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1 Introduction

The paper provides a systematic way for finding a partial differential equation (PDE)

that can be applied directly to the optimal control in one–dimensional stochastic

control problems of Mayer type, where there are no constraints on the controls or,

more generally, where the optimal control is interior to the control region. This new

PDE is obtained from the optimality conditions of the stochastic maximum principle,

and is equivalent to the Hamilton–Jacobi–Bellman (HJB) equation.

Though the initial idea of obtaining a system of PDEs for the optimal control

appears in [1] in connection with deterministic control problems, the main antecedents

of this paper are: [13] and [12] in deterministic differential games; [7], in stochastic

control problems, where the diffusion parameter of the state process is independent

of the control variables; [6] in the Merton problem; and [14] in a model of optimal

liquidation in illiquid markets. In all these papers, the use of the PDE for optimal

control has proved to be useful. The objective of this paper is to extend the approach

to the one–dimensional stochastic control problem of Mayer type, where there is no

running payoff functional, but the diffusion term of the state process depends on the

control variable.

Some comments about our assumptions are in order here. We are aware that they

are rather strong, as they involve the regularity imposed on the coefficients of the

controlled process for the applicability of the stochastic maximum principle, as well

as the interiority of the optimal process, which is supposed to be continuously differ-

entiable. These hypotheses are used to find a PDE for the optimal control, and we

can think of it as a heuristic method to find new information on the optimal solution,

as it is the derivation of the HJB equation for the value function. However, once

the PDE is obtained, it can be checked ex–post that the smoothness and interiority

assumptions hold and that the solution of the PDE is indeed the optimal solution,

even if the requirements of the maximum principle do not hold. This is shown in

detail in Merton’s problem studied in Section 5.2. Thus, the main proposal of the

paper is to use the PDE we find as the point of departure to further investigate the

optimal solution, as an alternative to the HJB equation.

The paper is organized as follows. In Section 2 we present the control problem, as

well as some definitions and notations. In Section 3 we obtain necessary optimality

conditions in the form of PDEs that the adjoint feedback function and the optimal

control must satisfy. The relationship between the new PDEs and the HJB equation

is shown in Section 4, and a sufficient optimality condition is given in terms of a
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verification theorem in [5]. Section 5 contains applications of the theory to linear

models in the dynamics. In particular, the existence of a solution is shown for the

Merton problem with deterministic coefficients, for a class of utility functions having

a bounded relative risk tolerance index. In Section 6 models with a multiplicative

structure in the dynamics are introduced. It turns out that some simple assumptions

on the data allows us to solve a wide range of models of this type, from which we

include an extension of Merton’s problem to situations where the investor’s decisions

may influence the evolution of the stochastic price process of the risky asset. The

paper ends with some conclusions in Section 7.

2 The control problem

In this section the framework for the stochastic control problem to be considered is

presented. First we shall introduce some useful notations. Throughout this paper,

given a differentiable function h : Rn → R, we will denote by hy the partial derivative

of h with respect to the variable y and, if n = 1, by h′ the derivative of h with

respect to a variable other than time, and by ḣ the derivative with respect to the

time–variable t. The notation is analogous for the partial derivatives of second order.

We will denote total derivative by ∂/∂x. Vectors v ∈ Rn are row vectors and vi is the

ith component; finally, > denotes transposition.

Let [0, T ] be a time interval with 0 < T < ∞ and let (Ω,F , {Ft}t∈[0,T ], P) be

a complete filtered probability space. Assume that on this space an `–dimensional

Brownian motion {w(t)}t∈[0,T ] is defined. Let E denote expectation under the prob-

ability measure P.

The state space is R and the control region is some convex subset U ⊆ R. A U–

valued control process {u(s)} defined on [t, T ]×Ω is an Fs–progressively measurable

map (r, ω) → u(r, ω) from [t, s] × Ω into U , that is, Bs × Fs–measurable for each

s ∈ [t, T ], where Bs denotes the Borel σ–field on [t, s]. For simplicity, we will denote

u(t) as u(t, ω).

The state process X ∈ R obeys the controlled stochastic differential equation

(SDE)

dX(s) = f(s,X(s), u(s)) ds + σ(s,X(s), u(s)) dw(s), s ≥ t, (1)

with initial condition X(t) = x. An important feature of the above equation is that

the drift, f , and the noise coefficient, σ, both depend on the control variable, u. Here,

σ is a vector with ` components.
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Definition 2.1 (Admissible control). A control {u(t)}t∈[0,T ] is called admissible if

(i) for every (t, x) the SDE (1) with initial condition X(t) = x admits a pathwise

unique strong solution;

(ii) there exists some measurable function φ : [0, T ] × R −→ U such that u is in

relative feedback to φ, i.e. u(s) = φ(s, X(s)) for every s ∈ [0, T ].

Let U(t, x) denote the set of admissible controls corresponding to the initial condition

(t, x) ∈ [0, T ]× R.

Given the initial data (t, x) ∈ [0, T ]× R, the criterion to be maximized is

J(t, x; u) = e−δ(T−t)Etx {S(T, X(T ))} , (2)

in the class of controls u ∈ U(t, x), where Etx denotes conditional expectation with

respect to the initial condition (t, x). The constant δ ≥ 0 is the discount factor. The

functions f : [0, T ]× R× U −→ R, σ : [0, T ]× R −→ R1×`, S : [0, T ]× R −→ R, are

all assumed to be continuous. They are also of class C2 with respect to (x, u) and of

class C1 with respect to t.

The value function is defined as V (t, x) = supu∈U(t,x) J(t, x; u). An admissible

control û ∈ U is optimal if V (t, x) = J(t, x; û) for every initial condition (t, x).

