A model of unconventional monetary policy

Author

Mark Gertler
Peter Karadi

Presenter

José Manuel Carbó Martínez
Universidad Carlos III

February 3, 2015
Motivation

- **Aim of the paper**
 - Develop a monetary DSGE model to account for the effects of unconventional monetary policy

- **Conventional** monetary policy
 - Post war period, FED manipulated Funds rate in order to affect market interest rates.
 - FED avoided lending directly in private credit markets.

- **Unconventional** monetary policy
 - After subprime crisis, situation change dramatically.
 - FED directly injected credit into private markets.
 - It provided backstop funding to help revive the commercial paper market, also intervened heavily in the mortgage markets...
 - Evidence suggest that it has been effective in reducing credit costs
Motivation

- Motivation for unconventional monetary policy
 - Sharp deterioration in balance sheet of financial intermediaries
 - This disrupts the flow of funds between borrowers and lenders
 - Tightening of credit raise cost of borrowing
 - Contraction in the real activity reduces asset values
 - This reduces further intermediaries balance sheet

- They do not try to model the sub prime crisis explicitly
 - They want to capture the key elements relevant to analyzing the Fed’s credit market interventions
Ingredients

- **Standard quantitative monetary DSGE model**
 - Nominal rigidities
 - Financial intermediaries

- **Financial intermediaries**
 - Financial intermediaries that borrow from depositors and lend to firms
 - Agency problem between the intermediaries and depositors
 - Deterioration of intermediary capital: disrupt lending and borrowing, raising credit costs

- **Central bank**
 - Unconventional monetary policy == Central bank that borrow from savers and lend to investors
 - No agency problem between central bank and creditors
 - Central bank is less efficient
Large literature on conventional monetary policy:
- Cristiano et al (2005), Smets and Wouters (2007)
- They can not account for the dramatic changes in actual practice
- Many of these models assume frictionless financial markets
- Bernanke (1999) consider financial frictions, but not explicitly considered direct central bank intermediation

Until now:
- Models were unable to capture financial market disruptions that could motivate unconventional central bank interventions

Contribution:
- Macro model that analyze the effects of unconventional monetary policy as existing frameworks study conventional monetary policy
Households I

- Continuum of identical households of measure unity
- Within each household, two types of members
 - Workers: Supply labor and return wages to household
 - Bankers: Manage a financial intermediary, transfer any earning back to household
- Within the family, perfect consumption insurance
 - Representative agent model
- Deposits of households in financial intermediaries that is does not own.
- At any moment
 - \((1-f)\) of households are workers
 - \(f\) of households are bankers
 - Every period, \((1-\theta)f\) of bankers exit and become workers
 - Relative portion fixed
Households II

\[
\max \mathbb{E}_t \sum_{i=0}^{\infty} \beta^i \left[\ln(C_{t+i} - hC_{t+i-1} - \frac{\chi}{1+\varphi} L_{t+i}^{1+\varphi}) \right]
\]

\[
C_t = W_t L_t + \prod_t + T_t + R_t B_t - B_{t+1}
\]

\[
0 < \beta < 1, 0 < h < 1, \chi, \varphi > 0
\]

- \(B_{t+1} \) is the total quantity of short term debt household acquires
 - \(B_{t+1} \) could be intermediary deposits or government debt
 - Both are one period real bonds that pay the gross return \(R_t \) from \(t-1 \) to \(t \).
 - In equilibrium we both instruments are riskless and perfect substitutes.

- Household first order conditions

\[
\varrho W_t = \chi L_t^\varphi
\]

where \(\varrho = (C_t - hC_{t-1})^{-1} - \beta h \mathbb{E}_t (C_{t+1} - hC_t)^{-1} \)

\[
\mathbb{E}/\beta \Lambda_{t,t+1} R_{t+1} = 1
\]

\[
\Lambda_{t,t+1} = \frac{\varrho_{t+1}}{\varrho_t}
\]
Financial intermediaries I (or banks)

- Financial intermediary lend funds obtained from households to firms

Financial intermediary balance sheet: \(Q_t S_{jt} = N_{jt} + B_{jt+1} \)

- \(N_{jt} \): The amount of wealth (equity)
- \(B_{jt+1} \): Deposits the intermediary obtains from households
- \(S_{jt} \): Financial claims on non-financial firms that intermediary holds
- \(Q_t \): Relative price of each claim

Banker’s equity evolution:
\[
N_{jt+1} = R_{kt+1}Q_t S_{jt} - R_{t+1}B_{jt+1} = (R_{kt+1} - R_{t+1})Q_t S_{jt} + R_{t+1}N_{jt}
\]

