Notes

Notes

The Probit & Logit Models Econometrics II

Ricardo Mora

Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico

	< ロ > < 倒 > < 至 > < 至 > 、 更 > のへで
Ricardo Mora	The Probit Model
The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary	
Outline	
 The Random Utility Model 	
2 The Probit & Logit Models	
3 Estimation & Inference	

Choosing Among a few Alternatives

- Set up: An agent chooses among several alternatives:
 - labor economics: participation, union membership, ...
 - demographics: marriage, divorce, # of children,...
 - industrial organization: plant building, new product,...
 - regional economics: means of transport,....
- We are going to model a choice of two alternatives (not difficult to generalize...)

The value of each alternative depends on many factors

Ricardo Mora

- $U_0 = \beta_0 x_0 + \varepsilon_0$
- $U_1 = \beta_1 x_1 + \varepsilon_1$
- $\varepsilon_0, \varepsilon_1$ are effects on utility on factors UNOBSERVED TO ECONOMETRICIAN

The Probit Model

The Random Utility Model	
The Probit & Logit Models	
Estimation & Inference	
robit & Logit Estimation in Stata	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Choosing Among a few Alternatives

- Set up: An agent chooses among several alternatives:
 - labor economics: participation, union membership, ...
 - demographics: marriage, divorce, # of children,...
 - industrial organization: plant building, new product,...
 - regional economics: means of transport,....
- We are going to model a choice of two alternatives (not difficult to generalize...)

The value of each alternative depends on many factors

Ricardo Mora

- $U_0 = \beta_0 x_0 + \varepsilon_0$
- $U_1 = \beta_1 x_1 + \varepsilon_1$
- $\varepsilon_0, \varepsilon_1$ are effects on utility on factors UNOBSERVED TO ECONOMETRICIAN

The Probit Model

・ロト (個) (差) (差) (差) (2) のへの

Choosing Among a few Alternatives

- Set up: An agent chooses among several alternatives:
 - labor economics: participation, union membership,
 - demographics: marriage, divorce, # of children,...
 - industrial organization: plant building, new product,...
 - regional economics: means of transport,....
- We are going to model a choice of two alternatives (not difficult to generalize...)

Ricardo Mora

• $\varepsilon_0, \varepsilon_1$ are effects on utility on factors UNOBSERVED TO ECONOMETRICIAN

The Probit Model

The Random Utility Model	
The Probit & Logit Models	
Estimation & Inference	
obit & Logit Estimation in Stata	

Choosing Among a few Alternatives

- Set up: An agent chooses among several alternatives:
 - labor economics: participation, union membership, ...
 - demographics: marriage, divorce, # of children,...
 - industrial organization: plant building, new product,...
 - regional economics: means of transport,....
- We are going to model a choice of two alternatives (not difficult to generalize...)

The value of each alternative depends on many factors

- $U_0 = \beta_0 x_0 + \varepsilon_0$
- $U_1 = \beta_1 x_1 + \varepsilon_1$
- $\varepsilon_0, \varepsilon_1$ are effects on utility on factors UNOBSERVED TO ECONOMETRICIAN

・ロ・・ 白・・ 川田・ ・ 田・ ・ 日・ うらの

Notes

Choice Under the RUM

If $eta_1 x_1 - eta_0 x_0 \geq arepsilon_0 - arepsilon_1$ then choice = 1

If $\beta_1 x_1 - \beta_0 x_0 < \varepsilon_0 - \varepsilon_1$ then choice = 0

- agent chooses 1 if observed advantages of 1 outweight the unobserved net advantage of 0
- note that $\varepsilon = \varepsilon_0 \varepsilon_1$ is defined by the data collection process, not by the decision process

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Choice Under the RUM

If $eta_1 x_1 - eta_0 x_0 \geq arepsilon_0 - arepsilon_1$ then choice = 1

If $eta_1 x_1 - eta_0 x_0 < arepsilon_0 - arepsilon_1$ then choice = 0

- agent chooses 1 if observed advantages of 1 outweight the unobserved net advantage of 0
- note that $\varepsilon = \varepsilon_0 \varepsilon_1$ is defined by the data collection process, not by the decision process

Notes

Choice Under the RUM

If $eta_1 x_1 - eta_0 x_0 \geq arepsilon_0 - arepsilon_1$ then choice = 1

If
$$\beta_1 x_1 - \beta_0 x_0 < \varepsilon_0 - \varepsilon_1$$
 then $choice = 0$

- agent chooses 1 if observed advantages of 1 outweight the unobserved net advantage of 0
- note that $\varepsilon = \varepsilon_0 \varepsilon_1$ is defined by the data collection process, not by the decision process

Fundamental Assumption:
$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_0 - \boldsymbol{\varepsilon}_1 \sim F$$
 $Pr(choice = 1) = Pr_F(\boldsymbol{\varepsilon} \leq \beta_1 x_1 - \beta_0 x_0)$ $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\varepsilon} > \boldsymbol{\varepsilon} \geq \boldsymbol{\varepsilon} \geq$

The Random Utility Model	
The Probit & Logit Models	
Estimation & Inference	
Probit & Logit Estimation in Stata	
- Summary	

Choice Under the RUM

If
$$eta_1 x_1 - eta_0 x_0 \geq arepsilon_0 - arepsilon_1$$
 then $\mathit{choice} = 1$

If
$$eta_1 x_1 - eta_0 x_0 < arepsilon_0 - arepsilon_1$$
 then $\mathit{choice} = 0$

- agent chooses 1 if observed advantages of 1 outweight the unobserved net advantage of 0
- note that $\varepsilon = \varepsilon_0 \varepsilon_1$ is defined by the data collection process, not by the decision process

Fundamental Assumption: $arepsilon=arepsilon_0-arepsilon_1\sim F$

$$Pr(choice = 1) = Pr_F(\varepsilon \leq \beta_1 x_1 - \beta_0 x_0)$$

Ricardo Mora The Probit Model

・ロ・・母・・ヨ・・ヨー りへの

Notes

The Probit & Logit Models

Notes

Probit Assumption: $arepsilon_1, arepsilon_0 \sim {\sf N}(0,\Sigma)$ so that $arepsilon \sim {\sf N}(0,1)$

- Pr(choice = 1) = Φ(βx) where Φ is the cdf of the standard normal
- this is called the Probit Model
- $\bullet\,$ the vector of parameters $\beta\,$ can be consistently estimated by ML

Logit Assumption: $arepsilon_0 - arepsilon_1 = arepsilon \sim$ Logistic

- $Pr(choice = 1) = \frac{exp(\beta x)}{1 + exp(\beta x)}$
- Easy computation!

