A Dynamic Analysis Inefficiency in Legislative Policymaking: A Dynamic Analysis

Battaglini, Marco Coate, Stephen

American Economic Review

Presented by Ruben Veiga

January 2018
1. Introduction
2. The model
3. Social planner
4. Equilibrium
 - Definition
 - Policy proposals
 - Three types of equilibrium
 - Existence and uniqueness
5. Implications
6. Conclusions
Motivation: The apparent tension between productive spending and pork-barrel in a legislature.
- Does government becomes "too big" because of this?
- What is the path of investment in public goods?
- Why some legislatures have good (or bad) governments?
Motivation: The apparent tension between productive spending and pork-barrel in a legislature.

- Does government becomes "too big" because of this?
- What is the path of investment in public goods?
- Why some legislatures have good (or bad) governments?

Model: infinite horizon model of public spending (productive and pork-barrel) and distorsionary taxation determined by collective bargaining.
Motivation: The apparent tension between productive spending and pork-barrel in a legislature.
- Does government becomes "too big" because of this?
- What is the path of investment in public goods?
- Why some legislatures have good (or bad) governments?

Model: infinite horizon model of public spending (productive and pork-barrel) and distorsionary taxation determined by collective bargaining.

Contribution: A dynamic model with infinite horizon and public good does not fully depreciates. This provides results on long run size of gov., efficiency and some positive implications on legislative dynamics.
Motivation: The apparent tension between productive spending and pork-barrel in a legislature.
- Does government becomes “too big” because of this?
- What is the path of investment in public goods?
- Why some legislatures have good (or bad) governments?

Model: infinite horizon model of public spending (productive and pork-barrel) and distortionary taxation determined by collective bargaining.

Contribution: A dynamic model with infinite horizon and public good does not fully depreciates. This provides results on long run size of gov., efficiency and some positive implications on legislative dynamics.

Why in a Macro reading group? Dynamics of an investment public good in a context of distortionary taxes and political failure.
Outline

1. Introduction
2. The model
3. Social planner
4. Equilibrium
 - Definition
 - Policy proposals
 - Three types of equilibrium
 - Existence and uniqueness
5. Implications
6. Conclusions
The model

Environment

- Discrete time
- Continuum of infinitely lived, identical citizens
- Distributed in measure 1 (identical) districts: \(i = 1, \ldots, n \).

Three goods:
- Labor \(l \) (elastic).
- Consumption good \(z \). (produced from labor \(z = w^l \)).
- Public good \(g \). (produced from cons. good \(g = z / p \)).

\[g_{t+1} = (1 - d) g_t + I_t \]

Utility:
\[u(z, g, l) = z + Ag \alpha - l^{1/\epsilon} + 1/\epsilon \]

Indirect utility
\[u(w, g) = Ag \alpha + 1/\epsilon w^{1/\epsilon} + 1/\epsilon \]

Battaglini-Coate (American Economic Review)
Presented by Ruben Veiga

January 2018
The model

Environment

- Discrete time
- Continuum of infinitely lived, identical citizens
- Distributed in measure 1 (identical) districts: \(i = 1, \ldots, n \).
- Three goods:
 - Labor \(l \) (elastic).
 - Consumption good \(z \). (produced from labor \(z = wl \))
 - Public good \(g \).(produced from cons. good \(g = z/p \)).

\[
g_{t+1} = (1 - d)g_t + l_t
\]
The model

Environment

- Discrete time
- Continuum of infinitely lived, identical citizens
- Distributed in measure 1 (identical) districts: \(i = 1, \ldots, n \).
- Three goods:
 - Labor \(l \) (elastic).
 - Consumption good \(z \). (produced from labor \(z = wl \))
 - Public good \(g \). (produced from cons. good \(g = z/p \)).

\[
g_{t+1} = (1 - d)g_t + l_t
\]

- Utility:

\[
u(z, g, l) = z + Ag^\alpha - \frac{l^{1+1/\epsilon}}{\epsilon + 1}
\]

