Beauty and the Labor Market

Hamermesh D. & J. Biddle

Introduction

- Discrimination in the labor market
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped

Hamermesh D. & J. Biddle
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped

- Discrimination against ugly people?
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped
- Discrimination against ugly people?
- Who cares?
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped

- Discrimination against ugly people?

- Who cares?
 - every worker brings some physical attractiveness to the labor market (along with other attributes)
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped

- Discrimination against ugly people?

- Who cares?
 - every worker brings some physical attractiveness to the labor market (along with other attributes)
 - economists
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped

- Discrimination against ugly people?
 - Who cares?
 - every worker brings some physical attractiveness to the labor market (along with other attributes)
 - economists
 difficult to distinguish labor market outcomes arising from discrimination against a group from those produced by intergroup differences in productivity
Introduction

- Discrimination in the labor market
 - numerous economic studies: blacks, women, physically handicapped

- Discrimination against ugly people?

- Who cares?
 - every worker brings some physical attractiveness to the labor market (along with other attributes)
 - economists difficult to distinguish labor market outcomes arising from discrimination against a group from those produced by intergroup differences in productivity

⇒ in case of looks this can be done

Hamermesh D. & J. Biddle
What is beautiful?

- There are few consistent standards of beauty across cultures
What is beautiful?

- There are few consistent standards of beauty across cultures
- Standards of beauty change over time within the same culture
What is beautiful?

- There are few consistent standards of beauty across cultures
- Standards of beauty change over time within the same culture

BUT
What is beautiful?

- There are few consistent standards of beauty across cultures
- Standards of beauty change over time within the same culture

 BUT

- Within a culture at a point in time there is tremendous agreement on standards of beauty and these standards change quite slowly
Aim

1. Determine empirically whether standard earnings equations yield evidence of a pay difference based on looks.
Aim

1. Determine empirically whether standard earnings equations yield evidence of a pay difference based on looks

2. Check if the pay difference based on looks differs by gender
Aim

1. Determine empirically whether standard earnings equations yield evidence of a **pay difference** based on looks
2. Check if the pay difference based on looks differs by **gender**
3. Try to identify occupations where beauty might be productive in order to examine the extent of labor-market **sorting** by looks
Modelling strategy

The productivity model

- Each worker i is endowed with a vector of productivity-enhancing characteristics X_i.
Modelling strategy
The productivity model

- Each worker \(i \) is endowed with a vector of productivity-enhancing characteristics \(X_i \).
- Each worker can be classified as either attractive \((\theta_i = 1) \) or unattractive \((\theta_i = 0) \)
Modelling strategy
The productivity model

- Each worker i is endowed with a vector of productivity-enhancing characteristics X_i.

- Each worker can be classified as either attractive ($\theta_i = 1$) or unattractive ($\theta_i = 0$).

- In each occupation j the wage is given by

$$w_{ij} = a_j X_i + b_j \theta_i$$
Modelling strategy

The productivity model

- Each worker i is endowed with a vector of productivity-enhancing characteristics X_i.
- Each worker can be classified as either attractive ($\theta_i = 1$) or unattractive ($\theta_i = 0$).
- In each occupation j the wage is given by
 \[w_{ij} = a_jX_i + b_j\theta_i \]

In some occupations attractive workers are more productive than unattractive ones ($b_j > 0$)
Modelling strategy
The productivity model

- Each worker i is endowed with a vector of productivity-enhancing characteristics X_i.
- Each worker can be classified as either attractive ($\theta_i = 1$) or unattractive ($\theta_i = 0$).
- In each occupation j the wage is given by

$$w_{ij} = a_j X_i + b_j \theta_i$$

In some occupations attractive workers are more productive than unattractive ones ($b_j > 0$).

This arises either from consumer discrimination or there may be occupations in which physical attractiveness enhances the worker’s ability to engage in productive interactions with coworkers.

Hamermesh D. & J. Biddle
Modelling strategy
The productivity model

- Each worker i is endowed with a vector of productivity-enhancing characteristics X_i.
- Each worker can be classified as either attractive ($\theta_i = 1$) or unattractive ($\theta_i = 0$).
- In each occupation j the wage is given by

$$w_{ij} = a_j X_i + b_j \theta_i$$

In some occupations attractive workers are more productive than unattractive ones ($b_j > 0$)

This arises either from consumer discrimination or there may be occupations in which physical attractiveness enhances the worker’s ability to engage in productive interactions with coworkers.