< ロト < 合 > < き > < き > き のへで

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Probit & Logit Models

Probit Assumption: $arepsilon_1, arepsilon_0 \sim N(0, \Sigma)$ so that $arepsilon \sim N(0, 1)$

Ricardo Mora

- Pr(choice = 1) = Φ(βx) where Φ is the cdf of the standard normal
- this is called the Probit Model
- $\bullet\,$ the vector of parameters $\beta\,$ can be consistently estimated by ML

Logit Assumption: $arepsilon_0 - arepsilon_1 = arepsilon \sim$ Logistic

- $Pr(choice = 1) = \frac{exp(\beta x)}{1 + exp(\beta x)}$
- Easy computation!

The Probit & Logit Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Probit & Logit Models

Notes

Notes

Probit Assumption: $arepsilon_1, arepsilon_0 \sim {\sf N}(0, \Sigma)$ so that $arepsilon \sim {\sf N}(0, 1)$

- Pr(choice = 1) = Φ(βx) where Φ is the cdf of the standard normal
- this is called the Probit Model
- $\bullet\,$ the vector of parameters $\beta\,$ can be consistently estimated by ML

Logit Assumption: $arepsilon_0 - arepsilon_1 = arepsilon \sim$ Logistic

- $Pr(choice = 1) = \frac{exp(\beta x)}{1 + exp(\beta x)}$
- Easy computation!

The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Probit & Logit Models

Probit Assumption: $arepsilon_1, arepsilon_0 \sim {\sf N}(0,\Sigma)$ so that $arepsilon \sim {\sf N}(0,1)$

Ricardo Mora

- Pr(choice = 1) = Φ(βx) where Φ is the cdf of the standard normal
- this is called the Probit Model
- $\bullet\,$ the vector of parameters $\beta\,$ can be consistently estimated by ML

Logit Assumption: $arepsilon_0 - arepsilon_1 = arepsilon \sim$ Logistic

•
$$Pr(choice = 1) = \frac{exp(\beta x)}{1 + exp(\beta x)}$$

• Easy computation!

The Probit & Logit Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Probit & Logit Models

Notes

Notes

Probit Assumption: $arepsilon_1, arepsilon_0 \sim {\sf N}(0, \Sigma)$ so that $arepsilon \sim {\sf N}(0, 1)$

- Pr(choice = 1) = Φ(βx) where Φ is the cdf of the standard normal
- this is called the Probit Model
- $\bullet\,$ the vector of parameters $\beta\,$ can be consistently estimated by ML

Logit Assumption: $\varepsilon_0 - \varepsilon_1 = \varepsilon \sim$ Logistic

- $Pr(choice = 1) = \frac{exp(\beta x)}{1 + exp(\beta x)}$
- Easy computation!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 のへで

Ricardo Mora The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Probit & Logit Models

Probit Assumption: $arepsilon_1, arepsilon_0 \sim {\sf N}(0,\Sigma)$ so that $arepsilon \sim {\sf N}(0,1)$

- Pr(choice = 1) = Φ(βx) where Φ is the cdf of the standard normal
- this is called the Probit Model
- $\bullet\,$ the vector of parameters $\beta\,$ can be consistently estimated by ML

Logit Assumption: $arepsilon_0 - arepsilon_1 = arepsilon \sim$ Logistic

- $Pr(choice = 1) = \frac{exp(\beta x)}{1 + exp(\beta x)}$
- Easy computation!

The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Example: Marriage Decision

- Consider a sample of women who have a relation
- The econometrician only observes

•
$$marry \int = 1$$
 if married

$$= 0$$
 otherwise

- x_m : factors affecting utility of being married
- x_s: factors affecting utility of being single
- note that something that affects the utility of being married will also affect the utility of being single, but not in the same way (for example, pregnant status)

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Controls in the Marriage Decision

- $U_m = \beta_m^0 + \beta_m^{age} age + \beta_m^{preg} pregnant + \varepsilon_m$
- $U_s = eta_s^0 + eta_s^{age} age + eta_s^{preg} pregnant + arepsilon_s$

Probit Assumption: $arepsilon_s - arepsilon_m | x \sim N(0,1)$

• $Pr(marry = 1) = \Phi(\beta_0 + \beta_{age}age + \beta_{preg}pregnant)$

Ricardo Mora

The Probit Model

- $\beta_0 = \beta_m^0 \beta_s^0$
- $\beta_{age} = \beta_m^{age} \beta_s^{age}$
- $\beta_{preg} = \beta_m^{preg} \beta_s^{preg}$
- $var(\varepsilon_s \varepsilon_m) = \sigma_s^2 + \sigma_m^2 2\sigma_{s,m} = 1$

・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ りへぐ

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Controls in the Marriage Decision

- $U_m = \beta_m^0 + \beta_m^{age} age + \beta_m^{preg} pregnant + \varepsilon_m$
- $U_s = \beta_s^0 + \beta_s^{age} age + \beta_s^{preg} pregnant + \varepsilon_s$

