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1 Introduction

Many problems in economics, management and operations research are naturally modeled as

differential games. When the decisions of the agents are affected by uncertain events, it is usual

to model the movement of the state variable as subject to stochastic disturbances. The theory

of stochastic differential games provides suitable tools to analyze the interaction of the decision

agents in this framework. Standard references that study differential games are Mehlmann,1

Başar and Olsder2 or Dockner et al.3 Long4 and Jorgensen and Zaccour5,6 constitute two

recent updates of the literature on differential games that show the huge variety of models that

can be analyzed with the help of the theory of differential games. The aim of this paper is to

identify games for which the certainty equivalence principle holds. According to Theil,7 certainty

equivalence means that a decision agent who maximizes expected utility and takes actions based

on the information available at the time of taking the decision, may neglect the disturbances and

to suppose that the uncertain elements are settled at their mean values. This is an important

property, as it means that the equilibrium of the deterministic game is robust, in the sense that

it continues to be optimal, even if the system becomes exposed to zero mean random shocks

in the state variable. We say that a Markov Perfect Nash Equilibrium (MPNE henceforth) is

robust if it is also an MPNE of an associated stochastic differential game.

It is well known that linear quadratic stochastic dynamic games in which the random source

is independent from both the state variable and the player’s strategies, satisfy the certainty

equivalence principle∗. The question we address in this paper is whether the certainty equivalence

principle holds in other classes of differential games, and how we can identify them. There are

some results in this direction already. Games with linear value functions satisfy this principle.

This is because the second-order derivatives of the value function are null, so the Hamilton-

Jacobi-Bellman equation system (HJB system of equations henceforth) is the same for both

the deterministic and the stochastic game. Relevant examples are Sorger,9 where a non-linear

marketing game of advertising is studied, and Yeung,10 where a class of games with linear value

functions is identified. In Kuwana,11 it is shown that logarithmic utility is the only utility

specification that satisfies this property in Merton’s model with partially observable drift†. Our

investigations show that, in a variety of games, beyond those with logarithmic, quadratic or

linear value functions, the certainty equivalence principle holds. Our starting point, Theorem

2.1 establishes a necessary condition. It points out that, for an MPNE to be robust, it must be

∗This is true only for the equilibrium based on linear strategies. Tsutsui and Mino8 is one of the first papers

dealing with nonlinear equilibria in linear quadratic deterministic differential games.
†In the class of games we analyze here, all variables are observable for every player.
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the case that changes in shadow prices have constant variance. Theorem 2.1 is complemented

with Theorem 3.1, which solves an inverse problem to determine utility functions that make the

certainty equivalence principle hold.

The study of inverse optimum problems in economics has a long history, starting with Hahn12

and Kurz;13 Chang14 extended the approach to the stochastic optimal growth model, and He

and Huang15 discussed a quite general inverse Merton’s model. When a policy function can be

rationalized by a well behaved utility function (i.e., strictly concave), it means that the pre-

scribed behavior is consistent with an optimizing behavior. Inverse problems are easily handled

with the Euler-Lagrange system of equations that directly characterizes the MPNE. Working

with these equations in stochastic differential games constitutes a novel approach introduced

in Josa-Fombellida and Rincón-Zapatero.16 The Euler-Lagrange system is obtained from the

HJB system upon differentiating the equations that constitute the HJB system with respect to

the state variables‡. Working with the Euler-Lagrange system of equations is advantageous for

studying the question we address here, since the equations are independent of the players’ value

functions, depending solely on their strategies (and the rest of the elements of the game). In

Josa-Fombellida and Rincón-Zapatero,16 the question of identifying games where the certainty

equivalence principle holds was not addressed. Hence, although the current paper is based on the

Euler-Lagrange system approach, it presents new results and techniques of independent interest.

Theorem 3.1 below applies to a class of scalar differential games with linear dynamics in

the strategies of the players and separable payoffs. This class encompasses many interesting

differential games. For instance, our method allows us to extend the aforementioned dynamic

advertising model studied in Sorger9§ and Prasad and Sethi.20 In addition, we study the non-

cooperative management of a stochastic productive asset. This enables resource games with a

linear recruitment function and constant elasticity of variance dynamics (that is, the dynamics

is driven by a CEV stochastic process)to satisfy the certainty equivalence principle for constant

relative risk aversion (CRRA) utility functions with a suitable coefficient of risk aversion. Our

approach allows us to discover new solutions in closed-form that, to our knowledge, are not

available in the literature¶.

The paper is organized as follows. Section 2 is devoted to the definition of the game and to

presenting some general results, including the Euler-Lagrange equations and the necessary con-

‡Rincón-Zapatero17 develops this methodology in deterministic games, allowing for non-smooth MPNE. Josa-

Fombellida and Rincón-Zapatero18 derive the Euler-Lagrange equations from the Maximum Principle in stochastic

optimal control problems instead of using the HJB system.
§The model is the duopoly extension of a model first proposed in Sethi19 in a single-player framework.
¶We have limited ourselves to the cases where we are able to find closed-form solutions, but Theorem 3.1 is a

general result.
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dition established in Theorem 2.1. Section 3 studies a class of scalar games with linear dynamics

in the players’ strategies and separable payoffs that satisfies the certainty equivalence principle.