- Workers choose the occupation offering the highest wage

Hamermesh D. & J. Biddle
Regarding the distribution of workers across occupations

1. If the distribution of X_i is uncorrelated with beauty (θ_i), attractive workers will on average earn more, whether or not we control for X_i.

2. Within occupations, we will observe a difference between the average earnings of attractive and unattractive people only in those occupations where attractiveness is productive.
Modelling strategy
Empirical implications of the productivity model

- Regarding the distribution of workers across occupations
 - Sorting

[1] If the distribution of X_i is uncorrelated with beauty (θ_i), attractive workers will on average earn more, whether or not we control for X_i.

[2] Within occupations we will observe a difference between the average earnings of attractive and unattractive people only in those occupations where attractiveness is productive.
Modelling strategy
Empirical implications of the productivity model

- Regarding the distribution of workers across occupations
 - Sorting
 - But segregation by looks will be incomplete

Hamermesh D. & J. Biddle
Modelling strategy
Empirical implications of the productivity model

- Regarding the distribution of workers across occupations
 - Sorting
 But segregation by looks will be incomplete

- Regarding the earnings of attractive VS unattractive workers

Hamermesh D. & J. Biddle
Modelling strategy
Empirical implications of the productivity model

- Regarding the distribution of workers across occupations
 - Sorting
 But segregation by looks will be incomplete

- Regarding the earnings of attractive VS unattractive workers
 1. If the distribution of X_i is uncorrelated with beauty (θ_i), attractive workers will on average earn more, whether or not we control for X_i
Modelling strategy
Empirical implications of the productivity model

Regarding the distribution of workers across occupations
 Sorting
 But segregation by looks will be incomplete

Regarding the earnings of attractive VS unattractive workers
 1. If the distribution of X_i is uncorrelated with beauty (θ_i), attractive workers will on average earn more, whether or not we control for X_i
 2. Within occupations we will observe a difference between the average earnings of attractive and unattractive people only in those occupations where attractiveness is productive
Modelling strategy

An alternative: The employer-discrimination model

- Becker type model with employers’ distaste for unattractive employees

Implications:

- No systematic sorting of workers into occupations on the basis of attractiveness
- It produces a looks differential in earnings, but there is no reason to expect that it will differ across occupations
Modelling strategy
An alternative: The employer-discrimination model

- Becker type model with employers’ distaste for unattractive employees
- Implications:
Modelling strategy
An alternative: The employer-discrimination model

- Becker type model with employers’ distaste for unattractive employees

Implications:
- No systematic sorting of workers into occupations on the basis of attractiveness

Hamermesh D. & J. Biddle
Modelling strategy
An alternative: The employer-discrimination model

- Becker type model with employers’ distaste for unattractive employees
- Implications:
 - No systematic sorting of workers into occupations on the basis of attractiveness
 - It produces a looks differential in earnings, but there is no reason to expect that it will differ across occupations
A general test

Regression

\[w_i = \beta_0 + \beta_1 x_i + \beta_2 \theta_i + \beta_3 OCC_i + \beta_4 \theta_i OCC_i + \epsilon_i \]

\[OCC_i = \begin{cases}
1, & \text{if the worker’s occupation is identified as one where looks are productive} \\
0, & \text{otherwise}
\end{cases} \]
A general test

Regression

\[w_i = \beta_0 + \beta_1 X_i + \beta_2 \theta_i + \beta_3 OCC_i + \beta_4 \theta_i OCC_i + \epsilon_i \]

\[OCC_i = \begin{cases}
1, & \text{if the worker’s occupation is identified as one where looks are productive} \\
0, & \text{otherwise}
\end{cases} \]

Nested models
A general test

- Regression

\[w_i = \beta_0 + \beta_1 X_i + \beta_2 \theta_i + \beta_3 OCC_i + \beta_4 \theta_i OCC_i + \varepsilon_i \]

\[OCC_i = \begin{cases}
 1, & \text{if the worker’s occupation is identified} \\
 \text{as one where looks are productive} \\
 0, & \text{otherwise}
\end{cases} \]