Probit Assumption: $arepsilon_s - arepsilon_m | x \sim N(0,1)$

- $Pr(marry = 1) = \Phi(\beta_0 + \beta_{age}age + \beta_{preg}pregnant)$
- $\beta_0 = \beta_m^0 \beta_s^0$
- $\beta_{age} = \beta_m^{age} \beta_s^{age}$
- $\beta_{preg} = \beta_m^{preg} \beta_s^{preg}$
- $var(\varepsilon_s \varepsilon_m) = \sigma_s^2 + \sigma_m^2 2\sigma_{s,m} = 1$

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Controls in the Marriage Decision

- $U_m = \beta_m^0 + \beta_m^{age} age + \beta_m^{preg} pregnant + \varepsilon_m$
- $U_s = \beta_s^0 + \beta_s^{age} age + \beta_s^{preg} pregnant + \varepsilon_s$

Probit Assumption: $arepsilon_s - arepsilon_m | x \sim N(0,1)$

• $Pr(marry = 1) = \Phi(\beta_0 + \beta_{age}age + \beta_{preg}pregnant)$

Ricardo Mora

The Probit Model

- $\beta_0 = \beta_m^0 \beta_s^0$
- $\beta_{age} = \beta_m^{age} \beta_s^{age}$

•
$$\beta_{preg} = \beta_m^{preg} - \beta_s^{preg}$$

• $var(\varepsilon_s - \varepsilon_m) = \sigma_s^2 + \sigma_m^2 - 2\sigma_{s,m} = 1$

Notes

Notes

The Random Utility Model **The Probit & Logit Models** Estimation & Inference Probit & Logit Estimation in Stata Summary

Controls in the Marriage Decision

- $U_m = \beta_m^0 + \beta_m^{age} age + \beta_m^{preg} pregnant + \varepsilon_m$
- $U_s = \beta_s^0 + \beta_s^{age} age + \beta_s^{preg} pregnant + \varepsilon_s$

Probit Assumption: $arepsilon_s - arepsilon_m | x \sim N(0,1)$

• $Pr(marry = 1) = \Phi(\beta_0 + \beta_{age}age + \beta_{preg}pregnant)$

•
$$\beta_0 = \beta_m^0 - \beta_s^0$$

• $\beta_{age} = \beta_m^{age} - \beta_s^{age}$

•
$$\beta_{preg} = \beta_m^{preg} - \beta_s^{preg}$$

•
$$var(\varepsilon_s - \varepsilon_m) = \sigma_s^2 + \sigma_m^2 - 2\sigma_{s,m} = 1$$

A Graphical Interpretation of the Probit Model

The probability to participate is a nonlinear function of the index function $\beta_0 + \beta_{age}age + \beta_{preg}pregnant$

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Notes

Notes

Interpretation of the Slopes and Marginal Effects

Summary

when the control x_j appears in both utilities...

The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

• only the net effect on the index function, $\beta_j = \beta_m^j - \beta_s^j$, is identified

normality (nonlinearity) assumption

- "net slope" β_j captures the marginal effect on index function βx of an increase of one unit of control x_i
- the marginal effect on the probability of marriage is more complex
 - if x_j is continuous, $\frac{\partial Pr(marry=1)}{\partial x_i} = \phi(\beta x)\beta_j$
 - if x_j is discrete, $\Delta Pr(marry = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$ where x_1 is the vector of controls with the final value for x_j and x_0 is the vector of controls with the initial value for x_j

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Interpretation of the Slopes and Marginal Effects

when the control *x_i* appears in both utilities...

• only the net effect on the index function, $\beta_j = \beta_m^j - \beta_s^j$, is identified

normality (nonlinearity) assumption

- "net slope" β_j captures the marginal effect on index function βx of an increase of one unit of control x_j
- the marginal effect on the probability of marriage is more complex
 - if x_j is continuous, $\frac{\partial Pr(marry=1)}{\partial x_i} = \phi(\beta x)\beta_j$
 - if x_j is discrete, $\Delta Pr(marry = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$ where x_1 is the vector of controls with the final value for x_j and x_0 is the vector of controls with the initial value for x_j

226

Notes

Interpretation of the Slopes and Marginal Effects

when the control x_j appears in both utilities...

• only the net effect on the index function, $\beta_j = \beta_m^j - \beta_s^j$, is identified

normality (nonlinearity) assumption

- "net slope" β_j captures the marginal effect on index function βx of an increase of one unit of control x_i
- the marginal effect on the probability of marriage is more complex
 - if x_j is continuous, $\frac{\partial Pr(marry=1)}{\partial x_j} = \phi(\beta x)\beta_j$
 - if x_j is discrete, $\Delta Pr(marry = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$
 - where x_1 is the vector of controls with the initial value for

Notes

Notes

Ricardo Mora The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference bit & Logit Estimation in Stata Summary

Interpretation of the Slopes and Marginal Effects

when the control x_i appears in both utilities...

• only the net effect on the index function, $\beta_j = \beta_m^j - \beta_s^j$, is identified

normality (nonlinearity) assumption

- "net slope" β_j captures the marginal effect on index function βx of an increase of one unit of control x_i
- the marginal effect on the probability of marriage is more complex
 - if x_j is continuous, $\frac{\partial Pr(marry=1)}{\partial x_i} = \phi(\beta x)\beta_j$
 - if x_j is discrete, ΔPr(marry = 1) = Φ(βx₁) Φ(βx₀) where x₁ is the vector of controls with the final value for x_j and x₀ is the vector of controls with the initial value for x_j

1090

The Random Utility Model The Probit & Logit Models Estimation & Inference robit & Logit Estimation in Stata Summary

Interpretation of the Slopes and Marginal Effects

when the control *x_i* appears in both utilities...

