
almost all of which impose weaker conditions on the xt than those imposed
by the Lindeberg-Lévy CLT. The assumption that the xt are identically dis-
tributed is easily relaxed, as is the assumption that they are independent.
However, if there is either too much dependence or too much heterogeneity,
a CLT may not apply. Several CLTs are discussed in Section 4.7 of David-
son and MacKinnon (1993), and Davidson (1994) provides a more advanced
treatment. In all cases of interest to us, the CLT says that, for a sequence of
random variables xt, t = 1, . . . ,∞, with E(xt) = 0,

plim
n→∞

n−1/2
n�

t=1

xt = x0 ∼ N
�
0, lim

n→∞
1−
n

n�

t=1

Var(xt)
�
.

We sometimes need vector, ormultivariate, versions of CLTs. Suppose that we
have a sequence of random m--vectors xt, for some fixed m, with E(xt) = 0.
Then the appropriate multivariate version of a CLT tells us that

plim
n→∞

n−1/2
n�

t=1

xt = x0 ∼ N
�
0, lim

n→∞
1−
n

n�

t=1

Var(xt)
�
, (4.46)

where x0 is multivariate normal, and each Var(xt) is an m×m matrix.

Figure 4.7 illustrates the fact that CLTs often provide good approximations
even when n is not very large. Both panels of the figure show the densities
of various random variables z defined as in (4.45). In the top panel, the xt

are uniformly distributed, and we see that z is remarkably close to being
distributed as standard normal even when n is as small as 8. This panel does
not show results for larger values of n because they would have made it too
hard to read. In the bottom panel, the xt follow the χ2(1) distribution, which
exhibits extreme right skewness. The mode of the distribution is 0, there are
no values less than 0, and there is a very long right-hand tail. For n = 4
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Figure 4.7 The normal approximation for different values of n

and n = 8, the standard normal provides a poor approximation to the actual
distribution of z. For n = 100, on the other hand, the approximation is not
bad at all, although it is still noticeably skewed to the right.

Asymptotic Tests

The t and F tests that we discussed in the previous section are asymptotically
valid under much weaker conditions than those needed to prove that they
actually have their namesake distributions in finite samples. Suppose that
the DGP is

y = Xβ0 + u, u ∼ IID(0, σ2
0I), (4.47)

where β0 satisfies whatever hypothesis is being tested, and the error terms
are drawn from some specific but unknown distribution with mean 0 and
variance σ2

0 . We allow Xt to contain lagged dependent variables, and so we
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abandon the assumption of exogenous regressors and replace it with assump-
tion (3.10) from Section 3.2, plus an analogous assumption about the variance.
These two assumptions can be written as

E(ut |Xt) = 0 and E(u2
t |Xt) = σ2

0 . (4.48)

The first of these assumptions, which is assumption (3.10), can be referred
to in two ways. From the point of view of the error terms, it says that they
are innovations. An innovation is a random variable of which the mean is 0
conditional on the information in the explanatory variables, and so knowledge
of the values taken by the latter is of no use in predicting the mean of the in-
novation. From the point of view of the explanatory variables Xt, assumption
(3.10) says that they are predetermined with respect to the error terms. We
thus have two different ways of saying the same thing. Both can be useful,
depending on the circumstances.

Although we have greatly weakened the assumptions of the classical normal
linear model, we now need to make an additional assumption in order to be
able to use asymptotic results. We therefore assume that the data-generating
process for the explanatory variables is such that

plim
n→∞

1−
n
X�X = SX�X , (4.49)

where SX�X is a finite, deterministic, positive definite matrix. We made this
assumption previously, in Section 3.3, when we proved that the OLS estimator
is consistent. Although it is often reasonable, condition (4.49) is violated in
many cases. For example, it cannot hold if one of the columns of the X matrix
is a linear time trend, because

�n
t=1 t

2 grows at a rate faster than n.

Now consider the t statistic (4.25) for testing the hypothesis that β2 = 0 in
the model (4.21). The key to proving that (4.25), or any test statistic, has
a certain asymptotic distribution is to write it as a function of quantities to
which we can apply either a LLN or a CLT. Therefore, we rewrite (4.25) as

tβ2 =
�

y�MXy

n− k

�−1/2
n−1/2x2

�M1y

(n−1x2
�M1x2)1/2

, (4.50)

where the numerator and denominator of the second factor have both been
multiplied by n−1/2. Under the DGP (4.47), s2 ≡ y�MXy/(n−k) tends to σ2

0

as n→∞. This statement, which is equivalent to saying that the OLS error
variance estimator s2 is consistent under our weaker assumptions, follows from
a LLN, because s2 has the form of an average, and the calculations leading
to (3.49) showed that the mean of s2 is σ2

0 . It follows from the consistency
of s2 that the first factor in (4.50) tends to 1/σ0 as n → ∞. When the data
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are generated by (4.47) with β2 = 0, we have that M1y = M1u, and so (4.50)
is asymptotically equivalent to

n−1/2x2
�M1u

σ0(n−1x2
�M1x2)1/2

. (4.51)

It is now easy to derive the asymptotic distribution of tβ2 if for a moment we
reinstate the assumption that the regressors are exogenous. In that case, we
can work conditionally on X, which means that the only part of (4.51) that
is treated as random is u. The numerator of (4.51) is n−1/2 times a weighted
sum of the ut, each of which has mean 0, and the conditional variance of this
weighted sum is

E(x2
�M1uu�M1x2 |X) = σ2

0 x2
�M1x2.

Thus (4.51) evidently has mean 0 and variance 1, conditional on X. But
since 0 and 1 do not depend on X, these are also the unconditional mean
and variance of (4.51). Provided that we can apply a CLT to the numerator
of (4.51), the numerator of tβ2 must be asymptotically normally distributed,
and we conclude that, under the null hypothesis, with exogenous regressors,

tβ2

a∼ N(0, 1). (4.52)

The notation “ a∼” means that tβ2 is asymptotically distributed as N(0, 1).
Since the DGP is assumed to be (4.47), this result does not require that the
error terms be normally distributed.

The t Test with Predetermined Regressors

If we relax the assumption of exogenous regressors, the analysis becomes more
complicated. Readers not interested in the algebraic details may well wish to
skip to next section, since what follows is not essential for understanding the
rest of this chapter. However, this subsection provides an excellent example
of how asymptotic theory works, and it illustrates clearly just why we can
relax some assumptions but not others.

We begin by applying a CLT to the k --vector

v ≡ n−1/2X�u = n−1/2
n�

t=1

utXt
�. (4.53)

By (3.10), E(ut |Xt) = 0. This implies that E(utXt
�) = 0, as required for

the CLT, which then tells us that

v
a∼ N

�
0, lim

n→∞
1−
n

n�

t=1

Var(utXt
�)

�
= N

�
0, lim

n→∞
1−
n

n�

t=1

E(u2
t Xt

�Xt)
�
;
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recall (4.46). Notice that, because Xt is a 1 × k row vector, the covariance
matrix here is k × k, as it must be. The second assumption in (4.48) allows
us to simplify the limiting covariance matrix:

lim
n→∞

1−
n

n�

t=1

E(u2
t Xt

�Xt) = lim
n→∞

σ2
0

1−
n

n�

t=1

E(Xt
�Xt)

= σ2
0 plim

n→∞
1−
n

n�

t=1

Xt
�Xt

= σ2
0 plim

n→∞
1−
n

X�X = σ2
0 SX�X .