- Indirect utility

\[
u(w, g) = Ag^\alpha + \frac{\epsilon^\epsilon w^{\epsilon+1}}{\epsilon + 1}
\]
Each period congress have to decide labor tax r, new level of public good x and pork-barrel transfers to each district s_i.
The model
Public decisions

- Each period congress have to decide labor tax r, new level of public good x and pork-barrel transfers to each district s_i.
- Representatives of n districts meet.
Each period congress have to decide labor tax r, new level of public good x and pork-barrel transfers to each district s_i. Representatives of n districts meet. Random representative makes a proposal $\{r, s_1, \ldots, s_n, x\}$ that is budget balanced.

$$\sum_{i}^{n} s_i \leq B(r, x : g) = nrw_l^*(w(1 - r)) - p[x - (1 - d)g]$$

If accepted by q legislators, is implemented. If not, new round. T rounds. After that there is a legislator have to propose a "default allocation" that treats districts uniformly.
The model
Public decisions

- Each period congress have to decide labor tax \(r \), new level of public good \(x \) and pork-barrel transfers to each district \(s_i \).
- Representatives of \(n \) districts meet.
- Random representative makes a proposal \(\{ r, s_1, \ldots, s_n, x \} \) that is budget balanced.

\[
\sum_{i}^{n} s_i \leq B(r, x : g) = nrw^{\ast}(w(1 - r)) - p[x - (1 - d)g] \]

- If accepted by \(q \) legislators, is implemented. If not, new round.
Each period congress have to decide labor tax r, new level of public good x and pork-barrel transfers to each district s_i.

Representatives of n districts meet.

Random representative makes a proposal $\{r, s_1, \ldots, s_n, x\}$ that is budget balanced.

$$\sum_{i}^{n} s_i \leq B(r, x : g) = nrwl^* (w(1 - r)) - p[x - (1 - d)g]$$

If accepted by q legislators, is implemented. If not, new round.

T rounds. After that there is a legislator have to propose a ”default allocation” that treats districts uniformly.
Outline

1. Introduction
2. The model
3. Social planner
4. Equilibrium
 - Definition
 - Policy proposals
 - Three types of equilibrium
 - Existence and uniqueness
5. Implications
6. Conclusions
Social planner

- Social planner problem:

\[V(g) = \max_{x,r} \ nu(w(1 - r), g) + \sum_{i} s_i + \delta V(x) \]

s.t. \[\sum_{i} s_i \leq B(r, x; g) \]
\[x = (1 - d)g + l_g \]

- Since utilities are linear in consumption, particular \(s_i \) don’t matter.
Social planner

- Social planner problem:

\[V(g) = \max_{x,r} \; \; n u(w(1 - r), g) + \sum_i s_i + \delta V(x) \]

\[\text{s.t. } \sum_{i}^{n} s_i \leq B(r, x; g) \]

\[x = (1 - d)g + l_g \]

- Since utilities are linear in consumption, particular \(s_i \) don’t matter.

- Two regimes:
 - \(g < \hat{g} \): Planner wants to invest. Raise taxes just to finance optimal public good \(x^0(g) \): \(B(r, x^0(g); g) = 0 \). Optimal public good is given by Euler eq:

\[[x] : \; \delta V'(x^0) = \left[\frac{1 - r(x^0, g)}{1 - r(x^0, g)(1 + \epsilon)} \right] p \]

 - \(g > \hat{g} \): Planner wants to disinvest. Set \(r = 0 \) and \(x^0(g) = (1 - d)\hat{g} \)
At steady state, \(\exists ! x^0 = x^0(x^0) \) s.th \(x^0 < \hat{g} \).
Focus on symmetric Markov equilibria that do not last more than one round.