Theorem 3.1 gives sufficient conditions for the existence of strictly concave utility functions for

which the MPNE is robust. An explicit expression for the player’s value function is also pro-

vided. Section 4 studies two applications: a general advertising game and a productive asset

game. Section 5, which establishes the conclusions of the paper, includes possible extensions

and lines for further research.

2 Description of the game and general results

In this section, we describe the stochastic differential game model as well as the method em-

ployed to analyze whether the game enjoys the certainty equivalence principle. As stated in the

Introduction, we use the Euler-Lagrange system of partial differential equations that directly

characterizes the MPNE instead of the classical HJB system.

We consider an N–person differential game over a bounded or unbounded time interval.

In the former case, T denotes the final date. The state process X, where X(s) ∈ X ⊆ Rn,

∀s ∈ [0, T ], satisfies the system of stochastic differential equations (SDEs henceforth)

dX(s) = f(s,X(s), u(s)) ds+ σ(s,X(s)) dw(s), t ≤ s ≤ T, (1)

where f and σ are both assumed to be of class C1 with respect to t, f is of class C2 with respect

to (x, u), and σ is of class C2 with respect to x. Players’ strategies are denoted by ui, where

ui(s) ∈ U i ⊆ Rn, ∀s ∈ [0, T ], i = 1, . . . , N , and u = (u1, . . . , uN ) is a profile of strategies.

As it is common in many games, we will assume that the equilibrium strategies are interior to

U i for each i = 1, . . . , N . The random source is given by a d–dimensional Brownian motion

w(s) defined on a complete probabilistic space (Ω,F ,P), where F = {Ft}t∈[0,T ] is the filtration

generated by the Brownian motion w. The instantaneous utility function of player i is Li and

the bequest function, Si. Given initial conditions (t, x) ∈ [0, T ] × X and an admissible profile

u, the payoff function of each player to be maximized is

J i(t, x;u) = Etx

{∫ T

t
e−ρ

i(s−t) Li(s,X(s), u(s)) ds+ e−ρ
i(T−t)Si(T,X(T ))

}
, (2)

where Etx denotes conditional expectation, under the probability measure P, given the initial

condition X(t) = x. The functions Li and Si are both of class C1 with respect to t, Li is of class

C2 with respect to (x, u), and Si is of class C2 with respect to x. The constant ρi ≥ 0 is the rate

of discount. In the infinite horizon case, the bequest functions Si are null, and ρi is supposed

to be strictly positive for all i. In this case, if the problem is autonomous and the strategies are
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Markov stationary, the value function is independent of time and the initial condition is simply

x.

Definition 2.1 (Admissible strategies) A profile u is admissible if ui(t) ∈ U i, all t ∈ [0, T ],

for i = 1, . . . , N and

(i) for every (t, x) ∈ [0, T ]×X , (1) admits a pathwise unique strong solution;

(ii) for each i = 1, . . . , N, there exists a function φi with φit, φ
i
tx and φixx continuous, such that

ui(s) = φi(s,X(s)) for every s ∈ [0, T ].

Let U i be the set of admissible strategies of player i and let U = U1 × · · · × UN .

Definition 2.2 (MPNE) An N–tuple of strategies φ ∈ U is called a Markov Perfect Nash

Equilibrium if for every (t, x) ∈ [0, T ]×X , for every ui ∈ U i

J i(t, x; (ui|φ−i)) ≤ J i(t, x;φ),

for all i = 1, . . . , N .

In the above definition, (ui|φ−i) denotes (φ1, . . . , φi−1, ui, φi−1, . . . , φN ).

Along the paper, we will use subscripts to denote partial derivatives, and primes to denote

scalar derivatives. Also, ∂z denotes total derivation with respect to the variable z; and for a

matrix A, tr(A) is the trace of A, A> denotes the transpose of A and A−> denotes the transpose

of the inverse of A, A−1.

Given an MPNE φ, the value function of player i is V i(t, x) := J i(t, x;φ), the deterministic

Hamiltonian is H i(s, x, u, pi) := Li(s, x, u) + (pi)>f(s, x, u), and the costate function is

Γi(t, x, u) := −f−>
ui

Liui(t, x, u), (3)

for all i = 1, . . . , N .

As shown in Josa-Fombellida and Rincón-Zapatero,16 an interior and smooth MPNE φ sat-

isfies the Euler-Lagrange system of differential equations

−ρiΓij(t, x, φ(t, x)) + ∂tΓ
i
j(t, x, φ(t, x)) + ∂xjH

i(t, x, φ(t, x),Γi(t, x, φ(t, x)))

+ 1
2∂xj tr

(
σ(t, x)σ(t, x)>∂xΓi(t, x, φ(t, x))

)
= 0,

(4)

with final conditions φi(T, x) = ϕi(x), given implicitly by

Γi(T, x, φ(T, x)) + Six(T, x) = 0,
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for i = 1, . . . , N and j = 1, . . . , n. In the case where the game is autonomous, of infinite horizon,

and the MPNE is stationary, the term ∂tΓ
i(x, φ(x)) = 0 vanishes.

Now, consider the associated deterministic game by taking σ = 0, so that the state equation

becomes

dX(s) = f(s,X(s), u(s))ds, s ∈ [t, T ], (5)

with initial condition X(t) = x. The objective of the ith player is to maximize in ui ∈ U i

J i(t, x;ui|u−i) =

∫ T

t
e−ρ

i(s−t)Li(s,X(s), u(s))ds+ e−ρ
i(T−t)Si(T,X(T )), (6)

i = 1, . . . , N , once the remaining players have fixed their strategies u−i ∈ U−i.