• only the net effect on the index function, $\beta_j = \beta_m^j - \beta_s^j$, is identified

normality (nonlinearity) assumption

- "net slope" β_j captures the marginal effect on index function βx of an increase of one unit of control x_i
- the marginal effect on the probability of marriage is more complex
 - if x_j is continuous, $\frac{\partial Pr(marry=1)}{\partial x_j} = \phi(\beta x)\beta_j$
 - if x_j is discrete, $\Delta Pr(marry = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$ where x_1 is the vector of controls with the final value for x_j and x_0 is the vector of controls with the initial value for x_j

Ricardo Mora The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summarv

The Density in the Probit Model

Assumption: iid random sample

- let the true value be β_0
- then, under the Probit model

$$Pr(married | x) = \begin{cases} \Phi(\beta_0 x) \text{ if } marry = 1\\ 1 - \Phi(\beta_0 x) \text{ if } marry = 1 \end{cases}$$

Ν	ot	es
IN	οτ	es

The Density in the Probit Model

Assumption: iid random sample

- ullet let the true value be eta_0
- then, under the Probit model

$$Pr(married | x) = \begin{cases} \Phi(\beta_0 x) \text{ if } marry = 1\\ 1 - \Phi(\beta_0 x) \text{ if } marry = 0 \end{cases}$$

<ロト イラト イラト オラト ラ つくで Ricardo Mora The Probit Model	
The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary	Notes
The Density in the Probit Model	
Assumption: iid random sample	
$ullet$ let the true value be eta_0	
 then, under the Probit model 	
$Pr(\textit{married} x) = \left\{ egin{array}{l} \Phi(eta_0 x) ext{ if } marry = 1 \ 1 - \Phi(eta_0 x) ext{ if } marry = 0 \end{array} ight.$	

The Probit & Logit Models **Estimation & Inference** Probit & Logit Estimation in Stata Summary

The Likelihood of an Observation

- \bullet the likelihood replaces in the density the true vector β_0 with any vector β
- then, the likelihood for individual *i* takes the form

$$L_{i}(\beta) = \begin{cases} \Phi(\beta x_{i}) \text{ if } marry_{i} = 1\\ 1 - \Phi(\beta x_{i}) \text{ if } marry_{i} = 0 \end{cases}$$

• o, more conveniently,

$$L_i(\beta) = \left[\Phi(\beta x_i)\right]^{marry_i} \left[1 - \Phi(\beta x_i)\right]^{(1 - marry_i)}$$

- \bullet the likelihood replaces in the density the true vector β_0 with any vector β
- \bullet then, the likelihood for individual *i* takes the form

$$L_{i}(\beta) = \begin{cases} \Phi(\beta x_{i}) \text{ if } marry_{i} = 1\\ 1 - \Phi(\beta x_{i}) \text{ if } marry_{i} = 0 \end{cases}$$

• o, more conveniently,

$$L_i(\beta) = [\Phi(\beta x_i)]^{marry_i} [1 - \Phi(\beta x_i)]^{(1 - marry_i)}$$

Notes

Notes

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Likelihood of an Observation

- \bullet the likelihood replaces in the density the true vector β_0 with any vector β
- then, the likelihood for individual *i* takes the form

$$L_i(\beta) = \begin{cases} \Phi(\beta x_i) \text{ if } marry_i = 1\\ 1 - \Phi(\beta x_i) \text{ if } marry_i = 0 \end{cases}$$

• o, more conveniently,

$$L_i(\beta) = [\Phi(\beta x_i)]^{marry_i} [1 - \Phi(\beta x_i)]^{(1 - marry_i)}$$

• first, we take the logs

$$l_i(\beta) = marry_i \log(\Phi(\beta x_i)) + (1 - marry_i) \log(1 - \Phi(\beta x_i))$$

• then we compute the likelihood for the entire *iid* sample

$$l(\beta) = \sum_{i} l_i(\beta)$$

hence

$$l(\beta) = \sum_{i} \{marry_i \log(\Phi(\beta x_i)) + (1 - marry_i) \log(1 - \Phi(\beta x_i))\}$$

Notes

The Loglikelihood

• first, we take the logs

$$l_i(\beta) = marry_i \log (\Phi(\beta x_i)) + (1 - marry_i) \log (1 - \Phi(\beta x_i))$$

• then we compute the likelihood for the entire *iid* sample

Ricardo Mora

$$l(\beta) = \sum_{i} l_i(\beta)$$

hence

$$l(\beta) = \sum_{i} \{marry_i \log(\Phi(\beta x_i)) + (1 - marry_i) \log(1 - \Phi(\beta x_i))\}$$

The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary	
he Loglikelihood	

• first, we take the logs

$$l_i(\beta) = marry_i \log(\Phi(\beta x_i)) + (1 - marry_i) \log(1 - \Phi(\beta x_i))$$

• then we compute the likelihood for the entire *iid* sample

$$l(\beta) = \sum_{i} l_i(\beta)$$

hence

$$I(\beta) = \sum_{i} \{marry_i \log(\Phi(\beta x_i)) + (1 - marry_i) \log(1 - \Phi(\beta x_i))\}$$

Notes

The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

ML Estimation of Probit Model

Definition

$$ullet$$
 the MLE is the vector \hat{eta}^{ML} such that

 $\hat{eta}^{ML} =$ arg max $\sum_{i} \{marry_i \log(\Phi(eta x_i)) + (1 - marry_i) \log(1 - \Phi(eta x_i))\}$

- because of the nonlinear nature of the maximization problem, there are not explicit formulas for the probit ML estimates
- instead, numerical optimization is used, and, usually, only a few iterations are needed

The Probit Model

• in Stata, several algorithms can be used

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

ML Estimation of Probit Model

Definition

ullet the MLE is the vector \hat{eta}^{ML} such that

 $\hat{\beta}^{ML} = \\ \arg\max\sum_{i} \{marry_i \log(\Phi(\beta x_i)) + (1 - marry_i) \log(1 - \Phi(\beta x_i))\}$