(4.54)

We applied a LLN in reverse to go from the first line to the second, and the
last equality follows from (4.49).

Now consider the numerator of (4.51). It can be written as

n−1/2x2
�u− n−1/2x2

�P1u. (4.55)

The first term of this expression is just the last, or k th, component of v, which
we can denote by v2. By writing out the projection matrix P1 explicitly, and
dividing various expressions by n in a way that cancels out, the second term
can be rewritten as

n−1x2
�X1(n−1X1

�X1)−1n−1/2X1
�u. (4.56)

By assumption (4.49), the first and second factors of (4.56) tend to determin-
istic limits. In obvious notation, the first tends to S21, which is a submatrix
of SX�X , and the second tends to S−1

11 , which is the inverse of a submatrix
of SX�X . Thus only the last factor remains random when n → ∞. It is just
the subvector of v consisting of the first k − 1 components, which we denote
by v1. Asymptotically, in partitioned matrix notation, (4.55) becomes

v2 − S21S
−1
11 v1 = [−S21S

−1
11 1 ]

�
v1

v2

�
.

Since v is asymptotically multivariate normal, this scalar expression is asymp-
totically normal, with mean zero and variance

σ2
0 [−S21S

−1
11 1 ]SX�X

�−S−1
11 S12

1

�
,

where, since SX�X is symmetric, S12 is just the transpose of S21. If we now
express SX�X as a partitioned matrix, the variance of (4.55) is seen to be

σ2
0 [−S21S

−1
11 1 ]

�
S11 S12

S21 S22

��−S−1
11 S12

1

�
= σ2

0

�
S22 − S21S

−1
11 S12

�
. (4.57)
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The denominator of (4.51) is, thankfully, easier to analyze. The square of the
second factor is

n−1x2
�M1x2 = n−1x2

�x2 − n−1x2
�P1x2

= n−1x2
�x2 − n−1x2

�X1

�
n−1X1

�X1

�−1
n−1X1

�x2.

In the limit, all the pieces of this expression become submatrices of SX�X ,
and so we find that

n−1x2
�M1x2 → S22 − S21S

−1
11 S12.

When it is multiplied by σ2
0 , this is just (4.57), the variance of the numerator

of (4.51). Thus, asymptotically, we have shown that tβ2 is the ratio of a normal
random variable with mean zero to its standard deviation. Consequently, we
have established that, under the null hypothesis, with regressors that are not
necessarily exogenous but merely predetermined, tβ2

a∼ N(0, 1). This result is
what we previously obtained as (4.52) when we assumed that the regressors
were exogenous.

Asymptotic F Tests

A similar analysis can be performed for the F statistic (4.33) for the null
hypothesis that β2 = 0 in the model (4.28). Under the null, Fβ2 is equal to
expression (4.34), which can be rewritten as

n−1/2ε�M1X2(n−1X2
�M1X2)−1n−1/2X2

�M1ε/r

ε�MXε/(n− k)
, (4.58)

where ε ≡ u/σ0. It is not hard to use the results we obtained for the t statistic
to show that, as n→∞,

rFβ2

a∼ χ2(r) (4.59)

under the null hypothesis; see Exercise 4.12. Since 1/r times a random vari-
able that follows the χ2(r) distribution is distributed as F (r,∞), we can also
conclude that Fβ2

a∼ F (r, n− k).

The results (4.52) and (4.59) justify the use of t and F tests outside the
confines of the classical normal linear model. We can compute P values using
either the standard normal or t distributions in the case of t statistics, and
either the χ2 or F distributions in the case of F statistics. Of course, if we
use the χ2 distribution, we have to multiply the F statistic by r.

Whatever distribution we use, these P values will be approximate, and tests
based on them will not be exact in finite samples. In addition, our theoretical
results do not tell us just how accurate they will be. If we decide to use a
nominal level of α for a test, we will reject if the approximate P value is
less than α. In many cases, but certainly not all, such tests will probably be
quite accurate, committing Type I errors with probability reasonably close
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to α. They may either overreject, that is, reject the null hypothesis more
than 100α% of the time when it is true, or underreject, that is, reject the
null hypothesis less than 100α% of the time. Whether they will overreject
or underreject, and how severely, will depend on many things, including the
sample size, the distribution of the error terms, the number of regressors
and their properties, and the relationship between the error terms and the
regressors.

4.6 Simulation-Based Tests

When we introduced the concept of a test statistic in Section 4.2, we specified
that it should have a known distribution under the null hypothesis. In the
previous section, we relaxed this requirement and developed large-sample test
statistics for which the distribution is known only approximately. In all the
cases we have studied, the distribution of the statistic under the null hypo-
thesis was not only (approximately) known, but also the same for all DGPs
contained in the null hypothesis. This is a very important property, and it is
useful to introduce some terminology that will allow us to formalize it.

We begin with a simple remark. A hypothesis, null or alternative, can always
be represented by a model , that is, a set of DGPs. For instance, the null and
alternative hypotheses (4.29) and (4.28) associated with an F test of several
restrictions are both classical normal linear models. The most fundamental
sort of null hypothesis that we can test is a simple hypothesis. Such a hypo-
thesis is represented by a model that contains one and only one DGP. Simple
hypotheses are very rare in econometrics. The usual case is that of a com-
pound hypothesis, which is represented by a model that contains more than
one DGP. This can cause serious problems. Except in certain special cases,
such as the exact tests in the classical normal linear model that we investi-
gated in Section 4.4, a test statistic will have different distributions under the
different DGPs contained in the model. In such a case, if we do not know
just which DGP in the model generated our data, then we cannot know the
distribution of the test statistic.

If a test statistic is to have a known distribution under some given null hy-
pothesis, then it must have the same distribution for each and every DGP
contained in that null hypothesis. A random variable with the property that
its distribution is the same for all DGPs in a model M is said to be pivotal,
or to be a pivot, for the model M. The distribution is allowed to depend on
the sample size, and perhaps on the observed values of exogenous variables.
However, for any given sample size and set of exogenous variables, it must be
invariant across all DGPs in M. Note that all test statistics are pivotal for a
simple null hypothesis.

The large sample tests considered in the last section allow for null hypotheses
that do not respect the rigid constraints of the classical normal linear model.
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The price they pay for this added generality is that t and F statistics now
have distributions that depend on things like the error distribution: They are
therefore not pivotal statistics. However, their asymptotic distributions are
independent of such things, and are thus invariant across all the DGPs of
the model that represents the null hypothesis. Such statistics are said to be
asymptotically pivotal, or asymptotic pivots, for that model.

Simulated P Values

The distributions of the test statistics studied in Section 4.3 are all thoroughly
known, and their CDFs can easily be evaluated by computer programs. The
computation of P values is therefore straightforward. Even if it were not,
we could always estimate them by simulation. For any pivotal test statistic,
the P value can be estimated by simulation to any desired level of accuracy.
Since a pivotal statistic has the same distribution for all DGPs in the model
under test, we can arbitrarily choose any such DGP for generating simulated
samples and simulated test statistics.

The theoretical justification for using simulation to estimate P values is the
Fundamental Theorem of Statistics, which we discussed in Section 4.5. It
tells us that the empirical distribution of a set of independent drawings of a
random variable generated by some DGP converges to the true CDF of the
random variable under that DGP. This is just as true of simulated drawings
generated by the computer as for random variables generated by a natural
random mechanism. Thus, if we knew that a certain test statistic was pivotal
but did not know how it was distributed, we could select any DGP in the
null model and generate simulated samples from it. For each of these, we
could then compute the test statistic. If the simulated samples are mutually
independent, the set of simulated test statistics thus generated constitutes a
set of independent drawings from the distribution of the test statistic, and
their EDF is a consistent estimate of the CDF of that distribution.