Definition 2.3 (Robust MPNE) We say that an MPNE of the associated deterministic game

(5), (6) is robust if it is also an MPNE of the stochastic game (1), (2).

Theorem 2.1 Suppose that φ is a robust MPNE of the deterministic game. Then there exist

functions Ai, such that for all i = 1, . . . , N , for all x ∈ X , for all t ∈ [0, T )

tr
(
(σσ>)(t, x)∂xΓi(t, x, φ(t, x))

)
= Ai(t). (7)

Proof. System (4) also characterizes the deterministic game, which is obtained when σ is

the null matrix. This is because the maximization condition of the Hamiltonian, for both the

deterministic and the stochastic game, is the same, since σ is independent of the strategies of the

players. This implies that Γi(t, x, u) is also the costate variable of player i in the deterministic

game. Hence, if φ is an MPNE of both the deterministic and the stochastic game, then the

vector

∂x tr
(
(σσ>)(t, x)∂xΓi(t, x, φ(t, x))

)
must be null for all i = 1, . . . , N ; hence, tr

(
(σσ>)(t, x)∂xΓi(t, x, φ(t, x))

)
depends only on t.

�

3 A class of differential games satisfying the certainty equiva-

lence principle

In the rest of the paper we focus on a particular family of stochastic differential games within

the class described in Section 2. The games have the following features: the time horizon is un-

bounded, the dynamics is linear with respect to the players’ strategies, the payoffs are separable,

there is one state variable, and each player has only one strategy at his/her disposal. We will
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identify conditions on the elements that define the game, such that the certainty equivalence

principle holds true. To carry out this identification, we solve an inverse problem, which consists

of, given the rest of the elements that define the game, finding well behaved utility functions

(i.e., utility functions that are twice differentiable, as well as strictly concave in each player’s

strategies) for which the certainty equivalence principle is satisfied. To solve the inverse problem,

we use the Euler-Lagrange equation (4), both for the deterministic and for the stochastic game,

and the necessary condition established in Theorem 2.1.

We now describe the inverse problem. We suppose that, when not explicitly stated, the func-

tions that appear below satisfy the differentiability conditions required in the previous section.

The evolution of the state variable is given by the scalar stochastic process

dX(t) =

(
−

N∑
i=1

ai(X(t))ui(t) + b(X(t))

)
dt+ σ(X(t))dw(t), (8)

where the functions ai and b are given, and have a continuous derivative. Moreover, we assume

that the functions ai are not null and that they are monotone (not necessarily strictly), for all

i = 1, . . . , N . Our aim is to find a strictly concave utility function `i(u
i) such that, given the

functions hi(x), the game with payoffs

Ex

∫ ∞
0

e−ρ
it
(
`i(u

i(t)) + hi(X(t))
)
dt, (9)

for i = 1, . . . , N , admits a robust MPNE. Hence, the utility function of the ith player is

Li(x, ui) = `i(u
i) + hi(x). Since that the game is autonomous, we have eliminated the time

dependence in the interval of integration as well as in the expectation operator. Summing up,

we set and study the following inverse problem:

Determine strictly concave and continuously differentiable utility functions, `1, . . . , `N ,

such that the stochastic differential game

SDG :=
(
(`i)

N
i=1, (hi)

N
i=1, (ai)

N
i=1, b, σ

)
,

and its associated deterministic differential game

DDG :=
(
(`i)

N
i=1, (hi)

N
i=1, (ai)

N
i=1, b, 0

)
,

have the same MPNE.

As defined in Section 2, an MPNE that solves both SDG and DDG, is a robust MPNE. In what

follows we will denote

Θ(x) =

∫ x 1

σ2(v)
dv, (10)
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the antiderivative of 1/σ2(x), with null constant. The next proposition establishes that a robust

and smooth MPNE must satisfy a system of linear differential equations where the expression

of the unknowns functions `1, . . . , `N do not appear explicitly.

Proposition 3.1 If φ is a robust MPNE, then there exist constants Ai, Bi such that φ satisfies

the system of linear linear differential equations(
AiΘ(x) +Bi

) N∑
j 6=i

(φj)′(x)aj(x) = −
N∑
j=1

(
Ai

σ2(x)
aj(x) + (AiΘ(x) +Bi)a′j(x)

)
φj(x)

+ (b′(x)− ρi)(AiΘ(x) +Bi) + h′i(x) + Ai

σ2(x)
b(x),

(11)

for all x ∈ X , for all i = 1, . . . , N .

Proof. If φ is a robust MPNE, then it satisfies the Euler-Lagrange equation (4) with σ = 0,

which for this game becomes (we occasionally omit the dependence of φi on x in what follows

to simplify the notation)

0 = −ρiΓi(x, φi) + ∂x

(
`i(φ

i) + hi(x) + Γi(x, φi)

(
−

N∑
i=1

ai(x)φi + b(x)

))
, (12)

equation that, after expanding the x-derivative, becomes

0 = −ρiΓi + `′i(φ
i)(φi)′ + h′i(x) + ∂xΓi(x, φi)

− N∑
j=1

aj(x)φj + b(x)


+ Γi(x, φi)

− N∑
j=1

a′j(x)φj −
N∑
j=1

aj(x)(φj)′ + b′(x)