- because of the nonlinear nature of the maximization problem, there are not explicit formulas for the probit ML estimates
- instead, numerical optimization is used, and, usually, only a few iterations are needed

The Probit Model

• in Stata, several algorithms can be used

Ricardo Mora

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めへの

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ○ ● ●

The Probit & Logit Models The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

ML Estimation of Probit Model

Definition

$$ullet$$
 the MLE is the vector \hat{eta}^{ML} such that

 $\hat{eta}^{ML} =$ $\arg\max\sum_{i} \{marry_i \log(\Phi(eta x_i)) + (1 - marry_i) \log(1 - \Phi(eta x_i))\}$

- because of the nonlinear nature of the maximization problem, there are not explicit formulas for the probit ML estimates
- instead, numerical optimization is used, and, usually, only a few iterations are needed

The Probit Model

• in Stata, several algorithms can be used

Ricardo Mora

The Random Utility Model	
The Probit & Logit Models	
Estimation & Inference	
Probit & Logit Estimation in Stata	
- Summarv	

ML Estimation of Probit Model

Definition

$$ullet$$
 the MLE is the vector \hat{eta}^{ML} such that

 $\hat{\beta}^{ML} = \arg \max \sum_{i} \{ marry_i \log (\Phi(\beta x_i)) + (1 - marry_i) \log (1 - \Phi(\beta x_i)) \}$

- because of the nonlinear nature of the maximization problem, there are not explicit formulas for the probit ML estimates
- instead, numerical optimization is used, and, usually, only a few iterations are needed

Ricardo Mora The Probit Model

• in Stata, several algorithms can be used

The Probit & Logit Models **Estimation & Inference** Probit & Logit Estimation in Stata

The Perfect Prediction Problem

- suppose that vector $\widetilde{\beta}$ perfectly predicts marry; in the sense that for a given scalar k, $\widetilde{\beta}x > k$ iff marry = 1
- then the same thing is true for any multiple of β : the sample identification condition is violated
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting marriage among married individuals)

The Probit Model

• the sample may simply be not large enough

Ricardo M<u>ora</u>

The Perfect Prediction Problem

- suppose that vector $\widetilde{\beta}$ perfectly predicts marry; in the sense that for a given scalar k, $\widetilde{\beta}x > k$ iff marry = 1
- then the same thing is true for any multiple of $\tilde{\beta}$: the sample identification condition is violated
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting marriage among married individuals)
 - the sample may simply be not large enough

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Notes

The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Perfect Prediction Problem

- suppose that vector $\widetilde{\beta}$ perfectly predicts marry; in the sense that for a given scalar k, $\widetilde{\beta}x > k$ iff marry = 1
- then the same thing is true for any multiple of $\tilde{\beta}$: the sample identification condition is violated
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting marriage among married individuals)

The Probit Model

• the sample may simply be not large enough

Ricardo Mora

The Perfect Prediction Problem

- suppose that vector $\widetilde{\beta}$ perfectly predicts marry; in the sense that for a given scalar k, $\widetilde{\beta}x > k$ iff marry = 1
- then the same thing is true for any multiple of $\tilde{\beta}$: the sample identification condition is violated
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting marriage among married individuals)
 - the sample may simply be not large enough

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Notes

The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

The Perfect Prediction Problem

- suppose that vector $\widetilde{\beta}$ perfectly predicts marry; in the sense that for a given scalar k, $\widetilde{\beta}x > k$ iff marry = 1
- then the same thing is true for any multiple of $\tilde{\beta}$: the sample identification condition is violated
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting marriage among married individuals)
 - the sample may simply be not large enough

- suppose that vector $\widetilde{\beta}$ perfectly predicts marry; in the sense that for a given scalar k, $\widetilde{\beta}x > k$ iff marry = 1
- then the same thing is true for any multiple of $\tilde{\beta}$: the sample identification condition is violated
- this may be due to several reasons
 - one control may be a perfect classifier: drop it
 - the model may be trivially misspecified (like predicting marriage among married individuals)
 - the sample may simply be not large enough

Notes

Asymptotic Properties and Testing

under general conditions, MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) *t* tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier or score test only requires estimating model under the null

The Probit Model

- the Wald test requires estimation of only the unrestricted model
- the likelihood ratio (LR) test requires estimation of both models

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Asymptotic Properties and Testing

under general conditions, MLE is consistent, asymptotically normal, and asymptotically efficient

we can construct (asymptotic) t tests and confidence intervals (just as with OLS, 2SLS, and IV)

- exclusion restrictions
 - the Lagrange multiplier or score test only requires estimating model under the null
 - the Wald test requires estimation of only the unrestricted model
 - the likelihood ratio (LR) test requires estimation of both models

The Probit Model

Ricardo Mora

- ▲日 > ▲ 画 > ▲ 画 > ● ● ● ● ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Asymptotic Properties and Testing

under general conditions, MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) *t* tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier or score test only requires estimating model under the null

The Probit Model

- the Wald test requires estimation of only the unrestricted model
- the likelihood ratio (LR) test requires estimation of both models

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Asymptotic Properties and Testing

under general conditions, MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) t tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier or score test only requires estimating model under the null
 - the Wald test requires estimation of only the unrestricted model
 - the likelihood ratio (LR) test requires estimation of both models

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Notes

Asymptotic Properties and Testing

under general conditions, MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) *t* tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier or score test only requires estimating model under the null

The Probit Model

- the Wald test requires estimation of only the unrestricted model
- the likelihood ratio (LR) test requires estimation of both models

Ricardo Mora

The Random Utility Model The Probit & Logit Models **Estimation & Inference** Probit & Logit Estimation in Stata Summary

