Introduction

- Ronald Reagan (November 1979):

 "The key to restoring the health of the economy lies in cutting taxes"

- News about future taxes then arrived throughout 1980

- January 1981 Reagan took the Office

- August 1981, Tax Act passed in Congress

- Tax reductions through 1984
Ronald Reagan (November 1979):

“The key to restoring the health of the economy lies in cutting taxes”

News about future taxes then arrived throughout 1980

January 1981 Reagan took the Office

August 1981, Tax Act passed in Congress

Tax reductions through 1984
Introduction

- Ronald Reagan (November 1979):

 "The key to restoring the health of the economy lies in cutting taxes"

- News about future taxes then arrived throughout 1980

- January 1981 Reagan took the Office

- August 1981, Tax Act passed in Congress

- Tax reductions through 1984
Introduction

- Ronald Reagan (November 1979):

 “The key to restoring the health of the economy lies in cutting taxes”

- News about future taxes then arrived throughout 1980

- January 1981 Reagan took the Office

- August 1981, Tax Act passed in Congress

- Tax reductions through 1984
Ronald Reagan (November 1979):

“The key to restoring the health of the economy lies in cutting taxes”

News about future taxes then arrived throughout 1980

January 1981 Reagan took the Office

August 1981, Tax Act passed in Congress

Tax reductions through 1984
The process of changing taxes entails two kinds of lags:

1. **inside lag**: between when new tax law is initially proposed and when it is passed

2. **outside lag**: between when the legislation is signed into law and when it is implemented
This paper has three parts:

- How foresight and optimizing behavior create equilibria with non-fundamental MA representation?

- How much it matters in practice?

- How to deal with non-fundamental equilibria.
Consider the MA(1) model

\[x_t = e_t - \theta e_{t-1}, \quad |\theta| < 1 \]

Second order procedures do not identify \(\theta \), since

\[x_t = e^*_t - \frac{1}{\theta} e^*_{t-1} \]

with \(\text{Var}(e^*_t) = \theta^2 \text{Var}(e_t) \) leads to the same second order moments

\[\text{Var}(x_t) = \text{Var}(e_t)(1 + \theta^2) \quad , \quad \rho = \frac{\theta}{1 + \theta^2} \]
Analytical Example: Standard Growth Model

- HH maximizes the expected log utility
 \[E_0 \sum_{t=0}^{\infty} \beta^t \log(C_t) \]

- \[C_t + K_t + T_t \leq (1 - \tau_t)A_tK_{t-1}^\alpha \]

- The Gov adjusts the lump-sum transfers s.t. \(T_t = \tau_t Y_t \)

- We also assume: \(G = 0, \delta = 1, \) Labor supplied inelastically.
Analytical Example: Standard Growth Model

The equilibrium conditions are given by:

\[\frac{1}{C_t} = \alpha \beta E_t \left[(1 - \theta_{t+1}) \frac{1}{C_{t+1}} \frac{Y_{t+1}}{K_t} \right] \]

\[C_t + K_t = Y_t = A_t K_{t-1}^\alpha \]

Log linearize and solve to get a second-order difference equation:

\[E_t k_{t+1} - (\theta^{-1} + \alpha)k_t + \alpha \theta^{-1} k_{t-1} \]
\[= E_t[a_{t+1} - \theta^{-1} a_t] + \left\{ \theta^{-1}(1 - \theta)\left(\frac{\tau}{1 - \tau} \right) \right\} E_t \hat{r}_{t+1} \]

where \(\theta = \alpha \beta (1 - \tau) < 1 \)
Analytical Example: Standard Growth Model

- Assuming i.i.d. technology shocks, the solution is:

\[k_t = \alpha k_{t-1} + a_t - (1 - \theta) \left(\frac{\tau}{1 - \tau} \right) \sum_{i=0}^{\infty} \theta^i E_t \hat{\tau}_{t+i+1} \]

- Assuming \(\hat{\tau}_t = \epsilon_{\tau,t-q} \), and solving for various degrees of fiscal foresight:

1. \(q=0 \) implies: \(k_t = \alpha k_{t-1} + \epsilon_{A,t} \)

2. \(q=1 \) implies: \(k_t = \alpha k_{t-1} + \epsilon_{A,t} - \kappa \epsilon_{\tau,t} \)

3. \(q=2 \) implies: \(k_t = \alpha k_{t-1} + \epsilon_{A,t} - \kappa \{ \epsilon_{\tau,t-1} + \theta \epsilon_{\tau,t} \} \)

4. \(q=3 \) implies: \(k_t = \alpha k_{t-1} + \epsilon_{A,t} - \kappa \{ \epsilon_{\tau,t-2} + \theta \epsilon_{\tau,t-1} + \theta^2 \epsilon_{\tau,t} \} \)
Analytical Example: Standard Growth Model

- Using lag operators we can write:

\[(1 - \alpha L)k_t = -\kappa (L + \theta)\epsilon_{\tau,t} \]