 ,

(13)

where

Γi(x, ui) =
`′i(u

i)

ai(x)
. (14)

On the other hand, by Theorem 2.1, φ satisfies

∂xΓi(x, φi) =
Ai

σ2(x)
(15)

for some constant Ai, and for all i = 1, . . . , N . Integrating expression (15), we obtain

Γi(x, φi(x)) = AiΘ(x) +Bi, (16)

for another arbitrary constant Bi, for all i = 1, . . . , N . Equating (14) and (16) with ui = φi, we

find the following expression for the derivative of the utility function evaluated at the equilibrium

strategy of the ith player

`′i(φ
i(x)) = ai(x)(AiΘ(x) +Bi). (17)
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Substituting Γi, ∂xΓi and `′i(φ
i) given in (16), (15) and (17), respectively, into (13), for i =

1, . . . , N , we obtain that φ satisfies the linear system of differential equations

0 = −ρi(AiΘ(x) +Bi) + (AiΘ(x) +Bi)ai(x)(φi)′ + h′i(x) +
Ai

σ2

− N∑
j=1

aj(x)φj + b(x)


+(AiΘ(x) +Bi)

− N∑
j=1

a′j(x)φj −
N∑
j=1

aj(x)(φj)′ + b′(x)

 .

Rearranging terms, we obtain (11). �

Note that (11) is linear due to the linearity of the dynamics (8) with respect to the strategies

of the players and to the separability of the players’ payoffs. We could have set a more general

framework, but at the cost of obtaining a nonlinear system of differential equations for the robust

MPNE. As we wish, not only to give a theoretical result, but to find explicitly utilities and

equilibria, we make the simplifying assumption (8). Another advantage of our game problem

specification is that, as the system is linear, suitable assumptions on the coefficients would

guarantee the existence and uniqueness of a global solution. We postulate the existence of

a unique solution to (11) in the next theorem, which establishes sufficient conditions for the

solvability of the inverse problem.

In what follows we use the notation ζi for the inverse of φi, that is, x = ζi(φi(x)), for all

x ∈ X , for all i = 1, . . . , N . The inverse of φi exists under the assumptions of the theorem below.

Theorem 3.1 Let φ be a solution of the system (11) for which each φi is twice continuously

differentiable and strictly monotone in X , and such that (8), with initial condition X(t) = x,

admits a unique strong solution Xφ for each (t, x) ∈ [0,∞)× R. Let

`i(u
i) =

∫ ui (
AiΘ(ζi(v)) +Bi

)
ai(ζ

i(v))dv, (18)

where Ai and Bi are constants, and let V i be defined by

ρiV i(x) = `i(φ
i(x)) + hi(x)−

(
AiΘ(x) +Bi

) N∑
j=1

aj(x)φj(x)

+(AiΘ(x) +Bi)b(x) +
Ai

2

(19)

for all i = 1, . . . , N . Suppose that aiΘ has a continuous derivative for all i = 1, . . . , N , where

Θ is defined in (10) and that the functions ai and aiΘ are monotone, with at least one of

them strictly monotone, for all i = 1, . . . , N . Suppose further that the following transversality

condition holds: for all ui ∈ U i,

lim inf
T→∞

e−ρ
iTEtxV

i(Xui|φ−i(T )) ≥ 0, (20)

9



and

lim sup
T→∞

e−ρ
iTEtxV

i(Xφ(T )) ≤ 0, (21)

for all i = 1, . . . , N . Then

(a) The function `i is twice continuously differentiable and strictly concave for suitable constants

Ai, Bi, for all i = 1, . . . , N .

(b) The strategy profile φ is a robust MPNE.

(c) The function V i is the (strictly concave) value function of player i, for all i = 1, . . . , N .

Proof. It is clear that `i, as defined in (18), is twice continuously differentiable, for i = 1, . . . , N .

Taking the derivative in (18) with respect to ui, we have

`′i(u
i) = ai(ζ

i(ui))(AiΘ(ζi((ui)) +Bi),

and differentiating again this expression and collecting terms, we obtain

`′′i (u
i) = (ζi)′(ui)

(
Ai(aiΘ)′(ζi((ui)) +Bia′i(ζ

i(ui))
)
. (22)

We want to show that it is possible to choose suitable constants Ai and Bi such that `′′i (u
i) < 0,

for i = 1, . . . , N . This will prove (a). Note that (ζi)′ has the same sign of (φi)′. By assumption,

this is positive or negative for all x ∈ X , since φi is strictly monotone. Assume, without loss

of generality, that (ζi)′ > 0 for some player i ∈ {1, . . . , N}. Since that both aiΘ and ai are

monotone, and that at least one of these two functions is strictly monotone, it is possible to

select constants Ai 6= 0 and Bi 6= 0 such that Ai(aiΘ)′ ≤ 0 and Bia′i ≤ 0 for all x ∈ X , and

at least one of these two expressions is negative for all x ∈ X . Thus, `′′i (u
i) < 0 as claimed.