Asymptotic Properties and Testing

under general conditions, MLE is consistent, asymptotically normal, and asymptotically efficient

- we can construct (asymptotic) *t* tests and confidence intervals (just as with OLS, 2SLS, and IV)
- exclusion restrictions
 - the Lagrange multiplier or score test only requires estimating model under the null
 - the Wald test requires estimation of only the unrestricted model
 - the likelihood ratio (LR) test requires estimation of both models

Ricardo Mora The Probit Model

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ りへの

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

The Likelihood Ratio Test

The LR test

Probit &

• it is based on the difference in loglikelihood functions

• as with the F tests in linear regression, restricting models leads to no-larger loglikelihoods

$$LR = 2(I_{ur} - I_r) \stackrel{a}{\to} \chi_q$$

The Probit Model

where q is the number of restrictions

	Probit	The Random U The Probit & Lo Estimation & Logit Estimati	tility Model ogit Models & Inference ion in Stata Summary	
oit a	& Logi	t Estima	ition in	Stata
	mahitu.		Maximu	n Likeliken
• p	ropit:	computes		m Likeinoo

Ricardo Mora

- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

Notes

• probit: computes Maximum Likelihood probit estimation

- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

Ricardo Mora The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

Probit & Logit Estimation in Stata

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

Ricardo Mora

Notes

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

The Probit Model

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

Probit & Logit Estimation in Stata

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

The Probit Model

We are going to use probit, test, lincom, predict, e(ll), and logit

Ricardo Mora

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

The Probit Model

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

Probit & Logit Estimation in Stata

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

Notes

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

The Probit Model

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

Probit & Logit Estimation in Stata

- probit: computes Maximum Likelihood probit estimation
- logit: computes Maximum Likelihood logit estimation
- margins (mfx): marginal means, predictive margins, marginal effects, and average marginal effects
- test: Wald tests of simple and composite linear hypothesis
- lincom: point estimates, standard errors, testing, and inference for linear combinations of coefficients
- predict: predictions, residuals, influence statistics, and other diagnostic measures
- e(11): returns the log-likelihood for the last estimated model

We are going to use probit, test, lincom, predict, e(ll), and logit

Ricardo Mora

Notes

The Random Otility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

probit depvar indvars [if] [in] [weight],[options]

- *depuar* : negative is 0, all other nonmissing values is 1
- output shows χ^2_a statistic test for null that all slopes are zero
- some interesting options:
 - noconstant: suppress constant term
 - constraints(constraints) apply specified linear constraints

Ricardo Mora	The Probit Model
The Random Utility Model	
The Probit & Logit Models	
Probit & Logit Estimation in Stata	
Summary	
prohit democra induane	[:e] [:m]
probit aepvar inavars	[lT] [lN]
[woight] [ontiona]	
[weight], [options]	

- *depvar*: negative is 0, all other nonmissing values is 1
- output shows χ^2_a statistic test for null that all slopes are zero
- some interesting options:
 - noconstant: suppress constant term
 - constraints(constraints) apply specified linear constraints

Notes

The Probit & Logit Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

probit depvar indvars [if] [in] [weight],[options]

- *depvar*: negative is 0, all other nonmissing values is 1
- output shows χ^2_q statistic test for null that all slopes are zero
- some interesting options:
 - noconstant: suppress constant term
 - constraints(constraints) apply specified linear constraints

	《口》 《聞》 《言》 《言》 言 - 釣んの
Ricardo Mora	The Probit Model
The Bandom Utility Model	
The Probit & Logit Models	
Estimation & Inference Probit & Logit Estimation in Stata	
Summary	
	Fiel Finl
probit aepvar inavars	LIIJ LINJ
[uoight] [ontiona]	
[weight], [options]	

- *depvar*: negative is 0, all other nonmissing values is 1
- ullet output shows χ^2_q statistic test for null that all slopes are zero
- some interesting options:
 - noconstant: suppress constant term
 - constraints(constraints) apply specified linear constraints

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

A Simulated Example: Participation Decision

The Probit Model

- $U_m = 0.3 + 0.05 * educ + 0.5 * kids + \varepsilon_m$
- $U_h = 0.8 0.02 * educ + 2 * kids + \varepsilon_h$
- $arepsilon_{h},arepsilon_{m}\sim N\left(0,\Sigma
 ight)$ such that $arepsilon\sim N\left(0,1
 ight)$
- education brings utility if you work, disutility if you don't
- having a kid brings more utility if you don't work

Ricardo Mora

The Probit Model

• $\beta x = -0.5 + 0.07 * educ - 1.5 * kids$

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

A Simulated Example: Participation Decision

The Probit Model

- $U_m = 0.3 + 0.05 * educ + 0.5 * kids + \varepsilon_m$
- $U_h = 0.8 0.02 * educ + 2 * kids + \varepsilon_h$
- $arepsilon_{h}, arepsilon_{m} \sim N\left(0,\Sigma
 ight)$ such that $arepsilon \sim N\left(0,1
 ight)$
- education brings utility if you work, disutility if you don't
- having a kid brings more utility if you don't work
- $\beta x = -0.5 + 0.07 * educ 1.5 * kids$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ○ ● ●

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

A Simulated Example: Participation Decision

Notes

Notes

The Probit Model

- $U_m = 0.3 + 0.05 * educ + 0.5 * kids + \varepsilon_m$
- $U_h = 0.8 0.02 * educ + 2 * kids + \varepsilon_h$
- $arepsilon_{h}, arepsilon_{m} \sim N\left(0,\Sigma
 ight)$ such that $arepsilon \sim N\left(0,1
 ight)$
- education brings utility if you work, disutility if you don't
- having a kid brings more utility if you don't work