- Fundamentalness requires the equilibrium process to be invertible in current and past \(k_t \Rightarrow |\theta| > 1 \)

- Unique saddle path solution requires \(|\theta| < 1 \)

- \(\{\epsilon_{\tau,t-j}\}_{j=0}^{\infty} \) is not fundamental for \(\{k_{t-j}\}_{j=0}^{\infty} \)
Analytical Example: Standard Growth Model

- The econometricians information set

\[
(1 - \alpha L) k_t = -\kappa (L + \theta) \left[\frac{1 + \theta L}{L + \theta} \right] \left[\frac{L + \theta}{1 + \theta L} \right] \epsilon_{\tau, t}
\]

\[
= -\kappa (1 + \theta L) \epsilon_{\tau, t}^*
\]

\[
= -\kappa \{ \theta \epsilon_{\tau, t-1}^* + \epsilon_{\tau, t}^* \}
\]

where

\[
\epsilon_{\tau, t}^* = \left[\frac{L + \theta}{1 + \theta L} \right] \epsilon_{\tau, t} = (L + \theta) \sum_{j=0}^{\infty} -\theta^j \epsilon_{\tau, t-j}
\]

\[
= \theta \epsilon_{\tau, t} + (1 - \theta^2) \epsilon_{\tau, t-1} - \theta(1 - \theta^2) \epsilon_{\tau, t-2} + \cdots
\]
(a) Response of K with $q = 2$
Quantitative Importance of Foresight

- The information flows was chosen to be: \(\hat{\tau}_t = \epsilon_{\tau,t-q} \)

- These miss altogether the inside lags

- Generalize the information flows to a flexible one to capture both inside and outside lags:

\[
\hat{\tau}_t^L = \rho \hat{\tau}_{t-1}^L + \sum_{j=0}^{J} \phi_j [\sigma^L \epsilon_{\tau,t-j}^L + \xi \sigma^K \epsilon_{\tau,t-j}^K]
\]

\[
\hat{\tau}_t^K = \rho \hat{\tau}_{t-1}^K + \sum_{j=0}^{J} \phi_j [\sigma^K \epsilon_{\tau,t-j}^K + \xi \sigma^L \epsilon_{\tau,t-j}^L]
\]
Representative agent maximizes time-separable discounted utility over consumption and leisure.

The agent supplies labor and capital to a representative firm.

Cobb-Douglas technology.

The government budget constraint satisfies:

$$G_t + T_t = \tau_t^L w_t l_t + \tau_t^K r_t^K k_{t-1}$$
NK: Smets and Wouters (2007)

- Extends the RBC model to incorporate real and nominal rigidities.
- Adds external habit formation, differentiated labor types, a monopolistically competitive intermediate goods sector, variable capital utilization, wage and price rigidities, and a monetary authority that follows a Taylor-type rule for setting nominal interest rates.
- Government spending policies follow the process

\[\hat{X}_t = \rho_X \hat{X}_{t-1} + \gamma_X \hat{s}_t^B + \sigma_X \epsilon_t^X \]

where \(\hat{s}_t^B = \frac{B_{t-1}}{Y_{t-1}} \).
Timeline of inside and outside lags reveal:

1. Foresight varies considerably from one tax legislation to the next.
2. Most tax changes entail substantial inside and outside lags.

Examine the implications of alternative information flows
INFORMATION FLOW PROCESSES

<table>
<thead>
<tr>
<th>Process</th>
<th>Lags</th>
<th>Description</th>
<th>Coefficients</th>
</tr>
</thead>
</table>
| I | Inside | 6 qtrs, smooth news | \(\phi_j = \frac{1}{6}, j = 1, 2, \ldots, 6 \)
\(\phi_0 = \phi_7 = \phi_8 = 0 \) |
| II | Inside | 6 qtrs, concentrated news | \(\phi_1 = \phi_2 = \phi_3 = 0.05, \phi_4 = 0.25 \)
\(\phi_5 = \phi_6 = 0.3, \phi_0 = \phi_7 = \phi_8 = 0 \) |
| III | Outside | 8-qtr phase-in | \(\phi_j = 0, j \neq 8 \)
\(\phi_8 = 1 \) |
| IV | Outside | 2-qtr phase-in | \(\phi_j = 0, j \neq 2 \)
\(\phi_2 = 1 \) |
Output Multipliers for a Labor Tax Change, Correlated with a Capital Tax Change