An equilibrium is \(\{ r_\tau(g), s_\tau(g), x_\tau(g) \}^T_{\tau=1} \) that solves:

\[
\max_{(r,s,x)} u(w(1-r), g) + B(r, w; g) - (q - 1)s + \delta v_1(x) \\
\text{s.t. } u(w(1-r), g) + s + \delta v_1(x) \geq v_{\tau+1}(g) \\
B(r, s; g) \geq (q - 1)s ; \quad s \geq 0
\] (2)

where

\[
v_1(g) = u(w(1-r_1(g)), g) + \frac{B(r(g), x_1(g); g)}{n} + \delta v_1(x_1(g))
\] (3)

We restrict to concave equilibria. (concave always exist, nonconcave may exist)
The model
Policy proposals

- How to design a winning proposal?
 - If $g \leq g^*$, set $s_i = 0$ and choose tax and x that maximizes global utility. (win by unanimity).
 \[
 x_u^*(g) = \arg \max \quad u(w(1 - r_{sp}(x, g)), g) + \delta v_1(x(g))
 \]
 - If $g > g^*$, maximize the utility of a *minimum winning coalition* using pork-barrel. (win by one vote)
 \[
 (r^*, x_m^*) = \arg \max \quad q [u(w(1 - r(x, g)), g) + \delta v_1(x(g))] + B(r, x; g)
 \]
 \[
 r^* = \frac{1 - q/n}{1 + \epsilon - q/n} ; \quad x_m^* = \arg \max \delta qv_1(x) - px
 \]

- x_m^* and $x_u^*(g)$?
- At g^*, solutions coincide, then we can look for g^* with $B(x^*, r^*; g^*) = 0$
Three types of equilibrium according to (foc of $g \leq g^*$ problem):

$$\delta v'_1(g^*) \geq \left[\frac{1 - r(x, g^*)}{1 - r(x, g^*)(1 + \epsilon)} \right] \frac{p}{n}$$

RHS: Marginal cost of taxes times price of public good | benefit of pork-barrel.

LHS: Discounted marginal benefit of public good. The value of an additional unit of public good has 2 components:

- More consumption next period (both at minimum coalition and unanimity regime)
- Less investment necessary next period. In the unanimity means less taxes and in the min. coal. means higher pork. But reducing taxes is better!

Then, LHS has a discontinuity at g^*
Three types of equilibrium

Type 1: Minimum coalition in steady state.

- $g \in [0, g']$: normal capital accumulation under unanimity.
- $g \in [g', \hat{g}]$: Deterred from going into pork barrel region.
- $g \in [\hat{g}, g^*]$: go into pork barrel region for next period.
Three types of equilibrium

Type 2: Unanimity in steady state.

- Normal capital accumulation under unanimity until we reach the Pareto optimal level of public good.
Three types of equilibrium

Type 3

- Similar to type 2, but accumulation stops at g^*.

- The threat of pork barrel prevents the confederation of reaching the Pareto allocation.
Reminder, A is the taste for public good:

$$u(z, g, l) = z + Ag^\alpha - \frac{l^{1+1/\epsilon}}{\epsilon + 1}$$

If $A \in (0, A)$, $\exists!$ type 1 (min. coalition)
- Public good is too low and taxes too high.
Reminder, A is the taste for public good:

$$u(z, g, l) = z + Ag^\alpha - \frac{l^{1+1/\epsilon}}{\epsilon + 1}$$

- If $A \in (0, A)$, $\exists!$ type 1 (min. coalition)
 - Public good is too low and taxes too high.
- If $A \in (\overline{A}, \infty)$, $\exists!$ type 2 (unanimity)
 - Equilibrium is efficient.
Equilibrium
Existence, uniqueness and efficiency

• Reminder, A is the taste for public good:

\[
u(z, g, l) = z + Ag^\alpha - \frac{l^{1+1/\epsilon}}{\epsilon + 1}\]

• If $A \in (0, \underline{A})$, $\exists!$ type 1 (min. coalition)
 • Public good is too low and taxes too high.

• If $A \in (\underline{A}, \infty)$, $\exists!$ type 2 (unanimity)
 • Equilibrium is efficient.

• If $A \in (\underline{A}, \overline{A})$, \exists one equilibrium of each type.
 • Type 2, efficient.
 • Type 3, tax and public good too low, but no pork barrel.
 • Type 1, tax and public good too low and pork barrel.
Outline

1. Introduction
2. The model
3. Social planner
4. Equilibrium
 • Definition
 • Policy proposals
 • Three types of equilibrium
 • Existence and uniqueness
5. Implications
6. Conclusions
Implications
When do we expect inefficiency?