Suppose that we have computed a test statistic τ̂ , which could be a t statistic,
an F statistic, or some other type of test statistic, using some data set with n
observations. We can think of τ̂ as being a realization of a random variable τ .
We wish to test a null hypothesis represented by a model M for which τ is
pivotal, and we want to reject the null whenever τ̂ is sufficiently large, as in the
cases of an F statistic, a t statistic when the rejection region is in the upper
tail, or a squared t statistic. If we denote by F the CDF of the distribution
of τ under the null hypothesis, the P value for a test based on τ̂ is

p(τ̂) ≡ 1− F (τ̂). (4.60)

Since τ̂ is computed directly from our original data, this P value can be
estimated if we can estimate the CDF F evaluated at τ̂ .

The procedure we are about to describe is very general in its application, and
so we describe it in detail. In order to estimate a P value by simulation,
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we choose any DGP in M, and draw B samples of size n from it. How
to choose B will be discussed shortly; it will typically be rather large, and
B = 999 may often be a reasonable choice. We denote the simulated samples
as y∗j , j = 1, . . . , B. The star (∗) notation will be used systematically to
denote quantities generated by simulation. B is used to denote the number of
simulations in order to emphasize the connection with the bootstrap, which
we will discuss below.

Using the simulated sample, for each j we compute a simulated test statistic,
say τ∗j , in exactly the same way that τ̂ was computed from the original data y.
We can then construct the EDF of the τ∗j analogously to (4.44):

F̂ ∗(x) =
1
B

B�

j=1

I(τ∗j ≤ x).

Our estimate of the true P value (4.60) is therefore

p̂∗(τ̂) = 1− F̂ ∗(τ̂) = 1− 1
B

B�

j=1

I(τ∗j ≤ τ̂) =
1
B

B�

j=1

I(τ∗j > τ̂). (4.61)

The third equality in (4.61) can be understood by noting that the rightmost
expression is the proportion of simulations for which τ∗j is greater than τ̂ , while
the second expression from the right is 1 minus the proportion for which τ∗j
is less than or equal to τ̂ . These proportions are obviously the same.

We can see that p̂∗(τ̂) must lie between 0 and 1, as any P value must. For
example, if B = 999, and 36 of the τ∗j were greater than τ̂ , we would have
p̂∗(τ̂) = 36/999 = 0.036. In this case, since p̂∗(τ̂) is less than 0.05, we would
reject the null hypothesis at the .05 level. Since the EDF converges to the true
CDF, it follows that, if B were infinitely large, this procedure would yield an
exact test, and the outcome of the test would be the same as if we computed
the P value analytically using the CDF of τ . In fact, as we will see shortly,
this procedure will yield an exact test even for certain finite values of B.

The sort of test we have just described, based on simulating a pivotal sta-
tistic, is called a Monte Carlo test. Simulation experiments in general are
often referred to as Monte Carlo experiments, because they involve generat-
ing random numbers, as do the games played in casinos. Around the time that
computer simulations first became possible, the most famous casino was the
one in Monte Carlo. If computers had been developed just a little later, we
would probably be talking now of Las Vegas tests and Las Vegas experiments.

Random Number Generators

Drawing a simulated sample of size n requires us to generate at least n random,
or pseudo-random, numbers. As we mentioned in Section 1.3, a random
number generator, or RNG, is a program for generating random numbers.
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Most such programs generate numbers that appear to be drawings from the
uniform U(0, 1) distribution, which can then be transformed into drawings
from other distributions. There is a large literature on RNGs, to which Press
et al. (1992a, 1992b, Chapter 7) provides an accessible introduction. See also
Knuth (1998, Chapter 3) and Gentle (1998).

Although there are many types of RNG, the most common are variants of the
linear congruential generator,

zi = λzi−1 + c [mod m], ηi =
zi

m
, i = 1, 2, . . . , (4.62)

where ηi is the ith random number generated, and m, λ, c, and so also the zi,
are positive integers. The notation [mod m] means that we divide what pre-
cedes it bym and retain the remainder. This generator starts with a (generally
large) positive integer z0 called the seed, multiplies it by λ, and then adds c
to obtain an integer that may well be bigger than m. It then obtains z1 as
the remainder from division by m. To generate the next random number, the
process is repeated with z1 replacing z0, and so on. At each stage, the actual
random number output by the generator is zi/m, which, since 0 ≤ zi ≤ m,
lies in the interval [0, 1]. For a given generator defined by λ, m, and c, the
sequence of random numbers depends entirely on the seed. If we provide the
generator with the same seed, we will get the same sequence of numbers.

How well or badly this procedure works depends on how λ, m, and c are
chosen. On 32-bit computers, many commonly used generators set c = 0 and
use form a prime number that is either a little less than 232 or a little less than
231. When c = 0, the generator is said to be multiplicative congruential. The
parameter λ, which will be large but substantially smaller than m, must be
chosen so as to satisfy some technical conditions. When λ and m are chosen
properly with c = 0, the RNG will have a period of m− 1. This means that
it will generate every rational number with denominator m between 1/m and
(m − 1)/m precisely once until, after m − 1 steps, z0 comes up again. After
that, the generator repeats itself, producing the same m − 1 numbers in the
same order each time.

Unfortunately, many random number generators, whether or not they are of
the linear congruential variety, perform poorly. The random numbers they
generate may fail to be independent in all sorts of ways, and the period may
be relatively short. In the case of multiplicative congruential generators, this
means that λ and m have not been chosen properly. See Gentle (1998) and
the other references cited above for discussion of bad random number genera-
tors. Toy examples of multiplicative congruential generators are examined in
Exercise 4.13, where the choice of λ and m is seen to matter.

There are several ways to generate drawings from a normal distribution if we
can generate random numbers from the U(0, 1) distribution. The simplest,
but not the fastest, is to use the fact that, if ηi is distributed as U(0, 1), then
Φ−1(ηi) is distributed as N(0, 1); this follows from the result of Exercise 4.14.
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Most of the random number generators available in econometrics software
packages use faster algorithms to generate drawings from the standard normal
distribution, usually in a way entirely transparent to the user, who merely
has to ask for so many independent drawings from N(0, 1). Drawings from
N(µ, σ2) can then be obtained by use of the formula (4.09).

Bootstrap Tests

Although pivotal test statistics do arise from time to time, most test statis-
tics in econometrics are not pivotal. The vast majority of them are, however,
asymptotically pivotal. If a test statistic has a known asymptotic distribution
that does not depend on anything unobservable, as do t and F statistics under
the relatively weak assumptions of Section 4.5, then it is certainly asymptot-
ically pivotal. Even if it does not follow a known asymptotic distribution, a
test statistic may be asymptotically pivotal.

A statistic that is not an exact pivot cannot be used for a Monte Carlo test.
However, approximate P values for statistics that are only asymptotically
pivotal, or even nonpivotal, can be obtained by a simulation method called
the bootstrap. This method can be a valuable alternative to the large sample
tests based on asymptotic theory that we discussed in the previous section.
The term bootstrap, which was introduced to statistics by Efron (1979), is
taken from the phrase “to pull oneself up by one’s own bootstraps.” Although
the link between this improbable activity and simulated P values is tenuous
at best, the term is by now firmly established. We will speak of bootstrapping
in order to obtain bootstrap samples, from which we compute bootstrap test
statistics that we use to perform bootstrap tests on the basis of bootstrap
P values, and so on.