The classical method for determining feedback solutions in a control problem is

based on finding the value function through the HJB equation and the optimal control

from that. It is well known that if V is of class C1,2, then it satisfies the HJB equation

Vt(t, x) + max
u∈U

G(t, x, u, Vx(t, x), Vxx(t, x)) = δV (t, x), ∀(t, x) ∈ [0, T )× R,

V (T, x) = S(T, x), ∀x ∈ R,

and the maximizing argument is optimal if it is admissible; see [5]. Here

G(t, x, u, p, P ) = f(t, x, u)p +
1

2
σ(t, x, u)σ>(t, x, u)P

denotes the generalized Hamiltonian. We will denote

u(t, x, p, P ) ∈ argmaxu∈UG(t, x, u, p, P ). (3)
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3 Necessary conditions

In this section we deduce a PDE that an optimal control must satisfy as an alternative

to the HJB equation. Our derivation depends on the application of the stochastic

maximum principle (MP hereafter). The MP and technical conditions on functions

f , σ and S that allow for its application can be found in [15]. We will take these con-

ditions for granted in the derivation of the quasilinear PDE as a necessary condition

for optimality.

Let (X, u) be an optimal control pair, with u(t) = φ(t,X(t)). Applying the

stochastic MP, there are unique square integrable processes p and q that satisfy the

backward adjoint equation

dp(s) = −Hx(s,X(s), φ(s,X(s)), p(s), q(s))ds + q(s)dw(s), s ∈ [t, T ], (4)

p(T ) = Sx(T, X(T )), (5)

such that the following maximization condition

H(s,X(s), φ(s,X(s)), p(s), q(s)) = max
u∈U

H(s,X(s), u, p(s), q(s)) (6)

holds for every s ∈ [t, T ], P a.s., where H(t, x, u, p, q) = f(t, x, u)p + σ(t, x, u)q> is

the stochastic Hamiltonian.

Definition 3.1 (Adjoint feedback) A function γ : [0, T ]×R→ R is called an adjoint

feedback if it expresses the adjoint process p in terms of the state variable X, p(s) =

γ(s,X(s)).

To facilitate the exposition of our results, we impose the following throughout the

paper: At the optimal φ̂

∀(t, x) ∈ [0, T ]× R, fu(t, x, φ̂) 6= 0 and σuσ
>(t, x, φ̂) 6= 0.

These conditions imply that both γ and γx are different from zero, as can easily be

seen in the proof of the next result. Thus, the function F defined on [0, T ]× R × U

by

F (t, x, u) = − fu

σuσ>
(t, x, u), (7)

makes sense in a neighborhood of φ̂.

In the next proposition we show that, under suitable conditions, the adjoint feed-

back must satisfy a second order quasilinear PDE. The special structure is due to the

assumption that the state variable is one–dimensional.
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Proposition 3.1 Suppose that γ is an adjoint feedback, continuous on [0, T ]×R, of

class C1,2 on [0, T )× R and that G(t, x, u, p, P ) is of class C1 with respect to all the

variables. Then, the adjoint feedback γ, almost everywhere, satisfies the PDE

γt +
∂

∂x
max
u∈U

G
(
t, x, u, γ, γx

)
= 0, (8)

with terminal condition

γ(T, x) = Sx(T, x). (9)

Proof. We omit the arguments of the functions in several parts of the proof to

simplify notation. Applying Itô’s formula to γ we get

dp(s) =

(
γs + fγx +

1

2
σσ>γxx

)
ds + σγxdw(s), s ∈ [t, T ], (10)

and equating the volatility terms of (4) and (10)

q = σγx.

Next, equating the drift terms of (4) and (10),

γt + fγx +
1

2
σσ>γxx = −Hx

= −fxγ − σxq
>

= −fxγ − σxσ
>γx.

(11)

Now we consider G(t, x, γ, γx) = maxu∈U G(t, x, u, γ, γx), the maximum of G with

respect to u ∈ U . By Danskin’s Theorem, [4], G is almost everywhere differentiable

with respect to x, and the derivative at points where it exists is

∂

∂x
G(t, x, γ, γx) = fxγ + fγx + σxσ

>γx +
1

2
σσ>γxx

∣∣∣
u=u(t,x,γ,γx)

.

Thus, (11) can be rewritten as

γt +
∂

∂x
G(t, x, γ, γx) = 0, (12)

which is the PDE stated in the proposition. Finally, the terminal condition (9) is a

consequence of the transversality condition of the MP, (5), and that γ is an adjoint

feedback, thus γ(T, X(T )) = p(T ) = Sx(T, X(T )). ¤

6



Remark 3.1 One aspect that may make PDE (8) impractical is that it depends on

the maximizer u which is, in general, not known. To get an explicit PDE we will

impose the condition that the optimal feedback must be interior to U . Notice that,

even in this case, the PDE for the adjoint feedback continues to be non–explicit.

However, the PDE for φ will always be explicit — see Remark 3.2 below — and

holds for any one–dimensional control problem of Mayer type fulfilling the conditions

imposed in this paper —i.e. smoothness and interiority of the optimal control—.

The next theorem shows the PDE that the optimal φ satisfies.

Theorem 3.1 Suppose that γ is an adjoint feedback and φ ∈ U is the unique admis-

sible interior optimal Markov control of the problem (1), (2), continuous on [0, T ]×R,

and of class C1,2 on [0, T )×R. Then, φ satisfies the quasilinear PDE of second order

∂

∂t
F (t, x, φ) +

∂

∂x
G(t, x, φ, F (t, x, φ), F 2(t, x, φ))

+
∂2

∂x2
G(t, x, φ, 1, F (t, x, φ)) = 0,

(13)

with terminal condition

Sx(T, x)F (T, x, φ(T, x)) = Sxx(T, x). (14)

Proof. Since the argument maximizing H is interior to U , (6) implies

Hu(s,X(s), φ(s,X(s)), p(s), q(s)) = 0, ∀s ∈ [t, T ], P–a.s.,

that is

fup + σuq
> = 0.

Hence, since q = σγx was shown in the proof of Proposition 3.1 and recalling the

definition of F in (7), the following equality holds:

γ(t, x)F (t, x, φ(t, x)) = γx(t, x). (15)

We omit the arguments of the functions in some parts of the proof, when no confusion

arises. We will go through the proof in the following steps.

1.- Divide the PDE (8), γt + (∂/∂x)G = 0, by γ and notice that

∂

∂x

G

γ
=

1

γ

∂

∂x
G− γx

γ2
G

7



to get
γt

γ
+

γx

γ2
G +

∂

∂x

G

γ
= 0. (16)

2.- By definitions of G and (15)

γx

γ2
G(t, x, φ, γ, γx) = (fF +

1

2
σσ>F 2)|(t,x,φ) = G(t, x, φ, F, F 2),

1

γ
G(t, x, φ, γ, γx) = (f +

1

2
σσ>F )|(t,x,φ) = G(t, x, φ, 1, F ).