- Nested models

1. The productivity model \(\Rightarrow \beta_4 > 0, \beta_2 = \beta_3 = 0 \)
A general test

- Regression

\[w_i = \beta_0 + \beta_1 X_i + \beta_2 \theta_i + \beta_3 OCC_i + \beta_4 \theta_i OCC_i + \epsilon_i \]

\[OCC_i = \begin{cases}
1, & \text{if the worker’s occupation is identified as one where looks are productive} \\
0, & \text{otherwise}
\end{cases} \]

- Nested models

1. The productivity model \(\Rightarrow \beta_4 > 0, \beta_2 = \beta_3 = 0 \)
2. The employer discrimination model \(\Rightarrow \beta_2 > 0, \beta_3 = \beta_4 = 0 \)
A general test

Regression

\[w_i = \beta_0 + \beta_1 X_i + \beta_2 \theta_i + \beta_3 OCC_i + \beta_4 \theta_i OCC_i + \varepsilon_i \]

\[OCC_i = \begin{cases}
1, & \text{if the worker’s occupation is identified as one where looks are productive} \\
0, & \text{otherwise} \end{cases} \]

Nested models

1. The productivity model \(\Rightarrow \beta_4 > 0, \beta_2 = \beta_3 = 0 \)
2. The employer discrimination model \(\Rightarrow \beta_2 > 0, \beta_3 = \beta_4 = 0 \)
3. Occupational crowding \(\Rightarrow \beta_3 > 0 \)
Data

Do they exist?

1. The 1977 Quality of Employment Survey (QES)
2. The 1971 Quality of American Life survey (QAL)
3. The 1981 Canadian Quality of Life study (QOL) (subsample 3-year panel)
Data

- Do they exist?

 YES
Data

- Do they exist?
 YES

1. The 1977 Quality of Employment Survey (QES)
Data

Do they exist?
YES

1. The 1977 Quality of Employment Survey (QES)
2. The 1971 Quality of American Life survey (QAL)
Data

- Do they exist?
 YES

1. The 1977 Quality of Employment Survey (QES)
2. The 1971 Quality of American Life survey (QAL)
3. The 1981 Canadian Quality of Life study (QOL) (subsample 3-year panel)
Data

- Do they exist?
 YES

1. The 1977 Quality of Employment Survey (QES)
2. The 1971 Quality of American Life survey (QAL)
3. The 1981 Canadian Quality of Life study (QOL) (subsample 3-year panel)

- In all three surveys the interviewer had to rate the respondent’s physical appearance on a 5-point scale
Table 2—Distribution of Looks: Quality of Employment Survey (QES), 1977; Quality of American Life (QAL), 1971; Canadian Quality of Life (QOL), 1977, 1979, and 1981 (Percentage Distributions)

<table>
<thead>
<tr>
<th>Category</th>
<th>QES</th>
<th>QAL</th>
<th>QOL (pooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>1) Strikingly beautiful or handsome</td>
<td>1.4</td>
<td>2.1</td>
<td>2.9</td>
</tr>
<tr>
<td>2) Above average for age (good looking)</td>
<td>26.5</td>
<td>30.4</td>
<td>24.2</td>
</tr>
<tr>
<td>3) Average for age</td>
<td>59.7</td>
<td>52.1</td>
<td>60.4</td>
</tr>
<tr>
<td>4) Below average for age (quite plain)</td>
<td>11.4</td>
<td>13.7</td>
<td>10.8</td>
</tr>
<tr>
<td>5) Homely</td>
<td>1.0</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>N:</td>
<td>959</td>
<td>539</td>
<td>864</td>
</tr>
</tbody>
</table>

Hamermesh D. & J. Biddle

<table>
<thead>
<tr>
<th>Sample</th>
<th>Penalty for below-average looks</th>
<th>Premium for above-average looks</th>
<th>$\hat{\beta}{\text{above}} - \hat{\beta}{\text{below}}$</th>
<th>p on F statistic for looks</th>
<th>p on intersample equality of looks effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All three samples</td>
<td>-0.091</td>
<td>0.053</td>
<td>0.144</td>
<td>0.0001</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.019)</td>
<td>(0.040)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two U.S. samples</td>
<td>-0.132</td>
<td>0.036</td>
<td>0.168</td>
<td>0.0003</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.027)</td>
<td>(0.051)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All three samples</td>
<td>-0.054</td>
<td>0.038</td>
<td>0.092</td>
<td>0.042</td>
<td>0.163</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.022)</td>
<td>(0.048)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two U.S. samples</td>
<td>-0.042</td>
<td>0.075</td>
<td>0.117</td>
<td>0.041</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.037)</td>
<td>(0.069)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men and women combined:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All three samples</td>
<td>-0.072</td>
<td>0.048</td>
<td>0.120</td>
<td>0.0001</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.015)</td>
<td>(0.031)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two U.S. samples</td>
<td>-0.092</td>
<td>0.046</td>
<td>0.138</td>
<td>0.0002</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.022)</td>
<td>(0.041)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The dependent variable is log(hourly earnings); standard errors are shown in parentheses.
Table 9—Sorting, Looks, and the Determination of Earnings: QES, 1977; QAL, 1971