The case (ζi)′ < 0 is handled in the same way. This shows (a). We will prove (b) and (c)

at once. We start by showing that (19) defines a solution of the HJB system of the stochastic

differential game. To this end, we compute the first and second order derivatives of V . Plugging

Γi = AiΘ+Bi into (19), we have (again we occasionally omit the dependence of φi on x in what

follows to simplify the notation)

ρiV i(x) = `i(φ
i) + hi(x) + Γi(x, φi)

− N∑
j=1

aj(x)φj + b(x)

+
Ai

2
. (23)

Since φ satisfies (12), −ρiΓi(x, φi) + ∂xρ
iV i(x) = 0 holds true for all x ∈ X ; thus, (V i)′(x) =

10



Γi(x, φ(x)) = AiΘ(x) +Bi, and differentiating again, (V i)′′(x) = Ai

σ2(x)
. Then

−ρV i(x) +H i(x, φ(x), (V i)′(x)) +
1

2
σ2(x)(V i)′′(x)

= −ρiV i(x) + `i(φ
i) + hi(x) +

(
−

N∑
i=1

ai(x)φi + b(x)

)
(V i)′(x) +

1

2
σ2(x)(V i)′′(x)

= −ρiV i(x) + `i(φ
i) + hi(x) +

(
−

N∑
i=1

ai(x)φi + b(x)

)
Γi(x, φi) +

Ai

2
,

which is equal to zero by (23). Hence, we have proved that V i satisfies the second order

differential equation

−ρiV i(x) +H i(x, φ(x), (V i)′(x)) +
1

2
σ2(x)(V i)′′(x) = 0 (24)

for all x ∈ X , for all i = 1, . . . , N . Consider the Hamiltonian

H i(x, (ui|φ−i(x)), (V i)′(x)) = `i(u
i) + hi(x) +

(
− uiai(x)−

N∑
j 6=i

aj(x)φj(x) + b(x)

)
(V i(x))′.

The partial derivative with respect to ui evaluated at ui = φi(x) is

∂H i

∂ui
(x, (φi(x)|φ−i(x)), (V i)′(x)) = `′i(φ

i(x))− ai(x)(V i)′(x),

for all x ∈ X , for all i = 1, . . . , N . Taking into account (14) and the identity (V i)′(x) =

Γi(x, φ(x)), we have that `′i(φ
i(x)) − ai(x)(V i)′(x) = 0, for all x ∈ X . Thus, ui = φi(x) is a

critical point of the function ui 7−→ H i(x, ui|φ−i(x), (V i)(x)), for all x ∈ X . Since

∂2H i

∂(ui)2
(x, (ui|φ−i(x)), (V i)′(x)) = `′′i (u

i) < 0,

for all ui, ui = φi(x) is the unique global maximum of ui 7−→ H i(x, ui|φ−i)(x), (V i)(x)). Hence

H i(x, (φi(x)|φ−i(x)), (V i)′(x)) = max
ui

H i(x, (ui|φ−i(x)), (V i)′(x))

for all ui, for all x ∈ X and for all i = 1, . . . , N . Thereby, (24) is the HJB equation for an MPNE

0 = −ρiV i(x) + max
ui

H i(x, (ui, φ−i(x)), (V i)′(x)) +
1

2
σ2(x)(V i)′′(x).

Finally, the transversality conditions (20) and (21) allow us to apply a Verification Theorem,

see Fleming and Soner21 Ch. III Th. 9.1—turning minimizing to maximizing— or Dockner et

al.3 Th. 8.5. �

Regarding the assumptions imposed in Theorem 3.1, the monotonicity of the functions ai

and aiΘ, for all i = 1, . . . , N , play an important role to show that the functions `1, . . . , `N that
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solve the inverse problem are strictly concave. The transversality conditions (20) and (21) are

adapted from Fleming and Soner21 Ch. III Th. 9.1—turning minimizing to maximizing—from

an optimal control problem to a differential game problem. They are the counterpart of the

boundary conditions satisfied by the costate variable and the optimal controls in finite horizon

games in infinite horizon problems. Contrary to the finite horizon case, however, (20) and (21)

are not necessary conditions of optimality for infinite horizon problems any more. They are

only sufficient conditions. Dockner et al.3 discuss the role of transversality conditions in infinite

horizon deterministic and stochastic differential games, and establish several forms depending

on the optimality criteria chosen. It is worth mentioning that condition (20) holds true if the

value function V i is bounded below. The two differential games models that we study in Section

4 satisfy this requirement, since the player’s value functions are nonnegative. Regarding (21),

it imposes that the growth rate of the expected optimal utility, that a player may obtain along

the equilibrium in the long run, is smaller than the player’s discount rate, ρi > 0. We check

that this property holds true in the two differential games that we analyze in Section 4.

Remark 3.1 (Optimal Control Problem) In control problems, where N = 1, (11) is an

algebraic equation, not a differential one. Introducing the notation ai = a, hi = h, Ai = A and

Bi = B for all i = 1, . . . , N and solving, we have that

φ(x) =
(b′ − ρ)(AΘ(x) +B) + h′(x) + A

σ2(x)
b(x)

A
σ2(x)

a(x) + (AΘ(x) +B)a′(x)
,

is a candidate to be a robust control.

Remark 3.2 (Symmetric Game) Consider a symmetric game with N > 1 players and let φ

be a robust symmetric MPNE. As in the remark above, we denote all functions and constants

defining the game without indexes, as well as the introduced constants A and B. Observe that,

with the assumptions of Theorem 3.1, the sign of AΘ(x) +B is well defined, positive or negative

for all x. The linear ODE (11) takes the form

φ′(x) = P (x)φ(x) +Q(x), (25)

where the coefficients are

P (x) =
N

1−N

(
A

σ2(x)(AΘ(x) +B)
+
a′(x)

a(x)

)
;

Q(x) =
1

(N − 1)a(x)

(
b′(x)− ρ+

h′(x)

AΘ(x) +B
+

Ab(x)

σ2(x)(AΘ(x) +B)

)
.