3.- Take the derivative of (16) with respect to x and then substitute the expressions

in step 2 to find

∂

∂x

γt

γ
+

∂

∂x
G(t, x, φ, F, F 2) +

∂2

∂x2
G(t, x, φ, 1, F ) = 0.

4.- Finally, notice that (∂/∂x)(γt/γ) = (∂/∂t)(γx/γ) = Ft because γ is of class

C1,2. Using this fact in the equation above, we get (13).

The final condition (14) is obtained as follows. By the transversality condition

(9), and the equality p(T ) = γ(T, X(T )) we get γ(T, X(T )) = Sx(T, X(T )). Plugging

this into the expression for F given in (15) and renaming X(T ) = x we get (14). ¤

Remark 3.2 Notice that F is always an explicit expression of (t, x, u), thus equation

(13) depends only on t, x, and φ(t, x), once

F (t, x, φ) = − fu(t, x, φ)

(σuσ>)(t, x, φ)

is substituted throughout in (13). Then, a PDE only involving the unknown control

φ(t, x) is obtained, once we expand the derivatives (see the Appendix):

φt(t, x) + A(t, x, φ(t, x))φx(t, x) + B(t, x, φ(t, x))φ2
x(t, x)

+ C(t, x, φ(t, x))φxx(t, x) + D(t, x, φ(t, x)) = 0. (17)

The coefficients are (we omit the arguments of the functions below to simplify nota-

tion):

A = f + 2σxσ
> + σσ>F + (fxu + (σxu + σxσ

>
u )F + σuσ

>Fx + σσ>Fxu)/Fu

B = σuσ
> + σσ>Fuu/(2Fu),

C = σσ>/2,

D = (fxx + (σxxσ
> + σxσ

>
x )F + Ft + (f + 2σxσ

> + σσ>F )Fx + σσ>Fxx/2

+ (fxF + σxσ
>F 2))/Fu,
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where we suppose Fu 6= 0. Thus, the PDE (17) is of quasilinear type, that is, the

second order derivative φxx appears linearly with a factor, (σ>σ)(t, x, φ), depending

on the solution itself. The theoretical advantage of this PDE over the HJB equation

is that the HJB equation is nonlinear in the second order derivative Vxx.

4 Value function and sufficient conditions

Before proceeding to establish sufficient conditions for optimality in this section, in

the following definition we give a weak notion of a solution of the PDE (13). The

reason is that for our purposes, it suffices to consider C1,1 solutions.

Definition 4.1 A function φ is a C1,1 solution of the Cauchy problem (13), (14), if

it satisfies the integral equation

∂

∂t

∫ x2

x1

F φ(t, z)dz + Jφ(t, x2)− Jφ(t, x1) = 0, x1, x2 ∈ R, (18)

and the final condition

Sx(T, x)F (T, x, φ(T, x)) = Sxx(T, x). (19)

We have used the short–hand

F φ(t, x) = F (t, x, φ(t, x)),

Jφ(t, x) = G(t, x, φ, F φ, (F φ)2) +
∂

∂x
G(t, x, φ, 1, F φ).

In this section we show that a solution φ̂ of class C1,1 of (18), (19) maximizing the

generalized Hamiltonian for all (t, x) is a solution of the stochastic control problem (1),

(2). We also find the connection between the optimal control, the adjoint feedback,

and the value function.

A proposition gives the adjoint feedback in terms of a solution to (18), (19). It is

important to obtain an explicit expression for γ, since it is the derivative with respect

to x of the value function, and consequently has the interpretation of a “shadow price”.

Furthermore, once γ is known, it is straightforward to obtain the value function, as

will be shown in Theorem 4.1 below.

Proposition 4.1 Let φ̂ be an admissible control of class C1,1 satisfying (18), (19).

Then, for any t ∈ [0, T ] and x ∈ R and any α ∈ R, the adjoint feedback γ is of class

C1,2 and is given by

γ(t, x) = Sx(T, α)e
∫ T

t J φ̂(s,α) dse
∫ x

α F φ̂(t,z) dz. (20)
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Proof. It is clear that γ, as given by (20), has the required smoothness. Taking the

derivative in (20) with respect to t we get

γt(t, x) = γ(t, x)
( ∂

∂t

∫ x

α

F φ̂(t, z) dz − J φ̂(t, α)
)
. (21)

Since F satisfies (18), then selecting x1 = α and x2 = x

∂

∂t

∫ x

α

F φ̂(t, z)dz − J φ̂(t, α) = −J φ̂(t, x).

Substituting into (21), we have

γt(t, x) + γ(t, x) J φ̂(t, x) = 0. (22)

Then, using the identities in steps 1 and 2 of the proof of Theorem 3.1

γ J φ̂ = γG(t, x, φ, F φ, (F φ)2) + γ
∂

∂x
G(t, x, φ, 1, F φ)

=
∂

∂x
G(t, x, u(t, x, γ, γx), γ, γx),

where u is defined in (3). Thus, by (22), the expression defined in (20) satisfies (8).

The final condition (9) follows from (14):

γ(T, x) = Sx(T, α)e
∫ x

α F φ̂(T,z) dz = Sx(T, α)eln |Sx(T,x)/Sx(T,α)| = Sx(T, x).