Factors needed for inefficiency:
- Majoritarian rule
- Availability of distributive policies.
- Political uncertainty.
- Lack of commitment.

Political equilibrium is more likely to be inefficient when:
- Citizens are more impatient (δ low).
- Public goods are more expensive (p high).
- Required majority is smaller (q low).
- Private sector is more productive (w high).
- Depreciation rate is sufficiently small.
- Elasticity of labor supply is low. (when taxes are more costly, they are less likely spent in pork).

Implications

When do we expect inefficiency?

- Factors needed for inefficiency:
 - Majoritarian rule
 - Availability of distributive policies.
 - Political uncertainty.
 - Lack of commitment.

- Political equilibrium is more likely to be inefficient when:
 - When citizens are more impatient (δ low).
 - Public goods are more expensive (p high).
 - Required majority is smaller (q low).
 - Private sector is more productive (w high).
 - Depreciation rate is sufficiently small.
 - Elasticity of labor supply is low. (when taxes are more costly, they are less likely spent in pork).
Implications

Positive implications

Dynamics of legislative coalitions:

Consider $A < A$ and sufficiently low g. At the beginning decisions will be taken unanimously but quality and consensus of legislature decrease gradually.

Consider $A < A$ and sufficiently high g. A sudden increase in the value of public good (a war against a foreign enemy maybe) may lead to unanimity and efficiency.
Dynamics of legislative coalitions:

Consider $A < A$ and sufficiently low g. At the beginning decisions will be taken unanimously but quality and consensus of legislature decrease gradually.

Consider $A < A$ and sufficiently high g. A sudden increase in the value of public good (a war against a foreign enemy maybe) may lead to unanimity and efficiency.

Elasticity of labor supply.

Societies with a high elasticity of labor will have better quality governments.
Conventional wisdom: geographical districts will produce a government that is too large with levels of national public goods that are too low.
Conclusions

- **Conventional wisdom:** geographical districts will produce a government that is too large with levels of national public goods that are too low.

- **Yes:** when taxable capacity is large enough.

- **Yes:** when taxable capacity is small enough, legislative decisions will actually be efficient.

Besides, the distortions of a district legislature could lead to opposite results: legislators could be deterred. This leads to (relatively) small government with no pork-barrel.

Possible extension: government borrowing?

Conclusions

- **Conventional wisdom:** geographical districts will produce a government that is too large with levels of national public goods that are too low.
- **Yes:** when taxable capacity is large enough.
- **BUT:** when taxable capacity is small enough, legislative decisions will actually be efficient.
- **Besides:** the distortions of a district legislature could lead to opposite results: legislators could be deterred! This leads to (relatively) small government with no pork-barrel.
Conclusions

- **Conventional wisdom**: geographical districts will produce a government that is too large with levels of national public goods that are too low.
- **Yes**: when taxable capacity is large enough.
- **BUT**: when taxable capacity is small enough, legislative decisions will actually be efficient.
- **Besides**: the distortions of a district legislature could lead to opposite results: legislators could be deterred!. This leads to (relatively) small government with no pork-barrel.
- **Possible extension**: government borrowing?
Value function

- Value at round 1:

\[v_1(g) = u(w(1 - r_1(g)), g) + \frac{B(r(g), x_1(g); g)}{n} + \delta v_1(x_1(g)) \]

- Chosen to propose \((1/n)\):

\[u(w(1 - r_1(g)), g) + B(r(g), x_1(g); g) - (q - 1)s_1(g) \]

- Included in the coalition \(((q - 1)/n) \):

\[u(w(1 - r_1(g)), g) + s_1(g) \]

- Excluded

\[u(w(1 - r_1(g)), g) \]

- Value if \(\tau \) proposal is rejected \((\tau + 1 \text{ will be approved})\):

\[v_{\tau+1}(g) = u(w(1 - r_{\tau+1}(g)), g) + \frac{B(r_{\tau+1}(g), x_{\tau+1}(g); g)}{n} + \delta v_1(x_{\tau+1}(g)) \]