12



An integrating factor is |AΘ(x) + B|
N

1−N a(x)
N

1−N . In consequence, the general solution of (25)

is

φ(x) = |AΘ(x) +B|
N
N−1a(x)

N
N−1

(∫ x

Q(z)|AΘ(z) +B|
N

1−N a(z)
N

1−N dz + C

)
,

where C is an arbitrary constant. This is a candidate for robust MPNE, for the game with the

utility function `i as given in (18). We will use this formula in Section 4.2 below.

Remark 3.3 (Linear Value Functions) It has been proven in Theorem 3.1 that (V i)′(x) =

Γi(x) = AiΘ(x) + Bi. Hence, the value function is linear in x for player i if it is possible

to choose Ai = 0. Note that it is not possible to take Θ(x), defined in (10), constant because

1/σ2(x) 6= 0. It is important to note that, from (22) in the proof of the theorem, the selection

Ai = 0 is possible only if a′i does not vanish; otherwise, the function `i constructed in the theorem

is not strictly concave, and there is no guarantee that the solution of the system (11), be a Nash

equilibrium of the Hamiltonians of the players. See Section 4.1 below for a game with linear

value function.

4 Examples

In this section, we illustrate the theory developed in the previous sections by means of two

stochastic differential games models. They are not academic models, but reflect important eco-

nomic behavior of the agents that interact in a noncooperative environment under uncertainty.

The first game deals with competition between firms to capture costumers through advertising.

The second game models competition between economic agents to exploit a renewable resource

or productive asset. Both games present a rather different structure. While the value function

of the first game is linear, which easily explains why the MPNE is robust, the second game’s

value function is of the CRRA family. In this case, it is not evident whether it satisfies the

certainty equivalence principle. Hence, this model constitutes a positive test of the usefulness

of our approach.

4.1 A dynamic advertising game

Consider the stochastic differential game of competitive dynamic advertising of two firms studied

in Sorger9 in its infinite horizon formulation. Two firms compete for market shares through

advertising effort. We denote the market share of firm 1 at time t by X(t) and assume that

the size of the total market is constant over time. Normalizing the total market to 1, we obtain

that 1 − X(t) is the market share of firm 2 at time t. Let us denote then X1(t) = X(t) and

13



X2(t) = 1 − X(t), so Xi(t) represents the market shares of firm i at time t. The objective

functional to be maximized for firm i is

J i(t, x;u1, u2) = Etx

∫ ∞
0

e−ρ
it
(
qiXi(t)− Ci(ui(t))

)
dt, (26)

for i = 1, 2, and dynamics

dX(t)
(
δ1(1−X(t))

1
1+m1 u1(t)− δ2X(t)

1
1+m2 u2(t)− δ(2X(t)− 1)

)
dt+ σ(X(t))dw(t), (27)

with X(0) = x ∈ X = [0, 1], and where mi > 0, for i = 1, 2. The cost function Ci has to

be determined so that the MPNE of the game is robust. The model specification in Sorger9 is

obtained with Ci(u
i) = ci

(ui)2

2 and m1 = m2 = 1, δ1 = δ2 = 1, δ = 0. Prasad and Sethi20 allows

for δ1, δ2, δ > 0. In the above, ui(t) is the advertising rate at time t, ρi > 0 is the constant

discount rate and qi > 0 is the constant revenue per unit of market share of firm i, for i = 1, 2.

The diffusion parameter σ(x) ≥ 0 satisfies σ(0) = σ(1) = 0. The state dynamics reflects two

facts, already present in the classical Vidale-Wolfe advertising model, Vidale and Wolfe:22 (i) a

concave saturation effect in the capture of new costumers, and (ii) a positive (resp. negative)

effect of own (resp. competitor) advertising spending. In comparison with the original game,

we allow here for asymmetric market responses, even if the advertising effectiveness parameters

δ1 and δ2 are equal. The churn parameter δ > 0, accounts for declining effects in market shares

due to other causes than advertising from the competitor firm, such as product obsolescence or

lack of product differentiation.

In the notation of Section 3, a1(x) = −δ1(1− x)
1

1+m1 , a2(x) = δ2x
1

1+m2 , b(x) = −δ(2x − 1)

and h1(x) = q1x, h2(x) = q2(1− x). By (3)

Γ1(x, u1) = C ′1(u
1)δ1(1− x)

− 1
1+m1 , Γ2(x, u2) = −C ′2(u2)δ2x

− 1
1+m2 .

Linear value functions require (see Remark 3.3)

C ′1(u
1(x)) = B1(1− x)

1
1+m1 , C ′2(u

2(x)) = −B2x
1

1+m2

for suitable constants B1 > 0, B2 < 0, so (7) is satisfied independently of σ(x). We still have to

check that the these two strategies solve the system (11), which in this particular game become

(with Ai = 0)

B1δ2x
1

1+m2 (u2)′ = −B1 δ1
1 +m1

(1− x)
−m1
1+m1 u1 −B1 δ2

1 +m2
x
−m2
1+m2 u2

+B1(−2δ − ρ1) + q1,

−B2δ1(1− x)
1

1+m1 (u1)′ = −B2 δ1
1 +m1

(1− x)
−m1
1+m1 u1 −B2 δ2

1 +m2
x
−m2
1+m2 u2

+B2(−2δ − ρ2)− q2.