The difference between a Monte Carlo test and a bootstrap test is that for
the former, the DGP is assumed to be known, whereas, for the latter, it is
necessary to estimate a bootstrap DGP from which to draw the simulated
samples. Unless the null hypothesis under test is a simple hypothesis, the
DGP that generated the original data is unknown, and so it cannot be used
to generate simulated data. The bootstrap DGP is an estimate of the unknown
true DGP. The hope is that, if the bootstrap DGP is close, in some sense,
to the true one, then data generated by the bootstrap DGP will be similar to
data that would have been generated by the true DGP, if it were known. If
so, then a simulated P value obtained by use of the bootstrap DGP will be
close enough to the true P value to allow accurate inference.

Even for models as simple as the linear regression model, there are many
ways to specify the bootstrap DGP. The key requirement is that it should
satisfy the restrictions of the null hypothesis. If this is assured, then how well a
bootstrap test performs in finite samples depends on how good an estimate the
bootstrap DGP is of the process that would have generated the test statistic
if the null hypothesis were true. In the next subsection, we discuss bootstrap
DGPs for regression models.
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Bootstrap DGPs for Regression Models

If the null and alternative hypotheses are regression models, the simplest
approach is to estimate the model that corresponds to the null hypothesis
and then use the estimates to generate the bootstrap samples, under the
assumption that the error terms are normally distributed. We considered
examples of such procedures in Section 1.3 and in Exercise 1.22.

Since bootstrapping is quite unnecessary in the context of the classical normal
linear model, we will take for our example a linear regression model with
normal errors, but with a lagged dependent variable among the regressors:

yt = Xtβ +Ztγ + δyt−1 + ut, ut ∼ NID(0, σ2), (4.63)

where Xt and β each have k1 − 1 elements, Zt and γ each have k2 elements,
and the null hypothesis is that γ = 0. Thus the model that represents the
null is

yt = Xtβ + δyt−1 + ut, ut ∼ NID(0, σ2). (4.64)

The observations are assumed to be indexed in such a way that y0 is observed,
along with n observations on yt, Xt, and Zt for t = 1, . . . , n. By estimating
the models (4.63) and (4.64) by OLS, we can compute the F statistic for
γ = 0, which we will call τ̂ . Because the regression function contains a lagged
dependent variable, however, the F test based on τ̂ will not be exact.

The model (4.64) is a fully specified parametric model, which means that
each set of parameter values for β, δ, and σ2 defines just one DGP. The
simplest type of bootstrap DGP for fully specified models is given by the
parametric bootstrap. The first step in constructing a parametric bootstrap
DGP is to estimate (4.64) by OLS, yielding the restricted estimates β̃, δ̃, and
s̃2 ≡ SSR(β̃, δ̃)/(n− k1). Then the bootstrap DGP is given by

y∗t = Xtβ̃ + δ̃y∗t−1 + u∗t , u∗t ∼ NID(0, s̃2), (4.65)

which is just the element of the model (4.64) characterized by the parameter
estimates under the null, with stars to indicate that the data are simulated.

In order to draw a bootstrap sample from the bootstrap DGP (4.65), we first
draw an n--vector u∗ from the N(0, s̃2I) distribution. The presence of a lagged
dependent variable implies that the bootstrap samples must be constructed
recursively. This is necessary because y∗t , the tth element of the bootstrap
sample, must depend on y∗t−1 and not on yt−1 from the original data. The
recursive rule for generating a bootstrap sample is

y∗1 = X1β̃ + δ̃y0 + u∗1

y∗2 = X2β̃ + δ̃y∗1 + u∗2
...

...
...

...

y∗n = Xnβ̃ + δ̃y∗n−1 + u∗n.

(4.66)
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Notice that every bootstrap sample is conditional on the observed value of y0.
There are other ways of dealing with pre-sample values of the dependent
variable, but this is certainly the most convenient, and it may, in many cir-
cumstances, be the only method that is feasible.

The rest of the procedure for computing a bootstrap P value is identical to
the one for computing a simulated P value for a Monte Carlo test. For each
of the B bootstrap samples, y∗j , a bootstrap test statistic τ∗j is computed
from y∗j in just the same way as τ̂ was computed from the original data, y.
The bootstrap P value p̂∗(τ̂) is then computed by formula (4.61).

A Nonparametric Bootstrap DGP

The parametric bootstrap procedure that we have just described, based on the
DGP (4.65), does not allow us to relax the strong assumption that the error
terms are normally distributed. How can we construct a satisfactory bootstrap
DGP if we extend the models (4.63) and (4.64) to admit nonnormal errors? If
we knew the true error distribution, whether or not it was normal, we could
always generate the u∗ from it. Since we do not know it, we will have to find
some way to estimate this distribution.

Under the null hypothesis, the OLS residual vector ũ for the restricted model
is a consistent estimator of the error vector u. This is an immediate conse-
quence of the consistency of the OLS estimator itself. In the particular case
of model (4.64), we have for each t that

plim
n→∞

ũt = plim
n→∞

�
yt −Xtβ̃ − δ̃yt−1

�
= yt −Xtβ0 − δ0yt−1 = ut,

where β0 and δ0 are the parameter values for the true DGP. This means that,
if the ut are mutually independent drawings from the error distribution, then
so are the residuals ũt, asymptotically.

From the Fundamental Theorem of Statistics, we know that the empirical dis-
tribution function of the error terms is a consistent estimator of the unknown
CDF of the error distribution. Because the residuals consistently estimate the
errors, it follows that the EDF of the residuals is also a consistent estimator
of the CDF of the error distribution. Thus, if we draw bootstrap error terms
from the empirical distribution of the residuals, we are drawing them from
a distribution that tends to the true error distribution as n → ∞. This is
completely analogous to using estimated parameters in the bootstrap DGP
that tend to the true parameters as n→∞.

Drawing simulated error terms from the empirical distribution of the residuals
is called resampling. In order to resample the residuals, all the residuals are,
metaphorically speaking, thrown into a hat and then randomly pulled out one
at a time, with replacement. Thus each bootstrap sample will contain some
of the residuals exactly once, some of them more than once, and some of them
not at all. Therefore, the value of each drawing must be the value of one of
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the residuals, with equal probability for each residual. This is precisely what
we mean by the empirical distribution of the residuals.

To resample concretely rather than metaphorically, we can proceed as follows.
First, we draw a random number η from the U(0, 1) distribution. Then we
divide the interval [0, 1] into n subintervals of length 1/n and associate each
of these subintervals with one of the integers between 1 and n. When η falls
into the l th subinterval, we choose the index l, and our random drawing is the
l th residual. Repeating this procedure n times yields a single set of bootstrap
error terms drawn from the empirical distribution of the residuals.

As an example of how resampling works, suppose that n = 10, and the ten
residuals are

6.45, 1.28, −3.48, 2.44, −5.17, −1.67, −2.03, 3.58, 0.74, −2.14.

Notice that these numbers sum to zero. Now suppose that, when forming
one of the bootstrap samples, the ten drawings from the U(0, 1) distribution
happen to be

0.631, 0.277, 0.745, 0.202, 0.914, 0.136, 0.851, 0.878, 0.120, 0.259.

