Momentum and Social Learning in Presidential Primaries

Brian Knight and Nathan Schiff

Carmen García Galindo

Universidad Carlos III de Madrid

December 10, 2013
Contents

1. Introduction
2. Literature Review
3. Theoretical Framework
 • Setup
 • Voting Behaviour
 • Social Learning and Momentum
4. Empirical Application
 • Data
 • Baseline Results
 • Alternative Explanations
5. Implied Voting Weights and the Allocation of Campaign Resources
6. Conclusion
Sequential election in presidential primaries.
In 2008, schedule became increasingly front-loaded.

Does the order of states voting matters?
Do sequential and simultaneous systems lead to differences in outcomes?

Key: late voters learn about desirability of candidates from early voters.
 ⇒ Momentum effects
Introduction

Definition (*Momentum effects*)

Positive effect of candidate performance in early states on candidate performance in later states.

Problems:

- Challenging econometric attempt to identify and measure momentum effects.
- What is the informational content of voting returns from early states?
- Do absolute returns matters or should results be measured relative to voter expectations? How can these expectations be measured?
- How to account for candidate characteristics? How do voters weigh the voting returns from different states?
Formal analysis of social learning:
- Banerjee (1992), Bikhchandani et al. (1992) and Welch (1992)

Equilibrium of simultaneous vs sequential game:
- Dekel and Piccione (2000): eq. of simultaneous also of sequential, regardless of sequence.

Momentum in presidencial primaries:
Setup

- Sequential election: Order of voting taken as given.
- \(\Omega_t \): set of \(s \) voting \(c = 0, 1, \ldots, C \) at \(t \). Size: \(N_t \geq 1 \)
- Payoff of voter \(i \) residing in \(s \) from \(c \) winning:

 \[
 u_{cis} = q_c + \eta_{cs} + \nu_{cis}
 \]

 (1)

- Prior: at \(t = 1 \), \(q_c \sim N(\mu_1, \sigma_1^2) \)
- normalize \(u_{0is} = 0 \)
- \(\eta_{cs} \sim (0, \sigma_\eta^2) \). Known own \(s \) pref.
- \(\nu_{cis} \) i.i.d. across \(c \) and \(i \).
Voters in s receive a signal over q_c:

$$\theta_{cs} = q_c + \varepsilon_{cs}$$ (2)

where $\varepsilon_{cs} \sim N(0, \sigma^2_{\varepsilon})$ i.i.d.

Given θ_{cs},

$$E(u_{cis}|\theta_{cs}, \eta_{cs}, \nu_{cis}) = E(q_c|\theta_{cs}) + \eta_{cs} + \nu_{cis}$$ (3)

- i in s at t supports c s.t. $\max E(u_{cis}|\theta_{cs}, \eta_{cs}, \nu_{cis})$
- Voters do not account for their influence in late voters.
Voting Behaviour

Private updating over quality:

\[E(q_c|\theta_{cs}) = \alpha_t \theta_{cs} + (1 - \alpha_t) \mu_{ct} \] \hfill (4)

\[\alpha_t = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_\varepsilon^2} \] \hfill (5)

Plug (4) into (3):

\[E(u_{cis}|\theta_{cs}, \eta_{cs}, \nu_{cis}) = \alpha_t \theta_{cs} + (1 - \alpha_t) \mu_{ct} + \eta_{cs} + \nu_{cis} \] \hfill (6)

Since \(\nu_{cis} \sim \) type I extreme value:

\[Pr(E(u_{cis}|\theta_{cs}, \eta_{cs}, \nu_{cis}) > E(u_{dis}|\theta_{ds}, \eta_{ds}, \nu_{dis}; \forall d \neq c)) = \]

\[\frac{\exp[\alpha_t \theta_{cs} + (1 - \alpha_t) \mu_{ct} + \eta_{cs}]}{\sum_{d=0}^C \exp[\alpha_t \theta_{ds} + (1 - \alpha_t) \mu_{dt} + \eta_{ds}]} \] \hfill (7)
Assume continuum of voters ⇒ state-level vote shares = voting prob.

\[
\frac{\nu_{cst}}{\nu_{0st}} = \frac{\exp[\alpha_t \theta_{cs} + (1 - \alpha_t) \mu_{ct} + \eta_{cs}]}{\exp[\alpha_t \theta_{0s} + (1 - \alpha_t) \mu_{0t} + \eta_{0s}]}
\]

