Evaluating Long-Term Care Policy Options, Taking the Family Seriously Workshop on Long-Term Care at SCOR (Paris)

Daniel Barczyk (McGill) and Matthias Kredler (Carlos III)

10 June 2016

Our question

What are the effects of long-term-care (LTC) policies?

- Evaluate policy options in the U.S. context based on
 - Germany's public LTC insurance program, and
 - changes to the size in Medicaid spending
- ... for:
 - families' behavior: will government insurance merely crowd-out family insurance?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- labor supply of caregivers
- the government budget
- savings rates
- welfare for young and old generations

Our main contributions

- Document importance of family-provided care and its economic correlates using the U.S. *Health and Retirement Survey* (HRS)
- Build fully-dynamic non-cooperative model with altruistically- and exchange-motivated transfers

 \Rightarrow allows for savings for both child and parent (key for modeling means-tested Medicaid!)

 \Rightarrow gives rise to variety of care arrangements and its financing

- Family as partial insurance against LTC risk
 ⇒ implications for precautionary savings
- Calibrate model, using a quantitatively realistic life cycle, family, and risk structure

- \Rightarrow analyze a set of policy reforms
- \Rightarrow open up family margin in response to policy changes

Data summary I: Big picture

Sample: HRS (2000-2010) respondents with at least one helper due to functional limitations.

- Almost 2/3 of all hours of care are provided informally.
- Few heavy helpers provide lion's share of care:
 - Couple: spouse crucial.
 - Single: children and nursing homes are key.
- Determinants of informal care:
 - Presence of spouse/partner, children
 - Childrens' opportunity cost in labor market
 - Elderly's wealth: "threshold effect" at low wealth

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Data summary II: Caregiving by children

Sample: *disabled* (90+ hours monthly care) widow(er)/single respondents

Care arrangements:

- ▶ 44.7% of respondents obtain informal care (most often from daughter)
- 33.5% obtain Medicaid-financed nursing-home care
- 21.8% are private payers of nursing-home care
- Typically one heavy-helper child
- Compensation of (heavy-helper) children for informal care:
 - Co-residence common: typically a transfer to child
 - Signing over home ownership during lifetime
 - Potential bequests: protect assets from spend-down!
 - \Rightarrow Rationalize through intra-family bargaining channel
- ► But: Heavy help also takes place without measurable compensation ⇒ role for altruism

Empirical motivation for modeling

Our data suggests a model in which:

- 1. IC always a feasible choice, though provision is time-intensive
- 2. Vast majority of care goes to elderly with severe limitations
- 3. Informal caregiving centered on one caregiver (spouse, child)

- 4. IC more likely with low-opportunity-cost children
- 5. Caregiving children receive compensation

Model: Demographics

Continuous-time overlapping-generations (OLG) model:

- Population growth rate g
- Individuals have two life stages:
 - 1. Kid: 35 to 65 years old.
 - 2. Parent: 65 to 95 years old.
- Each family consists of two decision units:
 - 1. **Parent** generation of age $j_{\rho} \in [65, 95)$
 - \Rightarrow 1 household with male and female
 - 2. **Kid** generation of age $j_k = j_p 30$ $\Rightarrow 1 + v$ household, each with male and female

Generational transition:

- Parent dies for sure at $j_p = 95$.
- Kid generation splits into (1 + v) parent agents.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

New kid generation is matched to them.

Parent generation

- Parent's state:
 - 1. age $j_p \in [65, 95)$,
 - 2. wealth $a^{p} \geq 0$,
 - 3. fixed productivity type $\varepsilon_{p} \in E \equiv \{e_{1}, \dots, e_{n}\}$
 - 4. Disability state: $s \in \{0, 1\}$.
- ► Hazards for disability, death, and medical-spending shocks ⇒ contingent on j^p, ε^p (and s)
- Care need for male is deterministic; male obtains exogenous fraction of care from spouse and remainder formally.