Finally, the independence of γ with respect to the constant α is deduced by verifying

that the derivative of γ with respect to α is zero. This is clear if Sx(t, α) = 0, so

suppose that Sx(T, α) 6= 0. Then

∂

∂α
γ(t, x) = γ(t, x)

(Sxx(T, α)

Sx(T, α)
− F φ̂(t, α) +

∫ T

t

J φ̂
x (s, α) ds

)

= γ(t, x)
( ∫ T

t

F φ̂
t (s, α)ds +

∫ T

t

J φ̂
x (s, α) ds

)
= 0,

where the second equality holds by (14) and the last equality is implied by (13). ¤
Given a solution φ̂ of (18), (19), Proposition 4.1 shows that an adjoint feedback

γ exists. From this information we construct the value function V . To simplify the

notation, for u ∈ U , we define

Gu(t, x) = G(t, x, u, γ(t, x), γx(t, x)).
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Theorem 4.1 (Value function) Let φ̂ be an admissible control solution of (18),

(19), such that

∀(t, x) ∈ [0, T ]× R, ∀u ∈ U, Gφ̂(t, x) ≥ Gu(t, x). (23)

Then for an arbitrary constant α, W given by

W (t, x) = e−δ(T−t)
( ∫ x

α

γ(t, z)dz +

∫ T

t

Gφ̂(s, α)ds + S(T, α)
)

(24)

is a C1,3 solution of the HJB equation and satisfies W (T, x) = S(T, x). Moreover, if

for all x

|γ(t, x)| ≤ C(1 + |x|k) (25)

for some constants C and k > −1, then W = V is the value function, and φ̂ is an

optimal control.

Proof. It is obvious that W , defined in (24), is a function of class C1,3, with Wx =

e−δ(T−t)γ(t, x) and Wxx = e−δ(T−t)γx(t, x), since we know γ ∈ C1,2 by Proposition 4.1.

Integrating (12) with respect to x and interchanging the order of the integration and

derivation operations, we have

∂

∂t

∫ x

α

γ(t, z)dz + Gφ̂(t, x)− Gφ̂(t, α) = 0.

Taking the derivative with respect to t in (24)

eδ(T−t)(−δW (t, x) + Wt(t, x)) =
∂

∂t

∫ x

α

γ(t, z)dz − Gφ̂(t, α) = −Gφ̂(t, x).

Hence, by definition of Gφ̂(t, x)

Wt(t, x) + Wx(t, x)f(t, x, φ̂(t, x)) +
1

2
(σσ>)(t, x, φ̂(t, x))Wxx(t, x) = δW (t, x). (26)

On the other hand, by assumption (23)

Wx(t, x)f(t, x, φ̂(t, x)) +
1

2
Wxx(t, x)(σσ>)(t, x, φ̂(t, x))

≥ G(t, x, u, Wx(t, x),Wxx(t, x)σ(t, x, u)), ∀u ∈ U. (27)

In consequence, (26) and (27) imply that W satisfies the HJB equation. The final

condition also holds, since

W (T, x) =

∫ x

α

γ(T, z)dz + S(T, α) =

∫ x

α

Sx(T, z) dz + S(T, α) = S(T, x),
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due to (5). To complete the proof of the first part of the theorem, it is immediate to

check that (24) does not depend on α, as this was done in Proposition 4.1.

Finally, if γ satisfies (25), then by (24) W is polynomially bounded. Hence, to

make W the value function and φ̂ truly optimal, it suffices to apply the verification

theorem in [5]. ¤

Remark 4.1 Condition (23) automatically holds when φ̂ is interior to the control set

U and for all (t, x) ∈ [0, T ] × R the function G(t, x, u, γ, γx) is concave with respect

to u, since the equality

Gu(t, x, φ̂, γ(t, x), γx(t, x)) = Hu(t, x, φ̂, γ(t, x), σ(t, x, φ̂)γx(t, x)) = 0

is satisfied trivially, by the stochastic MP, and this means that φ̂ is a critical point of

the concave function u 7→ G(. . . , u, . . .), hence φ̂ is a global maximum of G(. . . , u, . . .).

5 Application to models with linear dynamics

We now show the form of equation (13) in the next two examples.

5.1 General problem

Consider a control problem with linear drift

f(t, x, u) = a(t)x + b(t)u

and linear diffusion coefficient

σ(t, x, u) = (c1(t)x + d1(t)u, . . . , c`(t)x + d`(t)u),

where the time–dependent vectors c(t) = (ci(t))
`
i=1 and d(t) = (di(t))

`
i=1 are differen-

tiable, with b(t) 6= 0 and d(t)d>(t) > 0 for every t ∈ [0, T ]. In the following we drop

the time dependence from the notation. The definition of F in (7) gives

F (x, u) = − b

cd>x + dd>u
, or u = u(t, x, F ) = −

(
b

dd>

)
F−1 −

(
cd>

dd>

)
x.

Obviously, for this particular class of models it is always possible to find u. Hence,

the PDE (8) satisfied by γ can be explicitly found (we omit the arguments in the

functions)

γt +
∂

∂x

((
a− b

cd>

dd>

)
xγ +

1

2

(
cc> − (cd>)2

dd>

)
x2γx − 1

2

b2

dd>
γ2

γx

)
= 0, (28)
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because

G(t, x, u, γ, γx) = (ax + bu)γ +
1

2
(cc>x2 + 2cd>xu + dd>u2)γx.

Moreover, an explicit PDE for F = γx/γ arises from (13)

Ft +
1

2

∂

∂x

(
2A(t)xF + C(t)x2F 2

)
+

1

2

∂2

∂x2

(−B(t)F−1 + C(t)x2F
)

= 0, (29)

where

A(t) = a(t)− b(t)
cd>(t)

dd>(t)
, B(t) =

b2(t)

dd>(t)
, C(t) = cc>(t)− (cd>(t))2

dd>(t)
.

Substituting F in (29) with its expression in terms of φ

F (t, x, φ) = − b(t)

c(t)d>(t)x + dd>(t)φ
,

an explicit PDE for φ is obtained. The PDE for φ will be shown for the Merton

problem in the next section, in order to save space.

We shall now make a few remarks on the above PDEs.

1. Equation (28) has already been obtained in the financial literature in the case

c(t) = 0 for all t ∈ [0, T ] and ` = 1, see e.g. [9]. See also Section 5.2 below,

where we study Merton’s problem with deterministic coefficients. It is also

known that under these conditions, c = 0 and ` = 1, the hodograph transform

X(t, γ(t, x)) = x (that is, for each t, X(t, ·) is the inverse of function γ) linearizes

(28) to the PDE

Xt −
(
a− bc

d

)
X −

(
a− bc

d
− b2

d2

)
γXγ +

b2

2d2
γ2Xγγ = 0,

with final condition X(T, γ) = (S ′)−1(γ), see [9] or [6]. Under suitable condi-

tions, assuring that X is a global C2 diffeomorphism for each t, the problem

can be solved fairly well, and explicit expressions for the optimal control and

the value function can be recovered. The same results can also be obtained by

the martingale approach, see [8]. However, the hodograph transform does not

linearize the PDE for γ in the general case with non–null vector c and ` > 1

Brownian motions. An interesting question is to find a suitable transformation

(if any) that works in this case.