(8)

Since \(u_{0is} = 0 \), taking logs:

\[
\ln(\nu_{cst}/\nu_{0st}) = \eta_{cs} + \alpha_t \theta_{cs} + (1 - \alpha_t) \mu_{ct}
\]

(9)

Aggregate voting returns key link between individual voting and aggregate returns.
How voters in late states update their beliefs over quality? From (9) and (2):

$$\frac{ln(\nu_{cst}/\nu_{0st}) - (1-\alpha_t)\mu_{ct}}{\alpha_t} = q_c + \frac{\eta_{cs}}{\alpha_t} + \varepsilon_{cs}$$ \hspace{1cm} (10)

Posterior distrib. is normal and characterized by:

$$\mu_{ct+1} = \beta_t \left[\frac{1}{N_t} \sum_{s \in \Omega_t} \frac{ln(\nu_{cst}/\nu_{0st}) - (1-\alpha_t)\mu_{ct}}{\alpha_t} \right] + (1 - \beta_t)\mu_{ct}$$ \hspace{1cm} (11)

$$\frac{1}{\sigma^2_{t+1}} = \frac{1}{\sigma^2_t} + \frac{N_t}{(\sigma^2_{\eta}/\alpha^2_t) + \sigma^2_{\varepsilon}}$$ \hspace{1cm} (12)
Weight on voting signals given by:

\[\beta_t = \frac{N_t \sigma_t^2}{N_t \sigma_t^2 + (\sigma^2_{\eta}/\alpha_t^2) + \sigma^2_{\epsilon}} \]

(13)

Rewrite (11) as:

\[\mu_{ct+1} - \mu_{ct} = \frac{\beta_t / N_t}{\alpha_t} \sum_{s \in \Omega_t} [ln(v_{cst}/v_{0st}) - \mu_{ct}] \]

(14)

where \(\mu_{ct+1} - \mu_{ct} \) is social learning, and depends on surprises in voting returns: deviations in vote shares from expectations over candidate performance.
Data

- 2004 Democratic primary: Dean, Kerry (baseline) and Edwards.
- Reactions of voters in daily opinion polls.
 - National Annenberg Election Survey (NAES).
 - 4,084 respondents (s with primaries not held yet).
- Estimate η_{cs}. Delete Washington DC and seven small states.
- Aggregate vote shares from 2004 primary season.

- Compare support for c among late voters, before and after releasing voting returns.
- Assume respondents have not yet observed private signals ($\theta_{cs} = 0$).
Data

