Firm Turnover in Imperfectly Competitive Markets

Marcus Asplund and Volker Nocke
Review of Economic Studies, 2006

Presented by
Román Fossati

Universidad Carlos III

January 2011
Introduction

Relevant Question

What are the effects of market size and fixed costs on firm turnover and age distributions of firms within industries?

Motivation

- simultaneous firm entry and exit at industry level, and
- considerable variation in firm turnover across industries

To explain these cross-industry differences in firm turnover is one of the important research agendas
Introduction

This paper

- Considers observable ind. characteristics (FC and market size) as determinants of E/X rates in an imperfectly competitive industry
- Develops a stochastic dynamic model of a monopolistic industry and test its empirical implications

Main results

- The rate of firm turnover is increasing in market size, and the expected lifespan of firms is decreasing in market size
- An increase in FC leads to higher firm turnover and shorter expected lifespan of firms
Introduction

Mechanism: *price effect of competition*

- ↑ market size ⇒ under free-entry ↑ population of active firms ⇒ two opposing effects on firms’ profits:
 - larger sales (bc ↑ in market size)
 - lower price-cost margins (bc endogenous ↑ intensity of competition)
- in equilibrium, the net effect is positive for more efficient firms, but negative for less efficient firms
- the expected lifespan of firms is shorter, and the rate of firm turnover larger
Model

Environment

- Discrete time, infinite horizon model, δ discount factor
- Continuum of consumers and potential firms
- Each firm produces a unique differentiated product and hence faces a downward-sloping D curve
- Firms differ in their efficiency levels which evolves over time: $c_t \in [0, 1]$

$$c_t = \begin{cases} c_{t-1} & \text{with Pr: } \alpha \\ \sim G(\cdot) & \text{with Pr: } 1-\alpha \end{cases}$$

- ϕ fixed cost of production
- entrants pay ϵ sunk cost of entry \Rightarrow draw $c_t \sim G(\cdot)$
- μ is the state of the ind. (measure on $[0, 1]$)
Model

Timing

- **Entry stage**: potential entrants decide whether to enter the market or take up the outside option (=0).
- **Learning stage**: entrants and incumbents observe \(c_t \)
- **Exit stage**: entrants and incumbents decide whether to leave the market forever
- **Output stage**: active firms pay the FC, decide production, and receive profits

They make assumptions directly on firms’ reduced-form eqlm. profit function:

\[
S \pi(c, \mu)
\]

where \(S \) is a measure of market size (i.e. mass of consumers)
Example 1 (linear demand model with a cont. of firms)

- Cont. (of mass S) of identical consumers with

$$U = \int_0^n \left(x(i) - x^2(i) - 2\sigma \int_0^n x(j)x(i) dj \right) di + H$$

where H is a composite alternative good

- Linear D system \Rightarrow in eqlm. each firm faces the same residual D curve \Rightarrow

$$S\pi(c, \mu) = \begin{cases} \frac{S[\bar{c}(\mu) - c]^2}{8} & \text{if } c \leq \bar{c}(\mu) \\ 0 & \text{otherwise} \end{cases}$$

where $\bar{c}(\mu) = \frac{1 + \sigma \int_0^\mu z\mu(dz)}{1 + \sigma \mu([0, \bar{c}(\mu)])}$

- Adding more active firms ($c < \bar{c}(\mu)$) reduces firms' gross profits ($\downarrow \bar{c}(\mu)$)

- Key result: if $\exists \mu$ to μ' which induces more intense competition, $\bar{c}(\mu') < \bar{c}(\mu) \Rightarrow \downarrow$ gross profit of more efficient firms by a larger total amount, but by a smaller fraction, than that of less efficient firms
Model

Assumptions

- **(MON)** $\pi(c, \mu)$ is strictly decreasing in c on $[0, \bar{c}(\mu))$ and $\pi = 0$ for all $c \in [\bar{c}(\mu), 1]$, and define partial order of measures as:

 $\mu' \succeq \mu \iff \{\forall c \in [0, 1], \pi(c, \mu') \leq \pi(c, \mu)\}$

 $\mu' \succ \mu \iff \{\forall c \in [0, \bar{c}(\mu)], \pi(c, \mu') < \pi(c, \mu)\}$

 $\mu' \sim \mu \iff$ same degree of competition

Intuition: an increase in the population of firms should increase intensity of price competition implying a decrease in profits.

- **(DOM)** If $\mu'(0, z] \geq \mu(0, z]$ for all $z \in (0, 1) \Rightarrow \mu' \succeq \mu$ (if some $z >$).

 Intuition: any shift in the population towards more efficient firms increases competition intensity, decreases value of firms and entrants value.

- **(ORD)** The set of measures (M, \succeq) is completely ordered.

- **(CON)** $\pi(c, \mu)$ is continuous.

Fossati Román (Universidad Carlos III) Firm Turnover in Imperfectly Competitive Markets January 2011 8 / 17
Main Assumptions \((\text{properties of a class of het. firms oligopoly models})\)

- **Ass. 1**: For \(\mu' > \mu\) the profit difference \(\pi(c, \mu) - \pi(c, \mu')\) is strictly decreasing in \(c\) on \([0, c(\mu))\)

- **Ass. 2**: For \(\mu' > \mu\) the profit ratio \(\frac{\pi(c, \mu')}{\pi(c, \mu)}\) is strictly decreasing in \(c\) on \([0, c(\mu))\)

- **Prop. 1**: Suppose \(c\) is the MC and firms compete either in P or Q:
 \[S\pi(c, \mu) = (P(q(c, \mu, S)/S, \mu) - c)q(c, \mu, S) \]

 i) Ass. 1 holds iff eqlm output \(q(c, \mu, S)\) is decreasing in \(\mu\)

 ii) Ass. 2 holds iff eqlm price \(P(q(c, \mu, S)/S, \mu)\) is decreasing in \(\mu\)