13



2. For any constant ρ, F = −ρ/x is a (stationary) solution of (29). This solution

is consistent with a parametric family of objective functions S, of HARA (Hy-

perbolic Absolute Risk Aversion) type, S(T, x) = A(T )
1−ρ

x1−ρ, when ρ > 0, ρ 6= 1

or S(T, x) = A(T ) ln x if ρ = 1, in both cases with A(T ) > 0. Notice that F

satisfies the final condition (14) and S is strictly concave. From Theorem 3.1,

the linear control (in variable x)

φ(t, x) = (d(t)d>(t))
−1 (

ρ−1b(t) + c(t)d>(t)
)
x

is a solution of (13) and satisfies the final condition (14); therefore it is a

candidate for an optimal control of this family of problems. In the following

section we give sufficient conditions for a solution of the PDE for the control,

based on Theorem 4.1, to be actually an optimal control.

3. Knowledge of the PDE (13) allows us to address the inverse or integrability

problem, which consists of recovering the utility function S from a given optimal

investment control u. We analyze this problem here, for linear controls. The

problem consists in determining an increasing and strictly concave function S

such that φ(t, x) = m(t)x + n(t), with given smooth functions m and n, is the

solution of the control problem, for suitable functions a, b, c and d, as well as

of the dimension of the Brownian vector, `. By (7)

F̂ (t, x) = F (t, x, φ(t, x)) = − b(t)

c(t)d>(t)x + d(t)d>(t)(m(t)x + n(t))
(30)

must be a solution to (29), and the final condition (14) holds.

Let α(t) = c(t)d>(t) + d(t)d>(t)m(t), β(t) = d(t)d>(t)n(t), and recall the def-

inition of functions A(t) and C(t) given above. Substituting (30) into (29) we

get the conditions (we omit the time argument)

ḃα2 − bαα̇ = 0, (31)

2ḃαβ − bα̇β − αbβ̇ + αbAβ−b2Cβ = 0, (32)
(
ḃβ − bβ̇ + bAβ + bCβ

)
β = 0. (33)

As above, we suppose b(t) 6= 0 and d(t)d>(t) > 0 for all t, and consider functions

c, d such that α(t) 6= 0 for all t. We distinguish two cases.

(a) n(t) 6= 0 for all t. Then, from (31) α(t) = kb(t) for some constant k. Hence

m(t) =
kb(t)− c(t)d>(t)

d(t)d>(t)
(34)

14



must hold. On the other hand, equation (33) reduces to

β̇(t) = β(t)
( ḃ(t)

b(t)
+ A(t) + C(t)

)
,

hence β(t) = −β(T ) exp{∫ T

t
(ḃ(s)/b(s) + A(s) + C(s))ds} and

n(t) =
−β(T )

dd>(t)
e

∫ T
t (ḃ(s)/b(s)+A(s)+C(s))ds

=
−β(T )b(T )

dd>(t)b(t)
e

∫ T
t (A(s)+C(s))ds. (35)

There are multiple selections of functions a, b, c and d such that both (34)

and (35) hold. Plugging α(t) = kb(t) into (32) leads to

bḃkβ − kb2β̇ + kb2Aβ − Cβb2 = 0

so by using (33) one obtains −(1 + k)C(t)b2(t)β(t) = 0 for all t. This

implies k = −1 or C(t) = 0, because b(t) 6= 0, β(t) 6= 0 for all t. Notice

that C(t) = 0 holds if ` = 1.

To determine function S, we use the final condition (14). From the identity

−S ′(x)
b(T )

α(T )x + β(T )
= S ′′(x),

it is not difficult to find, with k = α(T )/b(T ), that

S(x) =
−K

(1− k)b(T )
(α(T )x + β(T ))−(1−k)/k, if k 6= 1,

=
K

b(T )
ln (α(T )x + β(T )), if k = 1,

(36)

where the constants K and k are both strictly positive. In this way, S

is strictly increasing. Moreover, choosing b(T ) < 0, it is also strictly

concave. The case with α(T ) = 0, β(T ) 6= 0 is also possible, with

S(x) = −K(β(T )/b(T )) exp {(−b(T )/β(T ))x}, K > 0 and b(T )/β(T ) > 0.

(b) n(t) = 0 for some t ∈ [0, T ]. Then n must actually be identically null

because β(t) = 0 for all t. This is a consequence of supposing b(t) 6= 0,

α(t) 6= 0 and d(t)d>(t) > 0 for all t. Thus, the only constraint that appears

is α(t) = kb(t) for some constant k. The form of S can be recovered

from (36) with β(T ) = 0 and α(T ) 6= 0.
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5.2 Merton’s Problem with deterministic coefficients

The problem in Section 5.1 above encompasses, in particular, a variant of the invest-

ment problem of Merton, [11], where there is no running utility from consumption,

and where the objective is to maximize the utility of terminal wealth. That is, an

investor wants to maximize the expected utility S of the final wealth at a fixed date

T . Along the time interval [0, T ] the decision agent invests in two assets, one of them

a risky asset whose price, P 1, evolves according to the SDE

dP 1(t) = (b(t) + r(t))P 1(t) dt + σ(t)P 1(t) dw(t), P 1(0) known,

and the other is a bank account, P 0, which is driven by

dP 0(t) = r(t)P 0(t) dt, P 0(0) = 1,

where r, b and σ are positive, deterministic functions of time.

Let u(s) be the amount of wealth invested in the risky asset at time s, and let

X(s) − u(s) be the amount invested in the bond, where X(s) is the accumulated

wealth until time s. Then, X(s) satisfies the SDE

dX(s) = (r(s)X(s) + b(s)u(s)) dt + σ(s)u(s) dw(s), t ≤ s ≤ T,

X(t) = x, x ≥ 0.
(37)

Given wealth’s level X(t) = x at date t ∈ [0, T ], the problem is to choose an invest-

ment policy u solving the problem

max
u∈U(t,x)

e−δ(T−t)E {S(X(T )) |X(t) = x} = max
u∈U(t,x)

e−δ(T−t)ExS(X(T )),

subject to (37), where S is a strictly increasing and strictly concave utility function.