Kid generation

- Kid generation's state:
 - 1. age $j_k = j_p 30$,
 - 2. wealth $a^k \ge 0$,
 - 3. productivity $\varepsilon_k \in E$.
- ε_k : Poisson process capturing earnings risk
- ► β : male earnings share \Rightarrow Kid generation loses (1β) of wage when providing informal care

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Incomplete markets with altruistic agents

We build on Barczyk & Kredler (2014a,b):

- a^p, a^k : Each generation saves in riskless asset
 - r: return
 - <u>a</u> = 0: no-borrowing constraint

• $g^{\rho}, g^{k} \geq 0$: Agents can give altruistically-motivated gifts to each other

- No commitment to future actions ⇒ removes indeterminacy in:
 - within-family wealth distribution
 - timing of transfers
- \Rightarrow **Equilibrium**: Gifts only flow when recipient is constrained.

Care decision

When s = 1, family chooses one of the following (**Nash bargaining** in each instant):

- 1. h = 1: Informal care (IC).
 - Both parent and kid have to agree.
 - Monetary transfer $Q \ge 0$ from parent to kid
 - \Rightarrow determined by Nash bargaining

2. h = 0: Formal care

Once h = 0 is chosen, parent decides:

a) m = 1: Medicaid (MA).

Parent must hand in all remaining wealth and pension flow.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Government provides consumption floor Cma.

b) *m* = 0: Buy **privately-paid care (PP)** on market.

Preferences

Flow felicity:

- Healthy parents and kids: $u^i(c_i) = c_i^{1-\gamma}/(1-\gamma)$
 - \Rightarrow adjust for generation size and household economies of scale
- Disabled parents:

$$u^{p}(\cdot) = \begin{cases} u(c^{p}) & \text{if IC,} \\ u(c^{p} - C_{f}) & \text{if PP,} \\ u(C_{ma}) & \text{if MA.} \end{cases}$$

where C_f : utility penalty in PP.

Flow utility: Imperfect altruism.

$$U^k = u^k + \alpha^k u^p, \qquad \qquad U^p = u^p + \alpha^p u^k.$$

where $\alpha^{p}, \alpha^{k} \in [0, 1]$.

Both agents discount at common rate p > 0.

Production

There are two competitive sectors with constant-returns-to-scale technologies in labor:

- 1. consumption good (numeraire)
- 2. nursing homes: care services at price p_{bc} \Rightarrow We interpret $p_{bc} + c^p$ as private-pay (PP) nursing-home expenditures.

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Government

The government runs a balanced budget with the following items:

- 1. Regular policy:
 - 1.1 Income taxation
 - 1.2 Social-security contributions and benefits
 - 1.3 Covering medical shocks for broke agents
 - 1.4 Other expenditures (fixed)
- 2. LTC policy:
 - 2.1 $p_{bc} + y_{ma}$: expenditures for MA nursing-home slot

▲日▶▲□▶▲□▶▲□▶ □ のQ@

- 2.2 sic: IC subsidy (to caregiver)
- 2.3 *s*_{pp}: PP subsidy (to parent)

Timing HJBs Eq'm Def'n

Characterizing the care decision

Proposition: Suppose $a^p > 0$, $a^k > 0$. Then:

The kid's reservation transfer to give IC is

$$\underline{Q}^{k} = \frac{\left(\Delta y_{ic} - s_{ic}\right)V_{a^{k}}^{k} - \left(\bar{C}_{f} + \rho_{bc} - s_{pp}\right)V_{a^{p}}^{k}}{\underbrace{V_{a^{k}}^{k} - V_{a^{p}}^{k}}_{>0}}$$

The parent's willingness to pay for IC is

$$\bar{Q}^{p} = \frac{(\bar{C}_{f} + p_{bc} - s_{pp})V^{p}_{a^{p}} - (\Delta y_{ic} - s_{ic})V^{p}_{a^{k}}}{\underbrace{V^{p}_{a^{p}} - V^{p}_{a^{k}}}_{>0}}$$

▶ IC takes place iff $\bar{Q}^{p} \geq \underline{Q}^{k}$, and the equilibrium transfer being

$$Q^* = \max\left\{0, \omega \bar{Q}^{\rho} + (1-\omega)\underline{Q}^{k}\right\}.$$

Calibration: direct identification

Estimate directly from HRS:

- Disability hazards
- Death hazards
- Medical-expenditure process
- From government statistics:
 - $p_{bc} + y_{ma}$: Medicaid reimbursement rate
 - *p_{bc}*: care-related nursing-home cost
 - Taxes and social-security system

Standard: Productivity process (based on U.S. Census, 2000).