- Any raise in equity above the riskless return depends on the premium

\[R_{kt+1} - R_{t+1} \]

Condition for the intermediary to operate
\[
\max_{E_t} \beta_t \Lambda_{t,t+1+i}(R_{kt+1+i} - R_{t+1+i}) \geq 0, \ i \geq 0
\]
Financial intermediaries II

- **Agency problem** that limits intermediaries’ ability of borrowing
 - Banker can divert a fraction λ of available funds

- **Incentive constraint**: $V_{jt} \geq \lambda Q_t S_{jt}$
 - $V_{jt} = v_t \cdot Q_t S_{jt} + \eta_t N$ is expected terminal wealth
 - $v_t = E_t \left\{ (1 - \theta) \beta \Lambda_{t,t+1} (R_{kt+1} - R_{t+1}) + \beta \Lambda_{t,t+1} \theta x_{t,t+1} v_{t,t+1} \right\}$
 - Expected discounted mg gain of $\triangle Q_t S_{jt}$, keeping N_{jt} cte
 - $\eta = E_t \left\{ (1 - \theta) + \beta \Lambda_{t,t+1} \theta z_{t,t+1} \eta_{t+1} \right\}$
 - Expected discounted mg gain of $\triangle N_{jt}$, keeping $Q_t S_{jt}$ cte

- $x_{t,t+1} = \frac{Q_{t+i} S_{jt+i}}{Q_t S_{jt}}$
- $z_{t,t+i} = \frac{N_{jt+i}}{N_{jt}}$

- With frictionless competitive markets, intermediaries will expand borrowing to the point where $v_t = 0$
Incentive constraint II: \(\eta N_{jt} + \nu_t Q_t S_{jt} \geq \lambda Q_t S_{jt} \)

Assets that banker can acquire: \(Q_t S_{jt} = \frac{\eta_t}{\lambda - \nu_t} N_{jt} = \phi_t N_{jt} \)

- \(\phi_t \): ratio of privately intermediated assets to equity (private leverage ratio)
- Assets will depend positively on equity capital

The agency problem leads to an endogenous capital constraint on the intermediary’s ability to acquire assets

- Given \(N_{jt} > 0 \), the constraint binds only if \(0 < \nu_t < \lambda \).

- Holding constant \(N_{jt} \), expanding \(S_{jt} \) raises bankers’ incentive to divert
 - The larger is \(\nu_t \), the greater is the opportunity cost to the banker from being forced into bankruptcy

Total demand of assets: \(Q_t S_t = \phi_t N_t \)
Credit policy

- Now suppose the Central bank is willing to facilitate lending

- **Total value of intermediated assets**: \(Q_t S_t = Q_t S_{pt} + Q_t S_{gt} \)

- **Credit policy**
 - Central bank issues gov. debt to households that pays riskless rate \(R_{t+1} \)
 - Lends funds to non-financial firms at the market lending rate \(R_{kt+1} \)
 - Involves efficiency cost of \(\tau \) per unit supplied
 - Government always honor its debt: No agency conflict
 - \(Q_t S_{gt} = \psi Q_t S_t \) Central bank is willing to fund a fraction \(\psi \) of intermediated assets

- **Total value of intermediated assets**: \(Q_t S_t = \phi_t N_t + \psi Q_t S_t = \phi_{ct} N_t \)
 - \(\phi_{ct} = \frac{1}{1-\psi} \phi_t \)
 - \(\phi_{ct} \) is leverage for total intermediated funds, depends positively on \(\psi \)
Intermediate good firms I

- Competitive non financial firms produce intermediate goods
 - Goods eventually sold to retail firms
 - Retail firms needed to introduce nominal rigidities

- Timing:
 - At the end of t, an intermediate goods producer acquires capital K_{t+1}
 - After production in t+1, firms can sell the capital.
 - No adjustment cost at the firm level
 - Firm finance its capital acquisition each period by obtaining funds from intermediaries $Q_t K_{t+1} = Q_t S_t$

- No frictions in the process of non financial firms obtaining funding.
 - Still, financial intermediaries face capital constraints on obtaining funds.
 - These constraints affect supply of funds available to non financial firms.
Intermediate good firms II

- $Y_t = A_t(U_t \xi_t K_t)^\alpha L_t^{1-\alpha}$
 - ξ denote the quality capital
 - Provide a source of exogenous variation in the value of capital
 - Utilization rate of capital U_{t+1}

- P_{mt} is the price of the intermediate good output.