This model has been well studied in the literature. Merton’s problem is obtained

from the example in Section 5.1 by selecting a = r, c = 0 and d = σ, with ` = 1. It

is easy to compute (13) and the final condition (14)

Ft + r(t)
∂

∂x
(xF )− 1

2
b(t)θ(t)

∂2

∂x2

(
1

F

)
= 0,

F (T, x, φ(T, x)) =
S ′′(x)

S ′(x)
,

where θ(t) = b(t)/σ2(t). Then, the PDE for φ = −θ(t)/F is

∂

∂t

(
− θ(t)

φ(t, x)

)
− r(t)θ(t)

∂

∂x

(
x

φ(t, x)

)
+

1

2
b(t)

∂2

∂x2
φ(t, x) = 0.

16



Taking the derivatives we get the Cauchy problem in (t, x) ∈ [0, T ]× [0,∞)

φt − r(t)(φ− xφx)− θ̇(t)

θ(t)
φ +

1

2
σ2(t)φ2φxx = 0 t < T, x > 0,

φ(T, x) = θ(T )R(x), x > 0

φ(t, 0) = 0, t < T.

(38)

Here, R(x) = −S ′(x)/S ′′(x) is the absolute risk tolerance index of the decision agent

(the inverse of the absolute risk aversion index).

The equation found in [6] is a particular case when constant coefficients are con-

sidered. These authors use the equation to study asymptotic properties of the op-

timal investment control. The solution found in Section 5.1 for HARA utilities is

φ̂(t, x) = ρ−1θ(t) x with ρ > 0, which is of course well known in the literature.

Notice that unless R satisfies R(0) = 0, the initial condition is not compatible

with the boundary condition at x = 0 and the existence of a smooth solution is

problematic. Thus, we impose R(0) = 0 in the following theorem, and show the

existence of a solution to the Cauchy problem. We allow for utility functions S with

unbounded absolute risk tolerance, but which exhibit bounded relative risk tolerance.

Theorem 5.1 Assume that functions r, b, σ, θ and θ̇ are of class C2 and bounded,

with σ > 0, θ > 0, and that function R is of class C2 and satisfies R(0) = 0, R(x) > 0

for x > 0, supx∈[0,∞) R(x)/x < ∞ and limx→0+ R(x)/x exist. Then, there is a solution

of the Cauchy problem (38) of class C1,2. Moreover, φ is globally Lipschitz in x and

satisfies for all t ∈ [0, T ]

θ(t)x

(
inf

y∈[0,∞)

R(y)

y

)
≤ φ(t, x) ≤ θ(t)x

(
sup

y∈[0,∞)

R(y)

y

)
.

Proof. Let v = φ/x and τ = T − t. Then, the Cauchy problem for v is (we omit

the arguments in v)

vτ − r(T − τ)xvx +
θ̇(T − τ)

θ(T − τ)
v − 1

2
σ2(T − τ)xv2

(
2vx + xvxx

)
= 0,

v(0, x) = θ(T ) lim
x→0+

R(x)

x
.

We rewrite the PDE in divergence form as follows

vτ − 1

2
σ2(T − τ)

∂

∂x
(x2v2vx) = r(T − τ)xvx +

θ̇(T − τ)

θ(T − τ)
v − σ2(T − τ)x2vv2

x. (39)
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The equation fulfills all the requirements of Theorem 8.1 in Chap. V in [10] (including

compatibility between the final and the boundary condition at x = 0), except for the

uniform parabolic condition in the second order term. However, the solution never

vanishes, thus the equation is truly parabolic in [0, T ]× (0,∞). This can be seen as

follows (we adopt here a device used in [2]). Consider a compact interval [1/n, n] and

the solution vn in [0, T ]× [1/n, n] satisfying vn(τ, 1/n) = θ(T − τ)nR(1/n), vn(τ, n) =

θ(T − τ)R(n)/n. Such a solution exists and is of class C1,2, with Hölder regularity on

the derivatives, see [10]. Let mn(τ) = miny∈[1/n,n] vn(τ, y). By Danskin’s Theorem,

[4], function mn is almost everywhere differentiable, and at points of differentiability

ṁn(τ) = vn,τ (τ, ξn(τ)), where vn(τ, ξn(τ)) = mn(τ).

We will show that vn(τ, x) > 0 for all (τ, x) ∈ [0, T ]× (0,∞). Let us suppose, on

the contrary, that there exists τ 0 such that vn(τ 0, x) = 0 for some x ∈ [1/n, n]. Then

there exists 0 < τ0 < τ 0 such that 0 < vn(τ0, x) < θ(T − τ0) max{nR(1/n), R(n)/n}
and hence the minimum of vn(τ0, x) is attained in the interior of [1/n, n], thus

vn,x(τ, ξn(τ0)) = 0. Since vn,xx(τ, ξn(τ0)) ≥ 0, we get σ2(T − τ)(∂/∂x)(x2v2
nvn,x) ≥ 0.

Using this information in the equation (39) for vn we get the ordinary differential

inequality for mn

ṁn(τ) ≥ θ̇(T − τ)

θ(T − τ)
mn(τ) a.e. τ0 ≤ τ ≤ τ 0.

Hence, mn(τ 0) ≥ mn(τ0)θ(T − τ 0)/θ(T − τ0) > 0, arriving to a contradiction. Indeed,

the same technique shows that the estimate

vn(τ, x) ≥ mn(τ) ≥ θ(T − τ) inf
y∈[1/n,n]

R(y)

y
> 0.

holds. Moreover, for j < n and x ∈ [1/j, j]

vn(τ, x) ≥ θ(T − τ) inf
y∈[1/j,j]

R(y)

y
> rj > 0 (40)

for some constant rj independent of n. The solution obtained by the method of [10]

is the limit of the sequence {vn(τ, x)}n≥1 by a diagonal argument. By (40), the limit

also satisfies v(τ, x) > 0 for any t, x > 0. Now, φ(t, x) = xv(T − t, x) is a solution of

the Cauchy problem (38).