<table>
<thead>
<tr>
<th>Info Process</th>
<th>0 qtr</th>
<th>4 qtrs</th>
<th>8 qtrs</th>
<th>12 qtrs</th>
<th>20 qtrs</th>
<th>Peak (qtr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Business Cycle Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Actual</td>
<td>0.19</td>
<td>−1.14</td>
<td>−1.48</td>
<td>−1.11</td>
<td>−0.65</td>
<td>−1.71 (6)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−0.31</td>
<td>−1.35</td>
<td>−1.27</td>
<td>−0.97</td>
<td>−0.59</td>
<td>−1.57 (5)</td>
</tr>
<tr>
<td>Bias</td>
<td>−0.50</td>
<td>−0.21</td>
<td>0.20</td>
<td>0.14</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−263%</td>
<td>19%</td>
<td>14%</td>
<td>12%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>II Actual</td>
<td>0.15</td>
<td>−0.54</td>
<td>−1.40</td>
<td>−1.05</td>
<td>−0.61</td>
<td>−1.62 (6)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−0.56</td>
<td>−1.46</td>
<td>−1.19</td>
<td>−0.91</td>
<td>−0.55</td>
<td>−1.48 (2)</td>
</tr>
<tr>
<td>Bias</td>
<td>−0.71</td>
<td>−0.92</td>
<td>0.21</td>
<td>0.14</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−473%</td>
<td>−169%</td>
<td>15%</td>
<td>13%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>III Actual</td>
<td>0.09</td>
<td>0.16</td>
<td>−1.51</td>
<td>−1.12</td>
<td>−0.64</td>
<td>−1.51 (8)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−1.44</td>
<td>−1.09</td>
<td>−0.82</td>
<td>−0.64</td>
<td>−0.39</td>
<td>−1.44 (0)</td>
</tr>
<tr>
<td>Bias</td>
<td>−1.54</td>
<td>−1.24</td>
<td>0.69</td>
<td>0.49</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−1641%</td>
<td>−784%</td>
<td>46%</td>
<td>43%</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>IV Actual</td>
<td>0.16</td>
<td>−1.34</td>
<td>−1.00</td>
<td>−0.76</td>
<td>−0.45</td>
<td>−1.56 (2)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−1.41</td>
<td>−1.06</td>
<td>−0.81</td>
<td>−0.62</td>
<td>−0.38</td>
<td>−1.41 (0)</td>
</tr>
<tr>
<td>Bias</td>
<td>−1.57</td>
<td>0.28</td>
<td>0.20</td>
<td>0.14</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−962%</td>
<td>21%</td>
<td>20%</td>
<td>18%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>New Keynesian Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Actual</td>
<td>−0.08</td>
<td>−0.36</td>
<td>−0.48</td>
<td>−0.43</td>
<td>−0.24</td>
<td>−0.48 (8)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−0.07</td>
<td>−0.44</td>
<td>−0.57</td>
<td>−0.51</td>
<td>−0.28</td>
<td>−0.57 (8)</td>
</tr>
<tr>
<td>Bias</td>
<td>0.01</td>
<td>−0.09</td>
<td>−0.09</td>
<td>−0.08</td>
<td>−0.04</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>11%</td>
<td>−24%</td>
<td>−20%</td>
<td>−18%</td>
<td>−18%</td>
<td></td>
</tr>
<tr>
<td>II Actual</td>
<td>−0.06</td>
<td>−0.27</td>
<td>−0.43</td>
<td>−0.40</td>
<td>−0.23</td>
<td>−0.43 (9)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−0.09</td>
<td>−0.37</td>
<td>−0.42</td>
<td>−0.37</td>
<td>−0.19</td>
<td>−0.42 (7)</td>
</tr>
<tr>
<td>Bias</td>
<td>−0.03</td>
<td>−0.10</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−51%</td>
<td>−37%</td>
<td>1%</td>
<td>9%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>III Actual</td>
<td>−0.03</td>
<td>−0.12</td>
<td>−0.32</td>
<td>−0.37</td>
<td>−0.26</td>
<td>−0.37 (12)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−0.14</td>
<td>−0.10</td>
<td>−0.08</td>
<td>−0.06</td>
<td>−0.01</td>
<td>−0.14 (0)</td>
</tr>
<tr>
<td>Bias</td>
<td>−0.11</td>
<td>0.01</td>
<td>0.24</td>
<td>0.32</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−340%</td>
<td>13%</td>
<td>76%</td>
<td>85%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>IV Actual</td>
<td>−0.06</td>
<td>−0.30</td>
<td>−0.33</td>
<td>−0.28</td>
<td>−0.14</td>
<td>−0.33 (7)</td>
</tr>
<tr>
<td>Estimated</td>
<td>−0.15</td>
<td>−0.24</td>
<td>−0.26</td>
<td>−0.22</td>
<td>−0.11</td>
<td>−0.26 (7)</td>
</tr>
<tr>
<td>Bias</td>
<td>−0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>% bias</td>
<td>−128%</td>
<td>22%</td>
<td>22%</td>
<td>22%</td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>
Solving the problem

- The Narrative Approach: Ramey (2012) augmented the VAR by news of military spending
- Conditioning on Asset Prices: If asset markets are efficient, asset prices should contain all available information
- Direct Estimation of DSGE Model: Specify the entire structure of the economy