Notes

Notes

The Tobit Model Econometrics II

Ricardo Mora

Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico

Ricardo Mora	The Tobit Model

iviarried vvomen Labor Supply iviodel	
ML Estimation for the Tobit Model	
Tobit in Stata	
Marginal Effects	
Summary	

Outline

The Married Women Labor Supply Model

2 ML Estimation for the Tobit Model

3 Tobit in Stata

4 Marginal Effects

Basic Setup

Utility Function

• U = U(C, L)

- C: consumption
- L: leisure

Marginal Utility of Consumption and Leisure

- $U_C = \frac{\partial U}{\partial C}\Big|_L > 0, \frac{\partial U_C}{\partial C}\Big|_L < 0$: more consumption gives more utility at a decreasing rate
- $U_L = \frac{\partial U}{\partial L}\Big|_C > 0, \frac{\partial U_L}{\partial L}\Big|_C < 0$: additional leisure gives additional utility at a decreasing rate

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary

Marginal Rate of Substitution in Consumption

Marginal Rate of Substitution: the individual's value of leisure

- $MRS = \frac{\partial C}{\partial L}\Big|_{U} = -\frac{U_L}{U_C}$
- (By how much I can reduce my consumption without losing utility if I increase my leisure)

Cobb-Douglas: $U = C^{\alpha}L^{\beta} \rightarrow MRS = \left(\frac{\alpha}{\beta}\right)\left(\frac{C}{L}\right)$

- Increasing in consumption
- Decreasing in leisure

Notes

Ricardo Mora The Tobit Model

Time and Budget Constraints

Time constraint: L + h = T

- *h*: hours of work
- T: total hours available

Budget constraint: C = w * h + V

- w: hourly wage (the opportunity cost of one unit of leisure)
- V: non-labour income

$\overline{C + wL = wT + V}$

- wL : total cost of leisure
- wT + V: time and non-labor income

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary

The Optimal Allocation of Leisure

max U(C,L) s.t. C + wL = wT + V

- Internal Solution: MRS = w
- the value of leisure equals its cost
- MRS > w : a small increase in leisure will increase utility
- *MRS* < *w*: a small increase in work will increase utility (via higher consumption)

The Reservation Wage

Individuals work if the wage is larger than their reservation wage

• $w_R = MRS(T, V)$

- For any $w > w_R$: Internal Solution (h > 0)
- For any $w \leq w_R$: Corner solution (h = 0)
- The higher the market wage, the more likely are individuals to work
- The reservation wage depends on non-labour income and on the individual's preferences on leisure and consumption

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary

A Two Stage Procedure

Hours worked decision can be decomposed into two stages

- first decision: participation decision: $w > w_R$
- second decision: if $w > w_R$, how many working hours?
- the first decision is like a Probit model because the participation decision is binary
- the second decision is like a linear regression model because the amount of time worked can be considered continuous
- both decisions are strongly linked: factors that make a married woman more likely to participate, tend to make her work more hours

Notes

The Optimal Allocation of Leisure: Internal Solution

internal solution: $h = h^* (MRS = w) > 0$

Ricardo Mora The Tobit Model

corner solution: h = 0 if $h^*(MRS = w) \le 0$

Notes

The Tobit Model

Notes

Notes

Example: Married Women Labor Supply

- optimality condition (MRS = w): $h^* = \beta x + \varepsilon, \varepsilon \sim N(0, \sigma^2)$
- participation condition $(MRS < w) : h^* > 0$
- If $h^* > 0$, then actual hours of work: $h = h^*$
- If $h^* \leq 0$, then actual hours of work: h = 0

 $h = \max\left\{0, eta x + arepsilon
ight\}, arepsilon \sim \mathcal{N}(0, \sigma^2)$

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary

Labor Suppy Controls

Which controls should be in vector x?

- Personal: Non-labor income, spouse's income, number of kids, human capital,...
- Economic conditions: market wages, unemployment rates,...
- Strictly speaking, for the labor supply we require the wage offers. This creates two problems:
 - We do not have information on wage offers for those who are not working.
 - A worker's wage offer is likely related to unobservable characteristics which arguably affect simultaneously the worker's labor supply: Wages and hours worked are simultaneously determined for each worker.

Observable Data

- the econometrician observes whether the married woman participates in the labor market or not
- if the married woman participates, then the econometrician observes the hours of work
- if the married woman does not participate, the econometrician does not observe the optimal number of hours that the married woman would choose to work (in this case, it would be a negative number)

The Tobit Model

Using Only the Married Women Who are Working

Ricardo Mora

Can we estimate β by OLS using only the data from the married women who choose to work?