This implies that the ten index values will be

7, 3, 8, 3, 10, 2, 9, 9, 2, 3.

Therefore, the error terms for this bootstrap sample will be

−2.03, −3.48, 3.58, −3.48, −2.14, 1.28, 0.74, 0.74, 1.28, −3.48.

Some of the residuals appear just once in this particular sample, some of them
(numbers 2, 3, and 9) appear more than once, and some of them (numbers 1,
4, 5, and 6) do not appear at all. On average, however, each of the residuals
will appear once in each of the bootstrap samples.

If we adopt this resampling procedure, we can write the bootstrap DGP as

y∗t = Xtβ̃ + δ̃y∗t−1 + u∗t , u∗t ∼ EDF(ũ), (4.67)

where EDF(ũ) denotes the distribution that assigns probability 1/n to each
of the elements of the residual vector ũ. The DGP (4.67) is one form of what
is usually called a nonparametric bootstrap, although, since it still uses the
parameter estimates β̃ and δ̃, it should really be called semiparametric rather
than nonparametric. Once bootstrap error terms have been drawn by resam-
pling, bootstrap samples can be created by the recursive procedure (4.66).

The empirical distribution of the residuals may fail to satisfy some of the
properties that the null hypothesis imposes on the true error distribution, and
so the DGP (4.67) may fail to belong to the null hypothesis. One case in which
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this failure has grave consequences arises when the regression (4.64) does not
contain a constant term, because then the sample mean of the residuals is
not, in general, equal to 0. The expectation of the EDF of the residuals is
simply their sample mean; recall Exercise 1.1. Thus, if the bootstrap error
terms are drawn from a distribution with nonzero mean, the bootstrap DGP
lies outside the null hypothesis. It is, of course, simple to correct this problem.
We just need to center the residuals before throwing them into the hat, by
subtracting their mean ū. When we do this, the bootstrap errors are drawn
from EDF(ũ− ūι), a distribution that does indeed have mean 0.

A somewhat similar argument gives rise to an improved bootstrap DGP. If
the sample mean of the restricted residuals is 0, then the variance of their
empirical distribution is the second moment n−1

�n
t=1 ũ

2
t . Thus, by using

the definition (3.49) of s̃2 in Section 3.6, we see that the variance of the
empirical distribution of the residuals is s̃2(n− k1)/n. Since we do not know
the value of σ2

0 , we cannot draw from a distribution with exactly that variance.
However, as with the parametric bootstrap (4.65), we can at least draw from
a distribution with variance s̃2. This is easy to do by drawing from the EDF
of the rescaled residuals, which are obtained by multiplying the OLS residuals
by (n/(n−k1))1/2. If we resample these rescaled residuals, the bootstrap error
distribution is

EDF
�� n

n− k1

�1/2

ũ

�
, (4.68)

which has variance s̃2. A somewhat more complicated approach, based on the
result (3.44), is explored in Exercise 4.15.

Although they may seem strange, these resampling procedures often work
astonishingly well, except perhaps when the sample size is very small or the
distribution of the error terms is very unusual; see Exercise 4.18. If the
distribution of the error terms displays substantial skewness (that is, a nonzero
third moment) or excess kurtosis (that is, a fourth moment greater than 3σ4

0),
then there is a good chance that the EDF of the recentered and rescaled
residuals will do so as well.

Other methods for bootstrapping regression models nonparametrically and
semiparametrically are discussed by Efron and Tibshirani (1993), Davison
and Hinkley (1997), and Horowitz (2001), which also discuss many other
aspects of the bootstrap. A more advanced book, which deals primarily with
the relationship between asymptotic theory and the bootstrap, is Hall (1992).

How Many Bootstraps?

Suppose that we wish to perform a bootstrap test at level α. Then B should
be chosen to satisfy the condition that α(B + 1) is an integer. If α = .05, the
values of B that satisfy this condition are 19, 39, 59, and so on. If α = .01,
they are 99, 199, 299, and so on. It is illuminating to see why B should be
chosen in this way.
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Imagine that we sort the original test statistic τ̂ and the B bootstrap sta-
tistics τ∗j , j = 1, . . . , B, in decreasing order. If τ is pivotal, then, under the
null hypothesis, these are all independent drawings from the same distribu-
tion. Thus the rank r of τ̂ in the sorted set can have B + 1 possible values,
r = 0, 1, . . . , B, all of them equally likely under the null hypothesis if τ is
pivotal. Here, r is defined in such a way that there are exactly r simulations
for which τ∗j > τ̂ . Thus, if r = 0, τ̂ is the largest value in the set, and if r = B,
it is the smallest. The estimated P value p̂∗(τ̂) is just r/B.

The bootstrap test rejects if r/B < α, that is, if r < αB. Under the null,
the probability that this inequality will be satisfied is the proportion of the
B + 1 possible values of r that satisfy it. If we denote by [αB] the largest
integer that is smaller than αB, it is easy to see that there are exactly [αB]+1
such values of r, namely, 0, 1, . . . , [αB]. Thus the probability of rejection is
([αB] + 1)/(B + 1). If we equate this probability to α, we find that

α(B + 1) = [αB] + 1.

Since the right-hand side of this equality is the sum of two integers, this
equality can hold only if α(B+1) is an integer. Moreover, it will hold whenever
α(B + 1) is an integer. Therefore, the Type I error will be precisely α if and
only if α(B + 1) is an integer. Although this reasoning is rigorous only if τ is
an exact pivot, experience shows that bootstrap P values based on nonpivotal
statistics are less misleading if α(B + 1) is an integer.

As a concrete example, suppose that α = .05 and B = 99. Then there are 5
out of 100 values of r, namely, r = 0, 1, . . . , 4, that would lead us to reject the
null hypothesis. Since these are equally likely if the test statistic is pivotal, we
will make a Type I error precisely 5% of the time, and the test will be exact.
But suppose instead that B = 89. Since the same 5 values of r would still
lead us to reject the null, we would now do so with probability 5/90 = 0.0556.

It is important that B be sufficiently large, since two problems can arise
if it is not. The first problem is that the outcome of the test will depend
on the sequence of random numbers used to generate the bootstrap samples.
Different investigators may therefore obtain different results, even though they
are using the same data and testing the same hypothesis. The second problem,
which we will discuss in the next section, is that the ability of a bootstrap test
to reject a false null hypothesis declines as B becomes smaller. As a rule of
thumb, we suggest choosing B = 999. If calculating the τ∗j is inexpensive and
the outcome of the test is at all ambiguous, it may be desirable to use a larger
value, like 9999. On the other hand, if calculating the τ∗j is very expensive
and the outcome of the test is unambiguous, because p̂∗ is far from α, it may
be safe to use a value as small as 99.

It is not actually necessary to choose B in advance. An alternative approach,
which is a bit more complicated but can save a lot of computer time, has
been proposed by Davidson and MacKinnon (2000). The idea is to calculate
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a sequence of estimated P values, based on increasing values of B, and to
stop as soon as the estimate p̂∗ allows us to be very confident that p∗ is either
greater or less than α. For example, we might start with B = 99, then perform
an additional 100 simulations if we cannot be sure whether or not to reject the
null hypothesis, then perform an additional 200 simulations if we still cannot
be sure, and so on. Eventually, we either stop when we are confident that the
null hypothesis should or should not be rejected, or when B has become so
large that we cannot afford to continue.