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Calibration targets and identification

Calibration target	Data	Model
Median wealth (ages 70-75)	\$178,600	\$178,600
Informal care	44.7%	44.7%
Total PP/MA spending	0.821	0.821
Parent (healthy) gift	\$1,548	\$1,548
Kid gift to parent (PP)	\$620	\$620
Exchange transfer	\$9,878	\$9,878
Parameter	Description	Value
ρ	Discount rate	0.1280
\bar{C}_{f}	Formal-care consumption penalty	\$4,050
C _{ma}	Medicaid consumption floor	\$4,650
α^p	Parent altruism	0.4781
α^k	Kid altruism	$2.7 imes10^{-4}$
ω	Kid bargaining weight	0.050

Notes: coefficient of relative risk aversion is $\gamma = 3.8$ following De Nardi et al. (2010)

- median wealth \Rightarrow rate of time preference ρ
- percentage of IC recipients \Rightarrow consumption penalty from nursing home \bar{C}_f

- ratio total PP/MA spending ⇒ consumption floor C_{ma}
- mean gifts from and to healthy parents \Rightarrow altruism α^k , α^p
- exchange transfer \Rightarrow kid's bargaining weight ω

The model in action: care choices and dynamics

Policy experiments I: Subsidies (non-means-tested)

Amounts based on Germany's LTC policy:

- (1) Informal care (IC) subsidy (sic): \$4,375 per year
- (2) Private-payer (PP) subsidy (spp): \$11,460 per year

	Care type (%)		Costs (as $\Delta \tau$)				Ex-ante	CEV	
LTC policy	IC	MA	PP	$\Delta \tau =$	$\Delta \tau_s$	Δau_{ma}	Δau_{inc}	short run	long run
Status quo	44.7%	33.5%	21.8%						
s _{ic} ↑	59.0	23.6	17.4	0.11	0.25	-0.20	0.06	0.380	-0.033
s_{ic} \uparrow (to young)	59.0	23.6	17.4	-0.01	0.13	-0.20	0.06	0.323	0.012
s_{pp} \uparrow	23.6	32.1	44.3	0.22	0.32	-0.03	-0.07	-0.098	-0.275
$s_{ic} \uparrow + s_{pp} \uparrow$	44.0	22.9	33.1	0.25	0.47	-0.21	-0.01	0.352	-0.193

Notes: IC = informal care; MA = Medicaid; PP = private payer; CEV: consumption equivalent variation.

- s_{ic} ↑ strongly crowds-in IC and crowds-out MA:
 - cost of subsidy \Rightarrow tax hike
 - ► less reliance on Medicaid ⇒ tax cut
 - ► less labor supply ⇒ tax hike
- s_{pp} ↑ crowds-out IC, but crowds-out MA only slightly
- ▶ s_{ic} ↑ + s_{pp} ↑ leaves IC unchanged, crowds-out MA, crowds-in PP

mechanisms

Policy experiments II: Changes to Medicaid

Changes to Medicaid: 20% change in y_{ma} .

Assumption: C_{ma} changes by the same percentage.

	Care type (%)		Costs (as $\Delta \tau$)			Ex-ante	CEV		
LTC policy	IC	MA	PP	$\Delta \tau =$	$\Delta \tau_s$	Δau_{ma}	Δau_{inc}	short run	long run
Status quo	44.7%	33.5%	21.8%						
MA↑	40.3	40.2	19.5	0.20		0.21	-0.01	0.111	-0.361
MA↓	50.1	25.5	24.4	-0.22		-0.20	-0.02	-0.360	0.288
MA↓+ <i>s_{ic}</i> ↑	62.8	18.1	19.2	-0.03	0.26	-0.34	0.05	0.221	0.300

Notes: IC = informal care; MA = Medicaid; PP = private payer; ; CEV: consumption equivalent variation.