Ricardo Mora

The Probit Model

• $\beta x = -0.5 + 0.07 * educ - 1.5 * kids$

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

A Simulated Example: Participation Decision

The Probit Model

- $U_m = 0.3 + 0.05 * educ + 0.5 * kids + \varepsilon_m$
- $U_h = 0.8 0.02 * educ + 2 * kids + \varepsilon_h$
- $\varepsilon_{h}, \varepsilon_{m} \sim N\left(0,\Sigma\right)$ such that $\varepsilon \sim N\left(0,1
 ight)$
- education brings utility if you work, disutility if you don't
- having a kid brings more utility if you don't work
- $\beta x = -0.5 + 0.07 * educ 1.5 * kids$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ○ ● ●

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

probit Output

Probit regress Log likelihood	ion = -2548.178	6		Numbe LR ch Prob Pseud	er of obs = hi2(2) = > chi2 = ho R2 =	5000 1449.25 0.0000 0.2214
work	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval]
educ kids cons	.0741842 -1.43585 5886567	.0056425 .0409208 .079498	13.15 -35.09 -7.40	0.000 0.000 0.000	.0631251 -1.516054 7444698	.0852432 -1.355647 4328435

- 4 日 + 4 日 + 4 日 + 4 日 + 9 4 3

Ricardo Mora The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Predicting the Probabilities

Computing $\hat{\Pr}(y_i = 1 | x_i)$

predict p_hat,p

- for each observation, if $\hat{\Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$
 - always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

Notes

The Probit & Logit Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Predicting the Probabilities

Computing $\hat{\Pr}(y_i = 1 | x_i)$

predict p_hat,p

- for each observation, if $\hat{Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$

Ricardo Mora

• always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Predicting the Probabilities

Computing $\hat{\Pr}(y_i = 1 | x_i)$

predict p_hat ,p

- for each observation, if $\hat{\Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$
 - always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ○ ● ●

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summarv

Predicting the Probabilities

Computing $\hat{\Pr}(y_i = 1 | x_i)$

predict p_hat,p

- for each observation, if $\hat{\Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$
 - always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary Predicting the Probabilities

Ricardo Mora

Computing $\hat{\Pr}(y_i = 1 | x_i)$

predict p_hat ,p

- for each observation, if $\hat{Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$
 - always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

Notes

The Probit & Logit Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Predicting the Probabilities

Computing $\hat{\Pr}(y_i = 1 | x_i)$

predict p_hat,p

- for each observation, if $\hat{\Pr}(y_i = 1 | x_i) > 0.5$ then $\hat{y}_i = 1$
- the percent correctly predicted is the % for which \hat{y}_i matches y_i
- it is possible to get high percentages correctly predicted in useless models
 - suppose that $Pr(y_i = 0) = 0.9$
 - always predicting $\hat{y}_i = 0$ will lead to 90% correctly predicted!

The Probit Model

Understanding Coefficients & Marginal Effects

Ricardo Mora

ullet the column "Coeff." refers to the ML estimates \hat{eta}^{ML}

- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes
 - if control x_j is continuous, $\frac{\partial Pr(y=1)}{\partial x_j} = \phi(\beta x)\beta_j$
 - if control x_j is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$
- since the model is non-linear, marginal effects depend on the values of the other controls
- to get marginal effects instead of coefficients we can use command dprobit
- we can also use the commands margins or mfx

・ロット 4回ッ 4回ッ 4日~

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Notes

Understanding Coefficients & Marginal Effects

- ullet the column "Coeff." refers to the ML estimates \hat{eta}^{ML}
- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes
 - if control x_j is continuous, $\frac{\partial Pr(y=1)}{\partial x_i} = \phi(\beta x)\beta_j$
 - if control x_j is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$

The Probit Model

- since the model is non-linear, marginal effects depend on the values of the other controls
- to get marginal effects instead of coefficients we can use command dprobit
- we can also use the commands margins or mfx

Ricardo Mora

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata

Understanding Coefficients & Marginal Effects

- ullet the column "Coeff." refers to the ML estimates \hat{eta}^{ML}
- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes
 - if control x_j is continuous, ∂Pr(y=1)/∂x_j = φ(βx)β_j
 if control x_i is discrete, ΔPr(work = 1) = Φ(βx₁) − Φ(βx₀)
- since the model is non-linear, marginal effects depend on the values of the other controls
- to get marginal effects instead of coefficients we can use command dprobit
- we can also use the commands margins or mfx

・ロト・西ト・山田・山田・山口・

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Notes

Estimation & Inference Probit & Logit Estimation in Stata

Understanding Coefficients & Marginal Effects

- the column "Coeff." refers to the ML estimates \hat{eta}^{ML}
- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes
 - if control x_j is continuous, $\frac{\partial Pr(y=1)}{\partial x_i} = \phi(\beta x)\beta_j$
 - if control x_i is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$

The Probit Model

- since the model is non-linear, marginal effects depend on the
- to get marginal effects instead of coefficients we can use
- we can also use the commands margins or mfx

Ricardo Mora

Estimation & Inference Probit & Logit Estimation in Stata

Understanding Coefficients & Marginal Effects

- the column "Coeff." refers to the ML estimates \hat{eta}^{ML}
- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes

 - if control x_j is continuous, $\frac{\partial Pr(y=1)}{\partial x_j} = \phi(\beta x)\beta_j$ if control x_j is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$
- since the model is non-linear, marginal effects depend on the values of the other controls
- to get marginal effects instead of coefficients we can use
- we can also use the commands margins or mfx

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Understanding Coefficients & Marginal Effects

- ullet the column "Coeff." refers to the ML estimates \hat{eta}^{ML}
- in contrast to the linear model, in the probit model the coefficients do not capture the marginal effect on output when a control changes
 - if control x_j is continuous, $\frac{\partial Pr(y=1)}{\partial x_j} = \phi(\beta x)\beta_j$
 - if control x_j is discrete, $\Delta Pr(work = 1) = \Phi(\beta x_1) \Phi(\beta x_0)$
- since the model is non-linear, marginal effects depend on the values of the other controls
- to get marginal effects instead of coefficients we can use command dprobit
- we can also use the commands margins or mfx