For the second part of the theorem , consider Mn(τ) = maxy∈[1/n,n] vn(τ, y). A sim-

ilar reasoning and computation as done above gives Mn(τ) ≤ θ(T − τ) supy∈[1/n,n] R(y)/y.

Then,

θ(T − τ) inf
y∈[1/n,n]

R(y)

y
≤ vn(τ, x) ≤ θ(T − τ) sup

y∈[1/n,n]

R(y)

y
.
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Hence, the limit φ satisfies for all t ∈ [0, T ]

θ(t)x

(
inf

y∈[0,∞)

R(y)

y

)
≤ φ(t, x) ≤ θ(t)x

(
sup

y∈[0,∞)

R(y)

y

)
.

¤
Next result establishes the existence of a solution to the Merton problem when

the relative risk aversion index of the agent is bounded by one.

Theorem 5.2 Assume that S is increasing and that the conditions of the previous

theorem hold. Furthermore, suppose that

L := sup
x∈[0,∞)

R(x)

x
> 1. (41)

Then, the solution of the Cauchy problem (38) is the optimal control of the Merton

problem.

Proof. To apply Theorem 4.1 it must also be shown that φ is admissible and that γ

is polynomially bounded in x. The first claim follows since φ is Lipschitz in x, hence

a unique strong solution of the SDE exists. For the second claim, notice that the

dependence of γ with respect to x comes, according to (20), from the term

e
∫ x

α F φ̂(t,z) dz = e
−θ(t)

∫ x
α

1

φ̂(t,z)
dz

.

Since θ(t) > 0 and by the previous theorem φ̂(t, x) ≤ Lθ(t)x, we have that for any

constant α > 0

e
∫ x

α F φ̂(t,z) dz ≤
(x

α

)− 1
L

.

Thus, for t fixed, γ(t, x) satisfies the bound (25) with k = −1/L since (41) assures

k > −1. Finally, we check that G(t, x, u, γ, γx) is concave in u. By (20) γ is positive.

Hence, it is decreasing in x > 0 since the derivative

γx(t, x) = F (t, x, φ(t, x))γ(t, x) = − b(t)

σ2(t)φ(t, x)
γ(t, x) < 0,

because b(t) > 0 and φ̂(t, x) > 0 for all t and x > 0. Hence Guu = σ2(t)γx < 0. Then,

φ̂ is optimal by Remark 4.1. ¤
The solution of problem (38) is illustrated in Figure 1 for a Merton problem subject

to a business cycle in the interest rate, which is reflected in r(t) = 0.05+0.02 sin(πt/2).

The variance parameter is σ = 0.2, the excess return is b = 0.02 and the time horizon

T = 2. The utility function is S(x) = x1−ρ/(1− ρ) + x1−β/(1− β) with ρ = 0.9 and
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Figure 1: Solution profiles and solution surface in the Merton problem with relative risk
tolerance index R(x)/x = 10(x2.1 + 1)/(9x2.1 + 30).

β = 3. The absolute risk tolerance index, R(x) = 10x x2.1+1
9x2.1+30

, fits the requirements

of Theorem 5.2. In this model, poor people have a relative risk aversion index of

approximately 3, whilst for rich people it is approximately 0.9. Thus, rich people are

more willing to invest in risky assets than poor people, and the solution is increasing

and convex in wealth. The surface gives the optimal amount of money to invest in

the risky asset given the date t and the wealth x the agent possesses. The curves

t = constant are rather close together for t = 0, t = 2 and t = T = 4, particularly for

low values of x, which shows that the asset allocation decisions do not depend much

on time. Actually, as has been proved in [6], the solution converges as τ → ∞ to a

stationary solution of the autonomous version of the PDE for φ(x),

−r(φ− xφx) +
1

2
σ2φ2φxx = 0, x > 0, φ(0) = 0.

For computing the solution, the routine pdepe implemented in Matlab has been

used.

6 Application to Separable Models

In this section we exploit the PDE (13) in problems that show a particular structure,

which we call separable. Suppose ` = 1, and that functions S(x), f(x, u) = f0(x)f1(u)

and σ(x, u) = σ0(x)σ1(u) are of class C2 and independent of time. Assume that the
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products f0f
′
1 and σ0σ

′
1 are different from zero. We also assume that for any constant

value ν in the control region U , the SDE

dX = f0(X)f1(ν) ds + σ0(X)σ1(ν) dw(s)

admits a unique strong solution, for any initial condition (t, x).

We impose the following structural conditions on the data.

(i) there exists a constant k such that

f0(x)S ′(x) = kσ2
0(x)S ′′(x), ∀x ∈ R;

(ii) there exists λ, interior to the control region U , such that

kf ′1(λ) = −σ1(λ)σ′1(λ);

(iii) the following product does not depend on x

a
not.
=

(
f ′0(x) +

1

k

f 2
0 (x)

σ2
0(x)

)(
f1(λ) +

1

2

σ2
1(λ)

k

)
.

Although these conditions may seem stringent, they are fulfilled in some interesting

and common models, such as Merton’s problem, as will be shown below. Our claim

is the following.

Proposition 6.1 Suppose that for a separable model, assumptions (i)–(iii) hold. If G

is concave with respect to u, and S is polynomially bounded, then the optimal control

is constant, φ̂(t, x) = λ, with λ defined in (i)–(ii). Moreover, the value function is

given by

V (t, x) = e−δ(T−t)
(
ea(T−t)S(x) + (1− ea(T−t))

(
S(α)− f0(α)

m(α)
S ′(α)

))
,

if a 6= 0,

= e−δ(T−t)
(
S(x) + (T − t)f0(α)S ′0(α)

(
f1(λ) +

1

2

σ2
1(λ)

k

))
,

if a = 0,

where a was defined in (ii) above, α is an arbitrary constant, and m(α) = f ′0(α) +

(1/k)(f 2
0 (α)/σ2

0(α)).
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Proof. With k defined in (ii), we have

F (x, u) =

( −f ′1(u)

σ1(u)σ′1(u)

)(
f0(x)

σ2
0(x)

)
, hence F (x, φ̂) =

1

k

f0(x)

σ2
0(x)

,

which is independent of t. On the other hand

G(t, x, φ̂, 1, F ) = f0(x)

(
f1(λ) +

1

2

σ2
1(λ)

k

)
,

G(t, x, φ̂, F, F 2) =
f 2

0 (x)

kσ2
0(x)

(
f1(λ) +

1

2

σ2
1(λ)

k

)
.