Bootstrap versus Asymptotic Tests

Although bootstrap tests based on test statistics that are merely asymptotic-
ally pivotal are not exact, there are strong theoretical reasons to believe that
they will generally perform better than tests based on approximate asymp-
totic distributions. The errors committed by both asymptotic and bootstrap
tests diminish as n increases, but those committed by bootstrap tests dimin-
ish more rapidly. The fundamental theoretical result on this point is due to
Beran (1988). The results of a number of Monte Carlo experiments have pro-
vided strong support for this proposition. References include Horowitz (1994),
Godfrey (1998), and Davidson and MacKinnon (1999a, 1999b, 2002a).

We can illustrate this by means of an example. Consider the following simple
special case of the linear regression model (4.63)

yt = β1 + β2Xt + β3yt−1 + ut, ut ∼ N(0, σ2), (4.69)

where the null hypothesis is that β3 = 0.9. A Monte Carlo experiment to
investigate the properties of tests of this hypothesis would work as follows.
First, we fix a DGP in the model (4.69) by choosing values for the parameters.
Here β3 = 0.9, and so we investigate only what happens under the null hypo-
thesis. For each replication, we generate an artificial data set from our chosen
DGP and compute the ordinary t statistic for β3 = 0.9. We then compute
three P values. The first of these, for the asymptotic test, is computed using
the Student’s t distribution with n− 3 degrees of freedom, and the other two
are bootstrap P values from the parametric and semiparametric bootstraps,
with residuals rescaled using (4.68), for B = 199.5 We perform many replica-
tions and record the frequencies with which tests based on the three P values
reject at the .05 level. Figure 4.8 shows the rejection frequencies based on
500,000 replications for each of 31 sample sizes: n = 10, 12, 14, . . . , 60.

The results of this experiment are striking. The asymptotic test overrejects
quite noticeably, although it gradually improves as n increases. In contrast,

5 We used B = 199, a smaller value than we would ever recommend using in
practice, in order to reduce the costs of doing the Monte Carlo experiments.
Because experimental errors tend to cancel out across replications, this does
not materially affect the results of the experiments.
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Figure 4.8 Rejection frequencies for bootstrap and asymptotic tests

the two bootstrap tests overreject only very slightly. Their rejection frequen-
cies are always very close to the nominal level of .05, and they approach that
level quite quickly as n increases. For the very smallest sample sizes, the
parametric bootstrap seems to outperform the semiparametric one, but, for
most sample sizes, there is nothing to choose between them.

This example is, perhaps, misleading in one respect. For linear regression
models, asymptotic t and F tests generally do not perform as badly as the
asymptotic t test does here. For example, the t test for β3 = 0 in (4.69)
performs much better than the t test for β3 = 0.9; it actually underrejects
moderately in small samples. However, the example is not at all misleading in
suggesting that bootstrap tests will often perform extraordinarily well, even
when the corresponding asymptotic test does not perform well at all.

4.7 The Power of Hypothesis Tests

To be useful, hypothesis tests must be able to discriminate between the null
hypothesis and the alternative. Thus, as we saw in Section 4.2, the distribu-
tion of a useful test statistic under the null is different from its distribution
when the DGP does not belong to the null. Whenever a DGP places most of
the probability mass of the test statistic in the rejection region of a test, the
test will have high power, that is, a high probability of rejecting the null.

For a variety of reasons, it is important to know something about the power
of the tests we employ. If a test with high power fails to reject the null, this
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tells us more than if a test with lower power fails to do so. In practice, more
than one test of a given null hypothesis is usually available. Of two equally
reliable tests, if one has more power than the other against the alternatives
in which we are interested, then we would surely prefer to employ the more
powerful one.

The Power of Exact Tests

In Section 4.4, we saw that an F statistic is a ratio of the squared norms of two
vectors, each divided by its appropriate number of degrees of freedom. In the
notation of that section, these vectors are, for the numerator, PM1X2y, and,
for the denominator, MXy. If the null and alternative hypotheses are classical
normal linear models, as we assume throughout this subsection, then, under
the null, both the numerator and the denominator of this ratio are indepen-
dent χ2 variables, divided by their respective degrees of freedom; recall (4.34).
Under the alternative hypothesis, the distribution of the denominator is un-
changed, because, under either hypothesis, MXy = MXu. Consequently, the
difference in distribution under the null and the alternative that gives the test
its power must come from the numerator alone.

From (4.33), r/σ2 times the numerator of the F statistic Fβ2 is

1
σ2

y�M1X2(X2
�M1X2)−1X2

�M1y. (4.70)

The vector X2
�M1y is normal under both the null and the alternative. Its

mean is X2
�M1X2β2, which vanishes under the null when β2 = 0, and its

covariance matrix is σ2X2
�M1X2. We can use these facts to determine the

distribution of the quadratic form (4.70). To do so, we must introduce the
noncentral chi-squared distribution, which is a generalization of the ordinary,
or central, chi-squared distribution.

We saw in Section 4.3 that, if the m--vector z is distributed as N(0, I), then
�z�2 = z�z is distributed as (central) chi-squared with m degrees of freedom.
Similarly, if x ∼ N(0,Ω), then x�Ω−1x ∼ χ2(m). If instead z ∼ N(µ, I),
then z�z follows the noncentral chi-squared distribution with m degrees of
freedom and noncentrality parameter, or NCP, Λ ≡ µ�µ. This distribution
is written as χ2(m,Λ). It is easy to see that its expectation is m + Λ; see
Exercise 4.17. Likewise, if x ∼ N(µ,Ω), then x�Ω−1x ∼ χ2(m,µ�Ω−1µ).
Although we will not prove it, the distribution depends on µ and Ω only
through the quadratic form µ�Ω−1µ. If we set µ = 0, we see that the χ2(m, 0)
distribution is just the central χ2(m) distribution.

Under either the null or the alternative hypothesis, therefore, the distribution
of expression (4.70) is noncentral chi-squared, with r degrees of freedom, and
with noncentrality parameter given by

Λ ≡ 1
σ2

β2
�X2

�M1X2(X2
�M1X2)−1X2

�M1X2β2 =
1
σ2

β2
�X2

�M1X2β2.
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Figure 4.9 Densities of noncentral χ2 distributions

Under the null, Λ = 0. Under either hypothesis, the distribution of the
denominator of the F statistic, divided by σ2, is central chi-squared with n−k
degrees of freedom, and it is independent of the numerator. The F statistic
therefore has a distribution that we can write as

χ2(r, Λ)/r
χ2(n− k)/(n− k)

,

with numerator and denominator mutually independent. This distribution is
called the noncentral F distribution, with r and n− k degrees of freedom and
noncentrality parameter Λ. In any given testing situation, r and n − k are
given, and so the difference between the distributions of the F statistic under
the null and under the alternative depends only on the NCP Λ.

To illustrate this, we limit our attention to the expression (4.70), which is
distributed as χ2(r, Λ). As Λ increases, the distribution moves to the right
and becomes more spread out. This is illustrated in Figure 4.9, which shows
the density of the noncentral χ2 distribution with 3 degrees of freedom for
noncentrality parameters of 0, 2, 5, 10, and 20. The .05 critical value for the
central χ2(3) distribution, which is 7.81, is also shown. If a test statistic has
the noncentral χ2(3) distribution, the probability that the null hypothesis will
be rejected at the .05 level is the probability mass to the right of 7.81. It is
evident from the figure that this probability will be small for small values of
the NCP and large for large ones.