14



The structure of these equations suggests a solution (u1, u2) of the form u1(x) = η1(1− x)
m1

1+m1 ,

u2(x) = η2x
m2

1+m2 , with ηi > 0, i = 1, 2. After substitution and collection of terms, the above

differential system reduces to the following pair of algebraic relations

B1
(
η2δ2 + η1

δ1
1+m1

+ 2δ + ρ1
)
− q1 = 0,

B2
(
η1δ1 + η2

δ2
1+m2

+ 2δ + ρ2
)

+ q2 = 0.
(28)

Let ζ1(v) = 1− ( vη1 )
1+m1
m1 and ζ2(v) = ( vη2 )

1+m2
m2 , the inverse functions of u1 and u2, respectively.

From (18), we have the cost functions (remember that Ai = 0)

`1(u
1) = −C1(u

1) = −B1

∫ u1

a1(ζ
1(v))dv = B1 δ1

η
1
m1
1

(u1)
1+ 1

m1

1 + 1
m1

;

`2(u
2) = −C2(u

2) = −B2

∫ u2

a2(ζ
2(v))dv = −B2 δ2

η
1
m2
2

(u2)
1+ 1

m2

1 + 1
m2

.

(29)

If we denote c1 = B1 δ1

η
1
m1
1

and c2 = −B2 δ2

η
1
m2
2

, then both c1, c2 > 0. Solving for B1 and B2 and

plugging these values into the system (28), we obtain

c1η
1
m1
1

(
η2δ2 + η1

δ1
1 +m1

+ 2δ + ρ1
)
− δ1q1 = 0,

c2η
1
m2
2

(
η1δ1 + η2

δ2
1 +m2

+ 2δ + ρ2
)
− δ2q2 = 0.

(30)

Given ci, mi, ρ
i, qi, δi, i = 1, 2 and δ, the existence of positive solutions η1, η2 of this algebraic

system guarantees the existence of a robust MPNE φ(x) = (η1(1 − x)
m1

1+m1 , η2x
m2

1+m2 ). This is

because the SDE for the optimal path Xφ is linear, hence a unique strong solution exists. It is

straightforward to check the rest of the conditions of Theorem 3.1. For instance, in order to

check the transversality conditions we note that the value functions are linear, as can be easily

realized from (19). Then, substituting the robust MPNE φ in (27), the transversality conditions

are a consequence of

lim
T→∞

e−ρ
iTExX

φ(T )

= lim
T→∞

(
δ1η1 + δ

δ1η1 + δ2η2 + 2δ
e−ρ

iT +

(
x− δ1η1 + δ

δ1η1 + δ2η2 + 2δ

)
e−ρ

iT e−(δ1η1+δ2η2+2δ)T

)
= 0,

for i = 1, 2, because δi, δ, ηi, ρ
i > 0, for i = 1, 2. We collect our findings in the following

proposition.

Proposition 4.1 Let the advertising game given by (26) and (27), with cost functions C1, C2

given in (29), be such that (30) admits a positive solution (η1, η2). Then the certainty equivalence

principle holds for the game and the strategy profile φ(x) = (η1(1−x)
m1

1+m1 , η2x
m2

1+m2 ) is a robust

MPNE. Moreover, the players’ value functions are linear in x.
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4.2 A stochastic productive asset game

Let an N player symmetric noncooperative differential game where each player i consumes at

rate ci ≥ 0 from a stochastic productive asset X. The payoff functional is

J i(t, x; (c1, . . . , cN ) = Etx

{∫ ∞
t

e−ρ
i(s−t)`(ci(s))ds

}
, (31)

subject to

dX(s) =

(
F (X(s))−

N∑
i=1

ci(s)

)
ds+ σ(X(s))dw(s), X(t) = x > 0. (32)

The function F is the recruitment/production function. The class of admissible strategies U i

for each player is as in Definition 2.1, with the additional condition that X ≥ 0 almost sure

is required, that is to say X = [0,∞). Further conditions on U i will be given in each of the

specific cases we consider below. This game has been analyzed in detail in Josa-Fombellida

and Rincón-Zapatero,16 where we provide necessary and sufficient conditions for existence of a

unique and smooth MPNE of the finite horizon game. Here we complete the study by analyzing

whether the game satisfies the certainty equivalence principle.

According to Remark 3.2, and taking B = 0, a robust equilibrium must satisfy (25) with

coefficients

P (x) =
N

1−N
σ2(x)Θ(x)

, Q(x) =
1

1−N

(
ρ− F ′(x)− F (x)

σ2(x)Θ(x)

)
. (33)

Recall that Θ is the primitive of 1/σ2(x) with null constant. We consider a linear production

function‖

F (x) = µx, µ ≥ 0 (34)

and assume a CEV model, that is

σ(x) = σxa, with 1− 1
2N < a < 1 and ρ > 2µ(1− a). (35)

In this case, we have

Θ(x) =
1

σ2(1− 2a)
x1−2a, P (x) =

N

1−N
1− 2a

x
, Q(x) =

ρ+ 2µ(a− 1)

1−N
.