- Firm chooses the utilization rate and labor demand as follows
 \[
P_{mt} \alpha \frac{Y_t}{U_t} = \delta' (U_t) \xi_t K_t
 \]
 \[
P_{mt} (1-\alpha) \frac{Y_t}{U_t} = W_t
 \]

- Firm earns zero profits in the steady state
 - it simply pays out the ex post return to capital to the intermediary.
 - Accordingly R_{kt+1} is given by
 \[
 R_{kt+1} = \left[P_{mt+1} \alpha \frac{Y_{t+1}}{\xi_{t+1} K_{t+1}} + Q_{t+1} - \delta(U_{t+1}) \right] \xi_{t+1} K_t
 \]
Capital producing firms/ Retail firms

Capital producing firms

- At the end of period t, competitive capital producing firms
 - Buy capital from intermediate goods producing firms.
 - Repair depreciated capital and build new capital.

- Discounted profit for capital producers is given by:
 \[\max E_t \sum_{\tau=t}^{\infty} \beta^{T-t} \Lambda_{t,\tau} \left\{ (Q_\tau - 1) I_{n\tau} - f \left(\frac{I_{nt} + I_{ss}}{I_{nt} + I_{SS}} \right) (I_{nt} + I_{ss}) \right\} \]
 \[I_{nt} = I_t - \delta(U_t) \xi_t K_t. \]

Retailers

- Final output is given by: $Y_t = \left[\int_0^1 Y_{ft} \left(\frac{\epsilon - 1}{\epsilon} \right) df \right]^{\epsilon/(\epsilon-1)}$
 - $Y_{ft} = \frac{P_{ft}}{P_t}^{-\epsilon} Y_t$, output by retailer f
 - CES composite of a continuum of differentiated retail firms
 - They use intermediate output as the sole input.
Retailers and government resource constraint

Retailers (continuation)

- Nominal rigidities:
 - Firm can freely adjust its price with probability \((1 - \gamma)\)
 - Firm is able to index its price to the lagged rate of inflation.

- Pricing problem is to choose the optimal reset price \(P^*_t\) that solves:
 \[
 \max \mathbb{E} \sum_{i=0}^{\infty} \gamma^i \beta^i \Lambda_{t,i} \left[\frac{P^*_t}{P_{t+i}} \prod_{k=1}^{i} (1 + \pi_{t+k-1})^{\gamma_p} - P_{mt+i} \right] Y_{f,t+i}
 \]

- Evolution of price level
 \[
 P_t = \left[(1 - \gamma)(P^*_t)^{1-\epsilon} + \gamma(\pi_{t-1}^{\gamma_p}P_{t-1})^{1-\epsilon} \right]^{\frac{1}{1-\epsilon}}
 \]

- Economy wide resource constraint
 \[
 Y_t = C_t + I_t + f \left(\frac{l_{nt} + l_{ss}}{l_{nt-1} + l_{ss}} \right) (l_{nt} + l_{ss}) + G + \tau \psi_t Q_t K_{t+1}
 \]
 \[\tau \psi_t Q_t K_{t+1}\] are expenditures in government intermediation.

- Capital evolution
 \[
 K_{t+1} = \xi_t K_t + I_{nt}; \quad I_{nt} = l_t - \delta(U_t) \xi_t K_t.
 \]
Government policy

- **Financing government expenditures**
 \[G + \tau \psi_t Q_t K_{t+1} = T_t + (R_{kt} - R_t) B_{gt-1} \]

- **Taylor rule**
 \[i_t = (1 - \rho) \left[i + \kappa_{\pi} \pi_t + \kappa_{\gamma} (\log Y_t - \log Y^*_t) \right] + \rho i_{t-1} + \epsilon_t \]
 - \(\rho \in [0, 1] \): smoothing parameter
 - \(\epsilon_t \): exogenous shock to monetary policy

- **Feedback rule**
 \[\psi_t = \psi + \nu \mathbb{E} \left[(\log R_{kt+1} - \log R_{t+1}) - (\log R_k - \log R) \right] \]
 - \(\psi \) is the steady state fraction of publicly intermediated assets
 - \(\log R_k - \log R \) is the steady state premium

Central bank expands credit as the spread increase relative to its steady state value.

In crisis, Central bank abandons its proclivity to smooth \(i \).