Notes

Selection Bias

The OLS sample is not iid: we only observe (h_i, x_i) if $h_i > 0$

Ricardo Mora The Tobit Model

Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary

ML Estimation (1/2)

If we estimate by Maximum Likelihood, we use the full sample: including women who choose to work with information of the hours they work and also women who choose not to work

Density of a woman who works $h_i > 0$ hours $f(h_i | x_i) = f(\beta_0 x_i + \varepsilon_i | x_i)$ $= \left(\frac{1}{\sigma_0}\right) \phi\left(\frac{\varepsilon_i}{\sigma_0}\right)$

Probability that a woman does not work $(h_i = 0)$

$$\begin{aligned} \mathsf{Pr}(h_i = 0 \,| x_i) &= \mathsf{Pr}(\beta_0 x_i + \varepsilon_i \le 0 \,| x_i) \\ &= 1 - \Phi\left(\frac{\beta_0 x_i}{\sigma_0}\right) \end{aligned}$$

Ricardo Mora The Tobit Mode

 Notes

ML Estimation (2/2)

• Writing both cases simultaneously:

$$f(h_i|x_i) = \left[\left(\frac{1}{\sigma_0}\right) \phi\left(\frac{h_i - \beta_0 x_i}{\sigma_0}\right) \right]^{1(h_i > 0)} \left[1 - \Phi\left(\frac{\beta_0 x_i}{\sigma_0}\right) \right]^{1(h_i = 0)}$$

Log-likelihood for observation *i*

$$egin{aligned} & l_i(eta,\sigma) = & 1\,(h_i>0)\log\left(\left(rac{1}{\sigma}
ight)\phi\left(rac{h_i-eta x_i}{\sigma}
ight)
ight) \ & +1\,(h_i=0)\log\left(1-\Phi\left(rac{eta x_i}{\sigma}
ight)
ight) \end{aligned}$$

The Tobit Model

- $h^* = \beta x + \varepsilon$
- $\boldsymbol{\varepsilon} \sim N\left(0,\sigma^{2}\right)$

•
$$\begin{cases} \text{if } h^* > 0 \Rightarrow h = \beta x + \varepsilon \\ \text{if } h^* \le 0 \Rightarrow h = 0 \end{cases}$$

 $\hat{\beta}^{ML} = \arg \max \sum_{i} \left\{ 1(h_i > 0) \log \left(\left(\frac{1}{\sigma} \right) \phi \left(\frac{h_i - \beta x_i}{\sigma} \right) \right) + 1(h_i = 0) \log \left(1 - \Phi \left(\frac{\beta x_i}{\sigma} \right) \right) \right\}$

Notes

Tobit Estimation in Stata

- tobit: computes Maximum Likelihood tobit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

Ricardo Mora The Tobit Model

tobit *depvar indvars* [if] [in] [weight], ll(#)

- tobit fits a model of *depvar* on *indvars* where the censoring values are fixed.
- II(#) ul(#): left-censoring and right-censoring limits. You must specify at least one of them.
- the usual post estimation commands are available

Notes

Example: Simulated Data

The Tobit Model

- $h^* = 10 + 0.5 * educ 5 * kids + \varepsilon$
- $\varepsilon \sim N(0,49)$
- education makes you willing to work more
- having a kid makes you willing to work less
- $\beta x = 5 + 0.5 * educ 5 * kids$
- $\sigma = 7$

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model **Tobit in Stata** Marginal Effects Summary

Histogram of Desired Hours of Work

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$$

Notes

Censoring in the Tobit Model

 $h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$

The Married Women Labor Supply Model ML Estimation for the Tobit Model **Tobit in Stata** Marginal Effects Summary

ols with the Full Sample

 $h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$

Source	SS	df	MS		Number of obs	= 5000
Model Residual	18776.6722 183474.37	2 4997	9388.33609 36.7169042	F(2, 4997) Prob ⊠ F R-squared Adj R-squared Root MSE		= 255.70 = 0.0000 = 0.0928
Total	202251.042	4999	40.4583001			= 6.0594
h	Coef.	Std.	Err. t	P⊠∣t∣	[95% Conf.	Interval]
educ	.4385609	.0417	266 10.51	0.000	.3567584	.5203634
kids	-4.252116	.2126	502 -20.00	0.000	-4.669004	-3.835228
	J.932443	.4140				
test (educ=0).5) (kids=-5)					
(1) educ = (2) kids =	.5 -5					
F(2,	4997) = 9	.37				