- MA[↑] crowds-out IC but does not help to expand tax base from additional labor supply
- MA↓ crowds-in IC, taxes fall but not enough to avoid welfare loss in short run
- ▶ MA↓ + s_{ic} ↑ crowds in IC substantially at expense of MA ⇒ welfare gains across board

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Changes to Medicaid: Heterogeneity in welfare gains

CEV for currently-alive generations (children and parents)

MA					MA	±s,. ↑		
	child	dren	pare	ents	child	dren	pare	ents
group	average	% + for						
all	-0.889	3.5%	-3.907	6.4%	+0.374	82.3%	+0.451	75.3%
below 80	-0.415	7.1%	-3.269	6.5%	+0.367	91.5%	+0.571	77.0%
above 80	-1.175	0.0%	-5.728	6.2%	+0.566	88.7%	+0.109	70.7%
low-prod kid	-1.360	5.1%	-4.779	0.0%	+0.235	66.3%	+0.583	74.0%
high-prod kid	-0.415	1.5%	-2.864	15.3%	+0.484	94.3%	+0.736	78.1%
low-prod parent	-0.784	8.0%	-6.896	0.1%	+0.377	85.0%	-1.669	49.5%
high-prod parent	-0.478	1.0%	-1.240	14.7%	+0.387	92.0%	+2.340	97.6%

Notes: average is over CEV. "% + for" means fraction out of the group with positive CEV.

- ▶ MA↓ widespread welfare losses, especially for poor and old
- ▶ MA↓ + s_{ic} ↑ most welfare losses are undone. Exception: low-productivity parents.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Conclusions

- Empirical: Importance of informal caregiving and economic determinants of informal care in the U.S.
- Theoretical:
 - 1. Barczyk & Kredler (2014a,b):
 - Determinacy for intra-family wealth distribution and transfers
 - Both agents can save.
 - 2. This paper:
 - Calibrated quantitative OLG model
 - Both altruistically-motivated and exchange-motivated transfers
 - Variety of empirically plausible care arrangements
- Policy:
 - 1. MA-spending-cut: increases IC and decreases payroll tax; disliked by current generations but liked by future generations
 - MA-spending-cut with IC subsidy: strong increase in IC and large decrease in MA; cheap policy, liked by majority of current and future generations
 - 3. German-style policy (menu of IC and PP subsidy): very popular among current generations, but largest tax hike.

Better: only IC subsidy (PP subsidy benefit those who need it least)

Extra slides

Literature

- 1. Macro literature on old-age risks: no family
 - Retirement savings puzzle
 - Medical-expense risk Hubbard et al. (1995), DeNardi et al. (2010)
 - LTC is major uninsured financial risk Brown & Finkelstein (2007, 2008, 2011), Finkelstein & McGarry (2006)
 - Medicaid aversion (survey evidence) Ameriks et al. (2011)
 - Nursing-home risk drives precautionary savings Kopecky & Koreshkova (2014)
 - Analysis of Medicare and Medicaid policy Attanasio et al. (2011), DeNardi et al. (2013), Braun et al. (2015)
- 2. Applied micro literature: care crowds out labor supply of females \Rightarrow macro implications not studied

```
Johnson & Sasso (2006), Van Houtven et al. (2013),
Skira (2014)
```

\Rightarrow We aim to bring together 1. and 2.

Timing protocol (at each *t*)

- stage 1 Family decides on IC (Nash bargaining, transfer $Q \ge 0$)
- stage 2 Altruistic gifts are given (especially relevant if no IC)
- stage 3 No IC: parent decides if Medicaid or private-pay nursing home

stage 4 Consumption-savings decision (unless in Medicaid)

◀ back

Hamilton-Jacobi-Bellman (HJB) equations

States:

1. *j*: parent's age 2. $x = (a^k, a^\rho, \varepsilon^k, \varepsilon^\rho)$: family's financial state 3. $s \in \{0, 1\}$: LTC need if s = 1