In Figure 4.9, the number of degrees of freedom r is held constant as Λ is
increased. If, instead, we held Λ constant, the density functions would move
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to the right as r was increased, as they do in Figure 4.4 for the special case
with Λ = 0. Thus, at any given level, the critical value of a χ2 or F test will
increase as r increases. It has been shown by Das Gupta and Perlman (1974)
that this rightward shift of the critical value has a greater effect than the
rightward shift of the density for any positive Λ. Specifically, Das Gupta and
Perlman show that, for a given NCP, the power of a χ2 or F test at any given
level is strictly decreasing in r, as well as being strictly increasing in Λ, as we
indicated in the previous paragraph.

The square of a t statistic for a single restriction is just the F test for that
restriction, and so the above analysis applies equally well to t tests. Things
can be made a little simpler, however. From (4.25), the t statistic tβ2 is 1/s
times

x2
�M1y

(x2
�M1x2)1/2

. (4.71)

The numerator of this expression, x2
�M1y, is normally distributed under both

the null and the alternative, with variance σ2x2
�M1x2 and mean x2

�M1x2β2.
Thus 1/σ times (4.71) is normal with variance 1 and mean

λ ≡ 1−σ(x2
�M1x2)1/2β2. (4.72)

It follows that tβ2 has a distribution which can be written as

N(λ, 1)
�
χ2(n− k)/(n− k)

�1/2
,

with independent numerator and denominator. This distribution is known as
the noncentral t distribution, with n−k degrees of freedom and noncentrality
parameter λ; it is written as t(n − k, λ). Note that λ2 = Λ, where Λ is
the NCP of the corresponding F test. Except for very small sample sizes,
the t(n − k, λ) distribution is quite similar to the N(λ, 1) distribution. It
is also very much like an ordinary, or central, t distribution with its mean
shifted from the origin to (4.72), but it has a bit more variance, because of
the stochastic denominator.

When we know the distribution of a test statistic under the alternative hy-
pothesis, we can determine the power of a test of given level as a function of
the parameters of that hypothesis. This function is called the power function
of the test. The distribution of tβ2 under the alternative depends only on the
NCP λ. For a given regressor matrix X and sample size n, λ in turn depends
on the parameters only through the ratio β2/σ; see (4.72). Therefore, the
power of the t test depends only on this ratio. According to assumption (4.49),
as n → ∞, n−1X�X tends to a nonstochastic limiting matrix SX�X . Thus,
as n increases, the factor (x2

�M1x2)1/2 will be roughly proportional to n1/2,
and so λ will tend to infinity with n at a rate similar to that of n1/2.

Copyright c� 1999, Russell Davidson and James G. MacKinnon



4.7 The Power of Hypothesis Tests 171

−1.00−0.80−0.60−0.40−0.20 0.00 0.20 0.40 0.60 0.80 1.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90


.........................
.....................
....................
.....................
..................
...................
.................
..................
.................
..................
.................
..................
.................
.................
..................
.................
.................
..................
.................
.................
..................
.................
................
..................
.................
..................
..................
.................
..................
..................
...................
...................
.....................
........................
..........................
....................................


..................
..................
................
................
................
................
...............
................
...............
................
...............
................
................
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
................
...............
...............
...............
...............
................
...............
...............
................
................
...............
................
................
.................
................
.................
...................
....................
...........................


.....................
..................
....................
..................
..................
.................
..................
..................
..................
.................
................
..................
..................
.................
................
.................
................
................
...................
.................
.................
.................
.................
.................
..................
.................
.................
.................
.................
.................
.................
..................
..................
................
................
.................
................
..................
.................
..................
................
.................
..................
..................
................
..................
...................
.................
..................
...................
..................
.....................
.....................
..............................
..........................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................... n = 25

.................................................................................................................................................................................................................................. n = 100

.................................................................................................................................................................................................................................................................................. n = 400

β/σ

Power

Figure 4.10 Power functions for t tests at the .05 level

Figure 4.10 shows power functions for a very simple model, in which x2, the
only regressor, is a constant. Power is plotted as a function of β2/σ for three
sample sizes: n = 25, n = 100, and n = 400. Since the test is exact, all
the power functions are equal to .05 when β = 0. Power then increases as β
moves away from 0. As we would expect, the power when n = 400 exceeds
the power when n = 100, which in turn exceeds the power when n = 25, for
every value of β �= 0. It is clear that, as n → ∞, the power function will
converge to the shape of a T, with the foot of the vertical segment at .05 and
the horizontal segment at 1.0. Thus, asymptotically, the test will reject the
null with probability 1 whenever it is false. In finite samples, however, we can
see from the figure that a false hypothesis is very unlikely to be rejected if
n1/2β/σ is sufficiently small.

The Power of Bootstrap Tests

As we remarked in Section 4.6, the power of a bootstrap test depends on B,
the number of bootstrap samples. The reason why it does so is illuminating.
If, to any test statistic, we add random noise independent of the statistic, we
inevitably reduce the power of tests based on that statistic. The bootstrap
P value p̂∗(τ̂) defined in (4.61) is simply an estimate of the ideal bootstrap
P value

p∗(τ̂) ≡ Pr(τ > τ̂) = plim
B→∞

p̂∗(τ̂),

where Pr(τ > τ̂) is evaluated under the bootstrap DGP. When B is finite, p̂∗

will differ from p∗ because of random variation in the bootstrap samples. This
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Figure 4.11 Power functions for tests at the .05 level

random variation is generated in the computer, and is therefore completely
independent of the random variable τ . The bootstrap testing procedure dis-
cussed in Section 4.6 incorporates this random variation, and in so doing it
reduces the power of the test.

Another example of how randomness affects test power is provided by the
tests zβ2 and tβ2 , which were discussed in Section 4.4. Recall that zβ2 follows
the N(0, 1) distribution, because σ is known, and tβ2 follows the t(n − k)
distribution, because σ has to be estimated. As equation (4.26) shows, tβ2 is
equal to zβ2 times the random variable σ/s, which has the same distribution
under the null and alternative hypotheses, and is independent of zβ2 . There-
fore, multiplying zβ2 by σ/s simply adds independent random noise to the
test statistic. This additional randomness requires us to use a larger critical
value, and that in turn causes the test based on tβ2 to be less powerful than
the test based on zβ2 .

Both types of power loss are illustrated in Figure 4.11. It shows power func-
tions for four tests at the .05 level of the null hypothesis that β = 0 in the
model (4.01) with normally distributed error terms and 10 observations. All
four tests are exact, as can be seen from the fact that, in all cases, power
equals .05 when β = 0. For all values of β �= 0, there is a clear ordering of
the four curves in Figure 4.11. The highest curve is for the test based on zβ2 ,
which uses the N(0, 1) distribution and is available only when σ is known.
The next three curves are for tests based on tβ2 . The loss of power from using
tβ2 with the t(9) distribution, instead of zβ2 with the N(0, 1) distribution, is
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quite noticeable. Of course, 10 is a very small sample size; the loss of power
from not knowing σ would be very much less for more reasonable sample sizes.
There is a further loss of power from using a bootstrap test with finite B. This
further loss is quite modest when B = 99, but it is substantial when B = 19.

Figure 4.11 suggests that the loss of power from using bootstrap tests is gen-
erally modest, except when B is very small. However, readers should be
warned that the loss can be more substantial in other cases. A reasonable
rule of thumb is that power loss will very rarely be a problem when B = 999,
and that it will never be a problem when B = 9999.