Notes

ols with the Restricted Sample

 $h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$

Ricardo Mora The Tobit Model

he	Marri	ed	Women	Lab		Supply	Model
	ML	Es	timation	for		e Tobit	Model
						Tobit i	n Stata
					Μ	arginal	Effects
						Su	mmary

tobit Output

$$h^* = 5 + 0.5 * educ - 5 * kids + \varepsilon, \varepsilon \sim N(0, 49)$$

Tobit regress: Log likelihood	ion 1 = -14768.522			Number LR ch: Prob : Pseudo	r of obs = i2(2) = > chi2 = o R2 =	5000 491.98 0.0000 0.0164
h	Coef.	Std. Err.	t	P>⊕tü	[95% Conf.	Interval]
educ kids _cons	.5235172 -5.098043 4.905816	.0499384 .2554521 .4966346	10.48 -19.96 9.88	0.000 0.000 0.000	.425616 -5.598841 3.932195	.6214185 -4.597245 5.879438
/sigma (7.111859	.0819006			6.951298	7.27242
Obs. summary	7: 901 4099 0	left-censo uncenso right-censo	ored obser ored obser ored obser	vations a vations vations	at h<=0	
. test (educ=0 (1) [model] (2) [model]).5) (kids=-5) educ = .5 kids = -5					
F(2, Pi	4998) = 0 cob > F = 0).11).8950				

Ricardo Mora The Tobit Model

Notes

Predicting Actual Hours of Work for Those who Work

computing \hat{h}_i^* and \hat{h}_i

- \hat{h}_i^* : predict h_star_hat, xb
- for each observation, $\hat{h}_i = \max\left\{0, \hat{eta} x_i
 ight\}$

E[h|h>0,x]

- $E[h|h>0,x] = \beta x + E[\varepsilon|\beta x + \varepsilon > 0,x]$
- it can be shown that: $E[h|h>0,x] = \beta x + \sigma \frac{\phi(\beta x)}{\Phi(\beta x)}$
- $\frac{\phi(\beta x)}{\Phi(\beta x)}$ is the inverse of Mill's ratio

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary The Inverse of Mill's Ratio

the higher βx , the higher the probability of participation and the lower the correction

Notes

Predicting Actual Hours of Work

E[h|x]

- $E[h|x] = \Pr(h > 0) E[h|h > 0, x]$
- it can be shown that: $E[h|x] = \Phi\left(\frac{\beta x}{\sigma}\right) \left[\beta x + \sigma \frac{\phi(\beta x)}{\Phi(\beta x)}\right]$

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary

Understanding the Coefficients and the Slopes

- the Tobit estimates for the coefficients, $\hat{\beta}$, give the marginal effects on the desired number of hours
- frequently, we also want an estimate of the marginal effects on the probability of working and on the actual hours worked

Notes

Algebraic Marginal Effects

Probability to Participate

• $\frac{\partial \Pr(h_i > 0)}{\partial x_j} = \phi(\frac{\beta x}{\sigma})(\frac{\beta_j}{\sigma})$

Actual Hours Worked

• $\frac{\partial E(h_i|x)}{\partial x_j} = \beta_j \Phi\left(\frac{\beta x}{\sigma}\right)$

• approx. estimates of this effect can be obtained using OLS over the full sample

Ricardo Mora The Tobit Model

The Married Women Labor Supply Model ML Estimation for the Tobit Model Tobit in Stata **Marginal Effects** Summary

Individual Marginal Effects: Discrete Change

• we may want to get individual marginal effects

Discrete change

- ullet predict index functions $\hat{eta}^{ML}x_0$ and $\hat{eta}^{ML}x_1$
- simulate censuring
- generate the individual marginal effects

Notes

Notes

Example: The Effect of Having an Extra Kid

<pre>. // estimate the . predict x0b, xb . replace kids=kid (5000 real changes . predict x1b, xb . gen Mg_kid=(x1b> . su Mg_kid</pre>	marginal s+1 made) 0)*x1b -	effect on a (x0b>0)*x0b	average actu	al hours wo	orked of an	extra child
Variable 🌐	Obs	Mean	Std. Dev.	Min	Max	
+ Mg_kid ⊕	5000	-4.78497	.7293877	-5.098043	-3.086006	

Ricardo Mora The Tobit Model

The Ma M	rried Women Labor Supply Model AL Estimation for the Tobit Model Tobit in Stata Marginal Effects Summary	
Summary		

- The Tobit model is like a mixture of the regression model and the Probit model
 - it is partly a Probit model because the participation decision is binary
 - it is partly a linear regression model because among those who work the hours worked can be considered continuous
- Estimating the model by OLS using those who choose to work will usually result in inconsistency because the selected sample is not *iid* (selection bias)
- The Tobit model can be estimated consistently by ML in Stata
- the Tobit model identifies how each control affects both the probability of not censoring and the expectation of the dependent variable given that it is observed