• If $a^p > 0$, $a^k > 0$ (no gifts, no Medicaid):

$$\begin{split} \rho \, V^{k}(j,x,1) &= V_{j}^{k} + \max_{c^{k},h^{k}} \left\{ u^{k}(c^{k}) + \alpha^{k} u^{p}(c^{p};\cdot) + \dot{a}^{k} V_{a^{k}}^{k} + \dot{a}^{p} V_{a^{p}}^{k} \right\} + JT^{p}, \\ \rho \, V^{p}(j,x,1) &= V_{j}^{p} + \max_{c^{p},h^{p}} \left\{ u^{p}(c^{p};\cdot) + \alpha^{p} u(c^{k}) + \dot{a}^{p} V_{a^{p}}^{p} + \dot{a}^{k} V_{a^{k}}^{p} \right\} + JT^{k}, \\ \text{s.t.} \quad h &= h^{k} h^{p}, \\ \dot{a}^{k} &= ra^{k} + wy(j,\varepsilon^{k})(1+\nu) + h[Q + s_{ic} - (1-\beta)w(j,\varepsilon^{k})] - c^{k}, \\ \dot{a}^{p} &= ra^{p} + n^{p} P(\varepsilon^{p}) - hQ - (p_{f} - s_{pp})(1-h) - c^{p} - M^{p}. \end{split}$$

- When healthy (s = 0): remove red terms, add terms for LTC hazard.
- Constrained case ($a^p = 0, a^k = 0$): also altruistic gifts g^k, g^p .

Equilibrium definition

A recursive **Markov-perfect equilibrium** is given by value functions for the kid, V^k , and the parent, V^p , policy rules for the kid, $\{g^k, c^k\}$, and the parent, $\{g^p, m, c^p\}$, an informal-care (IC) rule, *h*, and a transfer function, Q^* , such that:

Given prices and a government policy, $\{s_{ic}, s_{pp}, C_{ma}\}$,

- the value function V^p satisfies the parent's HJB, the maximum being attained by the policies {g^p, m, c^p}, taking as given the kid's policy rules, {g^k, c^k};
- 2. the value function V^k satisfies the kid's HJB, the maximum being attained by the policies $\{g^k, c^k\}$, taking as given the parent's policy rules, $\{g^p, m, c^p\}$;
- 3. the IC decision rule, *h*, and the transfer rule, *Q*^{*}, are the Nash-bargaining solution between kid and parent.

✓ back

Table: Females: life expectancy at age 65 by educational attainment.

Source	< high school	high school	some college	college
Data	14.92	18.52	19.39	19.44
Model	15.79	18.94	19.64	19.76

Table: Females: expected duration of LTC, conditional on LTC, by educational attainment.

Source	< high school	high school	some college	college
Data	2.73	2.13	1.91	2.15
Model	2.35	1.98	1.83	2.05

Table: Males: life expectancy at age 65 by educational attainment.

Source	< high school	high school	some college	college
Data	12.30	13.68	14.29	15.82
Model	12.86	13.94	14.60	16.03

Table: Males: expected duration of LTC, conditional on LTC, by educational attainment.

Source	< high school	high school	some college	college
Data	1.82	1.28	1.12	1.13
Model	1.48	1.15	1.01	1.07

Welfare mechanisms: Add one friction at a time

1. Complete markets and contracts/utilitarian planner: No MA, sets $s_{ic} = s_{pp} = 0$.

$$h_{sp} = 1$$
 iff $w_g(1-\beta) < p_{bc} + C_f$.

2. Distortionary taxation of labor: Efficient family decision:

$$h = 1$$
 iff $w_n(1-\beta) + s_{ic} < p_{bc} - s_{pp} + C_f$

 $MPC_{ic} < MPC_{pp} \Rightarrow s_{pp}$ good, s_{ic} bad – but quantitatively weak.

- 3. No insurance markets: *s_{ic}*, *s_{pp}*, *MA* all good... ...but *s_{ic}* and *MA* target the vulnerable.
- 4. Medicaid: Means test distorts savings (+ technologically inferior)
- 5. No commitment within family: Kid wants to shirk when s = 1
 - Rich families solve problem by wealth accumulation: Bequest induces IC, otherwise resource transfer to parent in PP (no bequest!)
 - Poor parents don't save s_{ic} helps to overcome commitment issues.