- Sets the smoothing parameter \(\rho = 0 \).
Calibration

- 18 parameters. 15 are standards, 3 are specific: λ, θ, ξ

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.990</td>
<td>Discount rate</td>
</tr>
<tr>
<td>h</td>
<td>0.815</td>
<td>Habit parameter</td>
</tr>
<tr>
<td>χ</td>
<td>3.409</td>
<td>Relative utility weight of labor</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.276</td>
<td>Inverse Frisch elasticity of labor supply</td>
</tr>
<tr>
<td>Financial Intermediaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.381</td>
<td>Fraction of capital that can be diverted</td>
</tr>
<tr>
<td>ω</td>
<td>0.002</td>
<td>Proportional transfer to the entering bankers</td>
</tr>
<tr>
<td>θ</td>
<td>0.972</td>
<td>Survival rate of the bankers</td>
</tr>
<tr>
<td>Intermediate good firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>0.330</td>
<td>Effective capital share</td>
</tr>
<tr>
<td>U</td>
<td>1.000</td>
<td>Steady state capital utilization rate</td>
</tr>
<tr>
<td>$\delta(U)$</td>
<td>0.025</td>
<td>Steady state depreciation rate</td>
</tr>
<tr>
<td>ζ</td>
<td>7.200</td>
<td>Elasticity of marginal depreciation with respect to utilization rate</td>
</tr>
<tr>
<td>Capital Producing Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η_i</td>
<td>1.728</td>
<td>Inverse elasticity of net investment to the price of capital</td>
</tr>
<tr>
<td>Retail firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>4.167</td>
<td>Elasticity of substitution</td>
</tr>
<tr>
<td>γ</td>
<td>0.779</td>
<td>Probability of keeping prices fixed</td>
</tr>
<tr>
<td>γ_p</td>
<td>0.241</td>
<td>Measure of price indexation</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ_n</td>
<td>1.5</td>
<td>Inflation coefficient of the Taylor rule</td>
</tr>
<tr>
<td>κ_y</td>
<td>0.50/4</td>
<td>Output gap coefficient of the Taylor rule</td>
</tr>
<tr>
<td>ρ_l</td>
<td>0.8</td>
<td>Smoothing parameter of the Taylor rule</td>
</tr>
<tr>
<td>G</td>
<td>0.200</td>
<td>Steady state proportion of government expenditures</td>
</tr>
</tbody>
</table>
Experiments

- Tech shock: 1% innovation in TFP, quarterly autoregressive factor of 0.95
- Mon shock: Unanticipated 25 basis point increase in short term i_t
- Intermediary shock: Net worth declines by 1%
Crisis experiment I

- Shock to the quality of intermediary assets
 - 5% decline in capital quality ξ, with quarterly autoregressive factor 0.66

- An exogenous and an endogenous component to the decline in assets
 - 1-Initial decline in capital reduces asset value by reducing the effective quantity of capital
 - 2-Due to leverage ratio constraint, the weakening of intermediary balance sheets induces a drop in asset demand, reducing the asset price Q_t, and investment
 - The endogenous fall in Q_t further shrinks intermediary balance sheets.

The overall contraction is magnified by the degree of leverage
Let's see how the economy reacts without credit policy response.
Credit policy response

- We now consider different intervention intensities
 - \(\nu = 10 \), closer to real life. Increase in bank balance sheet of 7%
 - \(\nu = 100 \), closer to the optimum. Increase in bank balance sheet of 15%
Credit policy response

- In each instance, the credit policy significantly moderates the contraction

- Main reason is that central intermediation dampens the rise in the spread, which in turn dampens the investment decline

- Other things worth noting
 - Central bank exits from its balance sheet slowly over time.
 - Exit is associated with private financial intermediaries re-capitalizing
 - Inflation remains under control
Impact on the lower zero bound

- The steady state value of interest rates is four hundred basic points.
 - In the baseline experiment, I dropped 500 basic points.
 - That's not possible! Let's impose a constraint.
News as a source of asset price variation

- Effect of ∇ in asset value VS effect of ∇ of physical capital
- Economy is hit by news that a capital shock is likely to hit the economy in the subsequent period with probability σ
- The shock is never realized but that for a number of periods the private sector continues to believe it will arise with probability σ
- The experiment proceeds as follows:
 - Economy begins with the capital stock 5% above stst (overoptimism)
 - A wave of pessimism then sets in
 - Collapse in output very similar to previous section
 - Assets value collapse and the spread increases, which leads to the fall in output and investment
 - News shock does not affect directly the stock of capital
News as a source of asset price variation
Concluding remarks

- Quantitative monetary DSGE model with financial intermediaries that face endogenously determined balance sheet constraints

- Model can evaluate the effects of expanding central bank credit
 - Central bank is less efficient than intermediaries
 - It can elastically provide funds

- During crisis, balance sheet of intermediaries shrink
 - Net benefits of central bank intermediation
 - In the case of the zero lower bound, benefits of credit policy might be significantly enhanced
 - Unconventional monetary policy should be used only during crisis times