Ass 1 holds in many models, but Ass 2 does not hold in the D-S monopolistic competition model.
Stationary Equilibrium (focus on $M>0, c^*<1$)

- Value of an incumbent firm of type c:
 \[
 V(c) = \max \{0, \bar{V}(c)\}
 \]
 \[
 \bar{V}(c) = [S \pi(c, \mu) - \phi] + \delta \left[\alpha V(c) + (1 - \alpha) \int_0^1 V(z) G(dz) \right]
 \]

- Define the threshold c^* as
 \[
 c^* = \begin{cases}
 \sup\{c \in [0, 1] \mid V(c) > 0 \} & \text{if } V(1) = 0 \\
 1 & \text{if } V(1) > 0
 \end{cases}
 \]

 as $V(c)$ is str \downarrow on $[0, \min\{c^*, \bar{c}(\mu)\}] \Rightarrow \exists$ a threshold exit rule

- Value of an entrant:
 \[
 V^e = \int_0^1 V(c) G(dc) - \varepsilon
 \]
Stationary Equilibrium (focus on $M > 0, c^* < 1$)

Under Free Entry $\Rightarrow V^e = 0 \Rightarrow$

$$V(c) = \frac{S\pi(c, \mu) - \phi + \delta(1 - \alpha)\epsilon}{1 - \alpha\delta} \quad \text{if } c \leq c^*$$

in $c = c^*$

$$S\pi(c^*, \mu) - \phi + \delta(1 - \alpha)\epsilon = 0$$

Let $\overline{V}^e(x, \mu)$ be the value of a new entrant who uses exit policy x:

$$\overline{V}^e(x, \mu) = \int_0^x V(c) G(dc) - \epsilon$$

\Rightarrow the free entry condition can be rewritten as

$$\overline{V}^e(c^*, \mu) = 0$$

and the condition for optimal exit as:

$$\frac{\partial \overline{V}^e(c^*, \mu)}{\partial x} = 0$$
Stationary Equilibrium

\[\overline{V}^e(x; \mu) \]

\[\overline{V}^e(x; \mu') \]

\[\overline{V}^e(x; \mu) \]

FIGURE 1

The effect of a decrease in the distribution of firms \((\mu' \prec \mu)\) on the value of an entrant with exit policy \(x\)
Stationary Equilibrium (focus on \(M > 0, c^* < 1 \))

- Invariant measures of firms efficiencies at stage 4:
 \[
 \mu[c^*, M][0, z]) = \frac{M}{(1 - \alpha)(1 - G(c^*))} G(\min\{z, c^*\})
 \]
 has the shape of dist. \(G(\cdot) \), is truncated at equilibrium exit policy \(c^* \), and is scaled by a factor

- Turnover:
 \[
 \theta = \frac{M}{\mu[0, 1]} = \frac{(1 - \alpha)(1 - G(c^*))}{G(c^*)} \quad \text{decreasing in } c^*
 \]

- Share of active firms whose age is less than \(a \):
 \[
 A(a/c^*) \equiv 1 - (1 - G(c^*)\theta)^a \quad \text{str} \downarrow \text{in } c^*
 \]

- Prop. 4: \(\epsilon \uparrow \Rightarrow c^* \uparrow \Rightarrow \theta \downarrow \) (shift of the age dist. of firms towards older firms, and total mass of active firms \(\mu \) and entrants \(M \) decrease)
Model

- **Prop. 5**: If Ass. 1 holds \(\Rightarrow an \uparrow \phi \Rightarrow \downarrow c^* \Rightarrow \uparrow \theta \) (shift of the age dist. of firms towards younger firms, and \(\mu \) and \(\downarrow M \))

Impact of market size changes on turnover and age dist. of firms:

- **Prop. 6**: If Ass. 2 holds \(\Rightarrow an \uparrow S \Rightarrow \downarrow c^* \Rightarrow \uparrow \theta \) (shift of the age dist. of firms towards younger firms, and \(\uparrow \mu \) and \(\downarrow M \))

Empirical Application: Hairdressers salons in Sweden

- Test the comparative dynamics properties of the model: Impact of observables FC, entry costs and S on age distribution of firms
- Idea: examine the age distribution of firms that compete in the same sector but in different geographical markets.
Empirical Application

Hairdressers salons in Sweden

- Take: land rents (proxy of FC) and population (proxy of market size)
Empirical Application

Hairdressers salons in Sweden

<table>
<thead>
<tr>
<th>Least squares regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>ln(MSIZE)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ln(RENT)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ln(POPDENSITY)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>POPGROWTH</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOBILITY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>YOUNGPOP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sample | MSIZE < 75,000 | MSIZE < 75,000 | MSIZE < 75,000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>738</td>
<td>738</td>
<td>738</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.0217</td>
<td>0.0270</td>
<td>0.0289</td>
</tr>
<tr>
<td>Test 1</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Test 2</td>
<td>0.041</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Test 3</td>
<td>0.135</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age of firm related to market size and fixed costs. Robust standard errors in brackets. Observations clustered by market. Test 1 is the P-value of the restriction ln(MSIZE) = ln(RENT) = 0. Test 2 is the P-value of the restriction ln(POPDENSITY) = POPGROWTH = 0. Test 3 is the P-value of the restriction MOBILITY = YOUNGPOP = 0.

* Significant at 10%.
** Significant at 5%.
*** Significant at 1%.
Final Remarks

- Develops a stochastic dynamic model of a monopolistic industry to analyze the connection between market size and fixed costs and firm turnover and age distribution of firms.

- Test some empirical implications of the model.