Note that Θ(x) < 0 for all x > 0, since a > 1
2 , hence we take A < 0 and B = 0. By Remark 3.2,

φ(x) = βx + ηx(2a−1)N/(N−1) is a solution of (33), where β = ρ−2µ(1−a)
1−2N(1−a) is positive given our

‖We have also solved the inverse problem for linear F and σ, as well as for a square root recruitment function,

F (x) = µ
√
x, and linear σ. Readers interested in the details will receive a copy of our computations and a proof

of optimality, upon request.
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assumptions, and η ≥ 0. Note that φ is smooth, positive and increasing in (0,∞) and φ(0) = 0.

We consider only the case with η = 0, so the inverse of φ is ζ(c) = c/β. Substituting into

(18) and taking A = σ2(1 − 2a)β1−2a, we find that the utility function is of the CRRA class,

`(c) = c2(1−a)

2(1−a) . Letting θ ≡ 2a − 1, this can be rewritten `(c) = c1−θ

1−θ . The constraints on

a imply 1 − 1
N < θ < 1. In terms of θ, the diffusion coefficient is then σ(x) = σx(1+θ)/2. At

equilibrium, the asset evolves according to the SDE

dXφ(s) ≡ dX(s) = (µ−Nβ)X(s)ds+ σX(s)(1+θ)/2dw(s), X(0) = x > 0. (36)

Regarding the existence of solutions to (36), the functions 1/σ2(x) and x/σ2(x) are locally

integrable Borel functions in (0,∞). Indeed, both functions are continuous on any compact

subset of (0,∞), and are thus integrable. Hence, the SDE (36) admits a unique-in-law weak

solution, see Karatzas and Shreve23 Ch. V, Th. 5.15. In fact, since the coefficients are locally

Lipschitz, (36) admits a pathwise unique strong solution up to exit time of the interval (0,∞),

see Karatzas and Shreve23 Ch. IX, Ex. (2.10). To continue with the proof, we restrict the class

of admissible strategies U i to those elements ci which satisfy 0 ≤ ci ≤ kx for suitable k. For

ci ∈ U i, let the process Xci be given by

dXci(s) = (µXci(s)− ci(s)− (N − 1)βXci(s))ds+ σ(Xci(s))(1+θ)/2dw(s),

Xci(0) = x >. Let X̂ with X̂(0) = x and

dX̂(s) = (µ− k − (N − 1)β)X̂(s)ds+ σX̂(s)(1+θ)/2dw(s). (37)

By a comparison theorem in Ikeda and Watanabe,24 Xci ≥ X̂. Let µ0 = µ− k − (N − 1)β. By

Example 3.2 in Mijatović and Urusov,25 the exponential expression given by

M(t) = exp

(
−µ0
σ

∫ t

0
X̂(s)(1−θ)/2dw(s)− 1

2

µ20
σ2

∫ t

0
X̂(s)1−θds

)
is a uniformly integrable martingale, since 1+θ

2 < 1. This implies that X̂ ∈ (0,∞) with prob-

ability one, see Theorem 2.1 in Mijatović and Urusov.25 In consequence, V (Xci(T )) is well

defined and V (Xci(T )) ≥ V (X̂(T )) ≥ 0 a.e., so (20) in Theorem 3.1 trivially holds. On the

other hand, Xφ ≤ X̃, where dX̃(s) = µX̃(s)ds + σX̃(s)(1+θ)/2dw(s), and X̃(0) = x. Note that

e−µtX̃(t) = x+σ
∫ t
0 e
−µsX̃(1+θ)/2(s)dw(s) is a nonnegative local martingale, thus a supermartin-

gale, hence Ex(e−µT X̃(T )) ≤ x. This implies that Xφ does not exit at ∞. Moreover, since the

value function is increasing and concave, then

Ex(V (Xφ(T )) =
A

1− θ
Ex(Xφ(T ))1−θ ≤ A

1− θ
(ExX̃(T ))1−θ ≤ A

1− θ
x1−θeµ(1−θ)T ,

by Jensen’s inequality. Thus, condition (21) holds, because ρ > µ(1 − θ), by (35). We have

proved the following proposition.
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Proposition 4.2 Let the symmetric productive asset game with N players be that given by (31),

(32), (34) and (35). Then the certainty equivalence principle holds for the game with the utility

function `(c) = c1−θ

1−θ , and the strategy profile φ(x) = (βx, . . . , βx) is a robust MPNE, where

θ = 2a− 1, β =
ρ− 2µ(1− a)

1− 2N(1− a)
.

5 Conclusions

This paper studies whether the certainty equivalence property holds in games beyond the well-

known linear quadratic case and games with linear or logarithmic value functions. To approach

the problem through the value function and the HJB equations is not easy, at least when the

diffusion coefficient depends on the state variable, since then—with the exception of games

where the value function is linear—the value function will be different in the stochastic and in

the deterministic case. Hence, we have chosen to work with the Euler-Lagrange equations, which

deal directly with the MPNE. As the MPNE is the same for both the deterministic and the

stochastic differential games, the Euler-Lagrange equations constitute an overdetermined system.

The existence of a common solution provides convenient information to solve an inverse problem

that characterizes the utility functions of the players. We have shown how our approach can be

used to find closed-form solutions to games for which a solution was not known. Further research

can be conducted in three directions at least: (i) to work more examples than those analyzed

here; (ii) to extend Theorem 3.1 to cover stochastic differential games where the players may

affect the size of the uncertainty, and (iii) to consider stochastic processes where the uncertainty

is more general than Brownian uncertainty.
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