<table>
<thead>
<tr>
<th>Sample and occupation index</th>
<th>Looks below average × occupation index</th>
<th>Looks above average × occupation index</th>
<th>Occupation index</th>
<th>R^2</th>
<th>p on F statistic on main effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>QES, men:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>-0.177</td>
<td>0.041</td>
<td>0.052</td>
<td>0.405</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.042)</td>
<td>(0.069)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective</td>
<td>-0.162</td>
<td>0.012</td>
<td>0.124</td>
<td>0.405</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.035)</td>
<td>(0.097)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employers</td>
<td>-0.187</td>
<td>0.095</td>
<td>0.066</td>
<td>0.410</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.057)</td>
<td>(0.084)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QES, women:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>-0.174</td>
<td>0.023</td>
<td>0.032</td>
<td>0.329</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.054)</td>
<td>(0.119)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective</td>
<td>-0.115</td>
<td>0.050</td>
<td>0.083</td>
<td>0.326</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.055)</td>
<td>(0.096)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employers</td>
<td>-0.078</td>
<td>0.152</td>
<td>0.216</td>
<td>0.315</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>(0.107)</td>
<td>(0.076)</td>
<td>(0.111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QAL, men:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>-0.102</td>
<td>0.070</td>
<td>0.093</td>
<td>0.373</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>(0.107)</td>
<td>(0.056)</td>
<td>(0.089)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective</td>
<td>-0.097</td>
<td>0.045</td>
<td>0.085</td>
<td>0.371</td>
<td>0.223</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.048)</td>
<td>(0.099)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employers</td>
<td>0.145</td>
<td>0.124</td>
<td>-0.006</td>
<td>0.213</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.121)</td>
<td>(0.152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QAL, women:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td>0.049</td>
<td>0.166</td>
<td>-0.066</td>
<td>0.282</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.063)</td>
<td>(0.130)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective</td>
<td>0.130</td>
<td>0.075</td>
<td>-0.053</td>
<td>0.287</td>
<td>0.266</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.068)</td>
<td>(0.099)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employers</td>
<td>0.253</td>
<td>0.261</td>
<td>0.218</td>
<td>0.272</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(0.153)</td>
<td>(0.127)</td>
<td>(0.162)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers.
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers

2. There is a premium in wages for good looking people that is slightly smaller than this penalty
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers.
2. There is a premium in wages for good looking people that is slightly smaller than this penalty.
3. The penalty and premium is higher for men, but these gender differences are not large.

Hamermesh D. & J. Biddle
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers

2. There is a premium in wages for good looking people that is slightly smaller than this penalty

3. The penalty and premium is higher for men, but these gender differences are not large

4. There is some evidence of sorting
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers.
2. There is a premium in wages for good looking people that is slightly smaller than this penalty.
3. The penalty and premium is higher for men, but these gender differences are not large.
4. There is some evidence of sorting.
 - Weak evidence for productivity-related discrimination.
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers.

2. There is a premium in wages for good-looking people that is slightly smaller than this penalty.

3. The penalty and premium is higher for men, but these gender differences are not large.

4. There is some evidence of sorting.

- Weak evidence for productivity-related discrimination.
- No support for occupational crowding along the dimension of beauty.
Conclusions

1. Other things equal, wages of people with below-average looks are lower than those of average-looking workers.
2. There is a premium in wages for good looking people that is slightly smaller than this penalty.
3. The penalty and premium is higher for men, but these gender differences are not large.
4. There is some evidence of sorting:
 - Weak evidence for productivity-related discrimination.
 - No support for occupational crowding along the dimension of beauty.
 - Strong support for pure Becker-type discrimination based on beauty and stemming from employer’s tastes.