4.8 Final Remarks

This chapter has introduced a number of important concepts, which we will
encounter again and again throughout this book. In particular, we will en-
counter many types of hypothesis test, sometimes exact but more commonly
asymptotic. Some of the asymptotic tests work well in finite samples, but
others do not. Many of them can easily be bootstrapped, and they will per-
form much better when bootstrapped, but others are difficult to bootstrap or
do not perform particularly well.

Although hypothesis testing plays a central role in classical econometrics, it
is not the only method by which econometricians attempt to make inferences
from parameter estimates about the true values of parameters. In the next
chapter, we turn our attention to the other principal method, namely, the
construction of confidence intervals and confidence regions.

4.9 Exercises

4.1 Suppose that the random variable z follows the N(0, 1) density. If z is a
test statistic used in a two-tailed test, the corresponding P value, according
to (4.07), is p(z) ≡ 2(1 − Φ(|z|)). Show that Fp(·), the CDF of p(z), is the
CDF of the uniform distribution on [0, 1]. In other words, show that

Fp(x) = x for all x ∈ [0, 1] .

4.2 Extend Exercise 1.6 to show that the third and fourth moments of the stan-
dard normal distribution are 0 and 3, respectively. Use these results in order
to calculate the centered and uncentered third and fourth moments of the
N(µ, σ2) distribution.

4.3 Let the density of the random variable x be f(x). Show that the density of
the random variable w ≡ tx, where t > 0, is t−1f(w/t). Next let the joint
density of the set of random variables xi, i = 1, . . . ,m, be f(x1, . . . , xm). For
i = 1, . . . ,m, let wi = tixi, ti > 0. Show that the joint density of the wi is

f(w1, . . . , wm) =
1�m

i=1 ti
f
�
w1

t1
, . . . ,

wm

tm

�
.
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4.4 Consider the random variables x1 and x2, which are bivariate normal with
x1 ∼ N(0, σ2

1), x2 ∼ N(0, σ2
2), and correlation ρ. Show that the expectation

of x1 conditional on x2 is ρ(σ1/σ2)x2 and that the variance of x1 conditional
on x2 is σ

2
1(1− ρ2). How are these results modified if the means of x1 and x2

are µ1 and µ2, respectively?

4.5 Suppose that, as in the previous question, the random variables x1 and x2

are bivariate normal, with means 0, variances σ2
1 and σ2

2 , and correlation ρ.
Starting from (4.13), show that f(x1, x2), the joint density of x1 and x2, is
given by

1

2π

1

(1− ρ2)1/2σ1σ2
exp

�
−1

2(1− ρ2)

�
x2
1

σ2
1

− 2ρ x1x2

σ1σ2
+

x2
2

σ2
2

��
.

Then use this result to show that x1 and x2 are statistically independent
if ρ = 0.

4.6 Consider the linear regression model

yt = β1 + β2Xt1 + β3Xt2 + ut.

Rewrite this model so that the restriction β2 − β3 = 1 becomes a single zero
restriction.

4.7 Consider the linear regression model y = Xβ + u, where there are n obser-
vations and k regressors. Suppose that this model is potentially subject to r
restrictions which can be written as Rβ = r, where R is an r× k matrix and
r is an r --vector. Rewrite the model so that the restrictions become r zero
restrictions.

4.8 Show that the t statistic (4.25) is (n− k)1/2 times the cotangent of the angle
between the n--vectors M1y and M1x2.

Now consider the regressions

y = X1β1 + β2x2 + u, and

x2 = X1γ1 + γ2y + v.
(4.73)

What is the relationship between the t statistic for β2 = 0 in the first of these
regressions and the t statistic for γ2 = 0 in the second?

4.9 Show that the OLS estimates β̃1 from the model (4.29) can be obtained from
those of model (4.28) by the formula

β̃1 = β̂1 + (X1
�X1)

−1X1
�X2 β̂2.

Formula (4.38) is useful for this exercise.

4.10 Show that the SSR from regression (4.42), or equivalently, regression (4.41),
is equal to the sum of the SSRs from the two subsample regressions:

y1 = X1β1 + u1, u1 ∼ N(0, σ2I), and

y2 = X2β2 + u2, u2 ∼ N(0, σ2I).
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4.11 When performing a Chow test, one may find that one of the subsamples is
smaller than k, the number of regressors. Without loss of generality, assume
that n2 < k. Show that, in this case, the F statistic becomes

(RSSR− SSR1)/n2

SSR1/(n1 − k)
,

and that the numerator and denominator really have the degrees of freedom
used in this formula.

4.12 Show, using the results of Section 4.5, that r times the F statistic (4.58) is
asymptotically distributed as χ2(r).

4.13 Consider a multiplicative congruential generator with modulus m = 7, and
with all reasonable possible values of λ, that is, λ = 2, 3, 4, 5, 6. Show that,
for any integer seed between 1 and 6, the generator generates each number of
the form i/7, i = 1, . . . , 6, exactly once before cycling for λ = 3 and λ = 5,
but that it repeats itself more quickly for the other choices of λ. Repeat the
exercise for m = 11, and determine which choices of λ yield generators that
return to their starting point before covering the full range of possibilities.

4.14 If F is a strictly increasing CDF defined on an interval [a, b] of the real line,
where either or both of a and b may be infinite, then the inverse function F −1

is a well-defined mapping from [0, 1] on to [a, b]. Show that, if the random
variable X is a drawing from the U(0, 1) distribution, then F −1(X) is a
drawing from the distribution of which F is the CDF.

4.15 In Section 3.6, we saw that Var(ût) = (1−ht)σ
2
0 , where ût is the t

th residual
from the linear regression model y = Xβ + u, and ht is the tth diagonal
element of the “hat matrix” PX; this was the result (3.44). Use this result to
derive an alternative to (4.68) as a method of rescaling the residuals prior to
resampling. Remember that the rescaled residuals must have mean 0.

4.16 Suppose that z is a test statistic distributed as N(0, 1) under the null hypo-
thesis, and as N(λ, 1) under the alternative, where λ depends on the DGP
that generates the data. If cα is defined by (4.06), show that the power of
the two-tailed test at level α based on z is equal to

Φ(λ− cα) + Φ(−cα − λ).

Plot this power function for λ in the interval [−5, 5] for α = .05 and α = .01.

4.17 Show that, if the m--vector z ∼ N(µ, I), the expectation of the noncentral
chi-squared variable z�z is m+ µ�µ.

4.18 The file classical.data contains 50 observations on three variables: y, x2,
and x3. These are artificial data generated from the classical linear regression
model

y = β1ι + β2x2 + β3x3 + u, u ∼ N(0, σ2I).

Compute a t statistic for the null hypothesis that β3 = 0. On the basis
of this test statistic, perform an exact test. Then perform parametric and
semiparametric bootstrap tests using 99, 999, and 9999 simulations. How do
the two types of bootstrap P values correspond with the exact P value? How
does this correspondence change as B increases?
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4.19 Consider again the data in the file consumption.data and the ADL model
studied in Exercise 3.22, which is reproduced here for convenience:

ct = α+ βct−1 + γ0yt + γ1yt−1 + ut. (3.70)

Compute a t statistic for the hypothesis that γ0+γ1 = 0. On the basis of this
test statistic, perform an asymptotic test, a parametric bootstrap test, and a
semiparametric bootstrap test using residuals rescaled according to (4.68).
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