Fig. 2.—Dean before and after the Iowa primary
Data

Fig. 4.—Edwards before and after the Iowa primary
Results

First-Stage Multinomial Logit

<table>
<thead>
<tr>
<th>Base Specification</th>
<th>Includes Distance</th>
<th>Includes Time Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.931**</td>
<td>1.404**</td>
</tr>
<tr>
<td>Dean (1)</td>
<td>-.701**</td>
<td>.32**</td>
</tr>
<tr>
<td>Edwards (2)</td>
<td>.64</td>
<td>1.119</td>
</tr>
<tr>
<td>AZ</td>
<td>.169</td>
<td>.95**</td>
</tr>
<tr>
<td>CA</td>
<td>.071</td>
<td>-.313</td>
</tr>
<tr>
<td>CO</td>
<td>-.53</td>
<td>-.195</td>
</tr>
<tr>
<td>CT</td>
<td>-.103</td>
<td>-.474</td>
</tr>
<tr>
<td>DE</td>
<td>-.1352</td>
<td>-.789</td>
</tr>
<tr>
<td>FL</td>
<td>.116</td>
<td>.790**</td>
</tr>
<tr>
<td>GA</td>
<td>.332</td>
<td>.797</td>
</tr>
<tr>
<td>IA</td>
<td>.014</td>
<td>.313</td>
</tr>
<tr>
<td>IL</td>
<td>.23</td>
<td>.313</td>
</tr>
<tr>
<td>IN</td>
<td>-.325</td>
<td>-.671</td>
</tr>
<tr>
<td>KY</td>
<td>-.122</td>
<td>-.302</td>
</tr>
<tr>
<td>LA</td>
<td>-.095</td>
<td>-.054</td>
</tr>
<tr>
<td>MA</td>
<td>-1.346**</td>
<td>-1.202**</td>
</tr>
<tr>
<td>MD</td>
<td>-.195</td>
<td>-1.195**</td>
</tr>
<tr>
<td>ME</td>
<td>.25</td>
<td>.313**</td>
</tr>
<tr>
<td>MI</td>
<td>.278</td>
<td>.111</td>
</tr>
<tr>
<td>MN</td>
<td>-.038</td>
<td>-.06</td>
</tr>
<tr>
<td>MO</td>
<td>.421</td>
<td>.419</td>
</tr>
<tr>
<td>MS</td>
<td>.588</td>
<td>.498</td>
</tr>
<tr>
<td>MT</td>
<td>-.592</td>
<td>.687</td>
</tr>
<tr>
<td>NC</td>
<td>.639</td>
<td>.608</td>
</tr>
<tr>
<td>NE</td>
<td>-.764</td>
<td>.639</td>
</tr>
<tr>
<td>NH</td>
<td>-.192</td>
<td>.474</td>
</tr>
<tr>
<td>NJ</td>
<td>-.252</td>
<td>.464</td>
</tr>
<tr>
<td>NM</td>
<td>-.018</td>
<td>.442</td>
</tr>
<tr>
<td>NV</td>
<td>-.368</td>
<td>.442</td>
</tr>
<tr>
<td>NY</td>
<td>.35</td>
<td>.442</td>
</tr>
<tr>
<td>OH</td>
<td>.124</td>
<td>.464</td>
</tr>
<tr>
<td>OK</td>
<td>-.533</td>
<td>.464</td>
</tr>
<tr>
<td>OR</td>
<td>-.127</td>
<td>.464</td>
</tr>
<tr>
<td>PA</td>
<td>-.231</td>
<td>.464</td>
</tr>
<tr>
<td>RI</td>
<td>-.521</td>
<td>.464</td>
</tr>
<tr>
<td>SC</td>
<td>.908</td>
<td>.464</td>
</tr>
<tr>
<td>TX</td>
<td>.034</td>
<td>.464</td>
</tr>
<tr>
<td>UT</td>
<td>.433</td>
<td>.464</td>
</tr>
<tr>
<td>VA</td>
<td>.387</td>
<td>.464</td>
</tr>
<tr>
<td>WA</td>
<td>.177</td>
<td>.464</td>
</tr>
<tr>
<td>WI</td>
<td>.207</td>
<td>.464</td>
</tr>
<tr>
<td>WV</td>
<td>.078</td>
<td>.464</td>
</tr>
</tbody>
</table>

| Distance Trend | -.062** | -.062** |

Note: Bootstrap 95 percent confidence intervals are in brackets.

*Significant at 10 percent.

**Significant at 5 percent.
Results

Fig. 5.—A, Mean of prior (Kerry = 0); B, variance of prior

Fig. 6.—Weights on private and public voting signals
Alternative Explanations

1. Departures from Sincere Voting
 - Examine dynamics of measures of q_c: Strategic vs sincere voting.
 - Positive relation between μ_{ct} and $quality_{itc} \Rightarrow$ Sincere voting.

2. National Information
 - Social learning due to national information?
 - Most likely date for a break in support: Jan., 19 (Iowa)-Jan., 20.

3. Campaign Finance and Persuasion
 - Increase in contributions from influence-motivated contributor after surprising win.
 - Discrepancy in shift in expenditures and candidate support \Rightarrow campaign expenditure cannot fully explain baseline results.
Weights and Campaign Resources

Fig. 10. Advertising coverage versus implied voting weights

Implied voting weights

- Weight
- Period (t)

Advertising coverage

- Minutes of exposure per capita (000's)
- Period (t)

Advertising from 2/18/2003–3/2/2004 for 3 candidates; data not available for ND, RI, and UT.
Conclusion

- Model of voter behaviour under sequential elections.
- Late voters infer private information held by early voters from voting returns.
- Candidates experience momentum effects in 2004: performance exceed expectations.
 - Kerry benefited from surprising wins in early states.
 - Took votes away from Dean.
- Early states have up to five times the influence of late states.
- Candidates respond by funneling campaign expenditures in early states.
- Counterfactual: race tighter under simultaneous system.