Ricardo Mora

The Probit Model

Probit reç Log likeli	gression, rep ihood = -2548	orting margi .1786	nal effe	cts	Numbe LR ch Prob Pseud	er of obs hi2(2) > chi2 do R2	= 5000 =1449.25 = 0.0000 = 0.2214
Work	dF/dx	Std. Err.	z	₽> z	x-bar	[95%	C.I.]
educ kids*	.0268932 5076016	.0020397 .0126823	13.15 -35.09	0.000	13.5644 .5956	.022895 532458	.030891 482745
obs. P pred. P	.362 .3308434	(at x-bar)					
(*) dF/dx	is for discr	ete change o	f dummv	variable	from 0 to	1	

z and P>|z| correspond to the test of the underlying coefficient being 0

Notes

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Individual Marginal Effects: Discrete Change

we want to estimate the change in probability when x changes from x_0 to x_1

- after estimation of the model, predict index function $\hat{eta}^{ML} x_0$
- replace values in controls from scenario 0, x_0 , to scenario 1, x_1
- predict index function $\hat{\beta}^{ML}x_1$
- generate the individual marginal effects

$$\Phi\left(\hat{\beta}^{ML}x_{1}\right)-\Phi\left(\hat{\beta}^{ML}x_{0}\right)$$

Ricardo Mora The Probit Model

Estimation & Inference Probit & Logit Estimation in Stata

Individual Marginal Effects: Discrete Change

we want to estimate the change in probability when x changes from x_0 to x_1

Discrete change

- after estimation of the model, predict index function $\hat{\beta}^{ML}x_0$
- replace values in controls from scenario 0, x_0 , to scenario 1, x_1
- predict index function $\hat{\beta}^{ML} x_1$
- generate the individual marginal effects

$$\Phi\left(\hat{\beta}^{ML}x_{1}\right)-\Phi\left(\hat{\beta}^{ML}x_{0}\right)$$

Notes

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary

Example: The Effect of Having A Kid

// marginal effects of having a kid gen kids_old=kids replace kids=1 predict p1,p replace kids=0 predict p0,p gen Mg_kid = p1 - p0 bysort educ: sum Mg_kid

- ▲ロト ▲母ト ▲目ト ▲目ト 三目 めんの

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary bysort educ: su Mg_kid

Ricardo Mora

The Probit Model

- the effect of having a kid changes with education
- higher education makes individuals more likely to have indexes βx closer to 0.5 (the probit slope is largest at 0.5)
- how would you make the "kid" effect smaller with higher education?

・ロト ・母 ト ・ヨト ・ヨー うへぐ

Ricardo Mora The Probit Model

Notes

• how would you make the "kid" effect smaller with higher education?

・ロ・・母・・ヨ・・ヨ・ りへぐ

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary	Notes
bysort educ: su Mg_kid	
$\begin{array}{c} \Rightarrow \mbox{ what } = 0 \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
the effect of having a kid changes with education	
• higher education makes individuals more likely to have indexes β_X closer to 0.5 (the probit slope is largest at 0.5)	
 how would you make the "kid" effect smaller with higher education? 	
Ricardo Mora The Probit Mode!	
The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary	Notes
Individual Marginal Effects: Infinitessimal Change	
Calculus approximation	
$ullet$ after estimation, predict the index function $\hat{eta}^{ML} x$	
• generate the calculus approximation: $\phi\left(\hat{eta}^{ML}x ight)\hat{eta}_{j}^{ML}$	

Example of Calculus Approximation

On individual values

// marginal effects of one extra year of education (individual calculus approximation)
. predict xb hat.xb
. gen Mg_educ_cal=normalden(xb_hat)*_b[educ] // this is the individual's marginal effect
. su Mg_educ_cal

Mg_educ_cal | 5000 .0212441 .0058988 .01063 .0295949

On average values

. // marginal . rename educ . rename kids . egen educ = . egen kids = . predict xb_i . gen Mg_educ . su Mg_educ	effects of educ_old kids_old mean(educ_o mean(kids_o hat_avg,xb _avg=normald avg	one extra year ld) if e(sampl ld) if e(sampl en(xb_hat_avg)	of educatic e) e) *_b[educ]	on (at the	mean values) is the margina	l effect on averages	
Variable	Obs	Mean	Std. Dev.	Min	Max		
Mg_educ_avg	5000	.0268932	0	.0268932	.0268932		

Ricardo Mora The Probit Model

The Random Utility Model The Probit & Logit Models Estimation & Inference Probit & Logit Estimation in Stata Summary	
Logit Estimation	

logit educ kids	mfx
uppetitie magnetalin Desire of data 000 uppetitie magnetalin Mark 100 100 uppetitie magnetaline - 100 100 100 uppetitie magnetaline - 100 100 100 100 uppetitie magnetaline - 100 100 100 100 100 uppetitie magnetaline - 100 1000 1000 1000 1000 1000 1000 uppetitie magnetaline - 1000 100	magacal afferts gives 1

Logit & Probit \hat{eta} are not comparable, but marginal effects are.

Summary

- not all parameters of the RUM can be estimated
- the Probit and Logit models identify how each control affects the probability of participation
- ML estimation requires numerical methods
- under general conditions, ML estimates are consistent, asymptotically normal, and asymptotically efficient
- significance tests and general restrictions tests are easy to carry out with the Probit model
- Stata allows for probit and logit estimation of the random utility model by ML

Ricardo Mora

< ロト イヨト イヨト イヨト ヨー のへでThe Probit Model

Notes