Thus, the PDE (18) for F is fulfilled because

J φ̂(t, x) =

(
f 2

0 (x)

kσ2
0(x)

+ f ′0(x)

) (
f1(λ) +

1

2

σ2
1(λ)

k

)
= a

by (iii). Thus, the constant control φ̂ ≡ λ satisfies the equation (18), since J φ̂ is also

constant. Regarding the final condition, it is given by S ′(x)F (T, x, φ̂) = S ′′(x), which

is simply (i).

To find the value function and show the optimality of φ̂, we will use Theorem 4.1,

hence we find first the adjoint feedback. As has just been shown, J φ̂(t, x) = a for

all (t, x), hence function F evaluated at the optimal control is F φ̂(t, z) = 1
k

f0(z)

σ2
0(z)

=
S′′(z)
S′(z)

= (ln S ′)′(z) for all (t, z), where it has been used (i) in the second equality. In

accordance with (20), the adjoint variable is

γ(t, x) = S ′(α)e
∫ x

α (ln S′)′(z)dz+a(T−t) = ea(T−t)S ′(x).

The generalized Hamiltonian evaluated at the optimal control is

Gφ̂(t, x) = ea(T−t)

(
f0(x)f1(λ)S ′(x) +

1

2
σ2

0(x)σ2
1(λ)S ′′(x)

)

and using this, it is straightforward to find the value function when a 6= 0 by means of

(24), once conditions (i)–(iii) are used. The case a = 0 is obtained by taking limits as

a → 0. Since V is polynomially bounded, Theorem 4.1 applies, showing that φ̂ = λ

is optimal. ¤
This result provides a solution to the HJB equation

Vt(t, x) + max
u∈R

{
f0(x)f1(u)Vx(t, x) +

1

2
σ2

0(x)σ2
1(u)Vxx(t, x)

}
= δV (t, x),

V (T, x) = S0(x),
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and a (constant) maximizing control, under conditions (i)–(iii). At first sight, it is not

apparent what the solution of the HJB equation is; it is even difficult to obtain the

explicit form of this non–linear equation, since the maximization cannot be carried

out explicitly.

Let us illustrate the use of conditions (i)–(iii) above in some specific models.

6.1 Logarithm utility function

Consider the problem of maximizing e−δ(T−t)Etx {ln X(T )} subject to

dX = buX ln X ds + βu X
√

ln X dw(s),

with initial condition X(t) = x > 1, constants b > 0, β > 0, and control region

U = [0,∞). Let us check that (i)–(iii) are fulfilled for suitable constants k and λ.

Here, f0(x) = x ln x and σ0(x) = x
√

ln x, thus (i) holds if and only if k = −1, and

then (ii) gives λ = b/β2 > 0; finally, it is easy to see that (iii) is automatically satisfied

for a = b2/(2β2). Thus, the constant control φ̂ = b/β2 is a solution of the PDE and

satisfies the final condition. Notice that, under φ̂, the process Y = ln X has the

dynamics

dY =
b2

2β2
Y ds +

b

β

√
Y dw(s),

with Y (t) = ln x > 0. This process is positive with probability one, so it admits a

well–defined solution. Hence, X > 1 with probability one and the process X is well

defined. The generalized Hamiltonian G is concave with respect to u because

Guu = β2x2e−a(T−t) ln x = −β2e−a(T−t) ln x < 0.

By Proposition 6.1, V (t, x) = exp ((b2/(2β2)− δ)(T − t)) ln x, since

S(α)− S ′(α)(f0(α)/m(α)) = 0.

6.2 Merton’s Problem for a large investor

Consider again the problem of Merton introduced in Example 5.2, but now considering

u(s) not as the total wealth invested in the risky asset, but the proportion of wealth

invested. Both problems are identical, although the meaning of the control variable

is different. Consider also the case where the coefficients are constant. The model is

separable, with f0(x) = σ0(x) = x, f1(u) = r + bu and σ1(u) = σu. Assumption (i)

holds with k = −ρ−1 for HARA utilities S(x) = A(T )x1−ρ/(1− ρ), where A(T ) > 0,

ρ > 0, ρ 6= 1, or S(x) = A(T ) ln x (this case could be embedded in the above with
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ρ = 1), which were already considered in Section 5.2. Using (ii) we get the constant

control: φ̂ = λ = ρ−1(b/σ2)—that obviously agrees with our findings in Section

5.2—and (iii) gives

a = (1− ρ)(r + bλ− (1/2) ρσ2λ2) = (1− ρ)(r + (1/2)ρ−1(b2/σ2)).

According to Proposition 6.1, the value function is

V (t, x) = e(a−δ)(T−t)S(x) = e(a−δ)(T−t)A(T )
x1−ρ

1− ρ
.

Note that G is concave with respect to u because Guu = σ2x2Vxx < 0.

Nothing new in the above, of course, but consider the following variation of the

problem, which could be applicable in financial economics. Suppose, as in [3], that

the investor is large, in the sense that his/her investment decisions influence the evo-

lution of the market price of the asset. We are thinking of large financial institutions

whose performance (benefits or losses) affect the global financial market. Well known

examples of this possibility were the crashes due to the “Hedge Fund Crisis” of 1998

and some others, more recent cases. Nevertheless, our model is only academic, with

a view to illustrating our results.

Suppose that the price of the risky asset is given by

dP 1(t) = (b(u) + r)P 1(t) dt + σ(u)P 1(t) dw(t), P 1(0) known.

We observe that the investment decisions of the investor influence the price dynamics

through functions b and σ, which we consider to be of class C2 and positive. The

riskless return r is supposed to be constant. Then, the wealth evolves as

dX(s) = X(s)
(
r + u(s)b(u(s))

)
dt + X(s)u(s)σ(u(s)) dw(s), t ≤ s ≤ T.

Thus, we identify a separable dynamics, with

f0(x) = σ0(x) = x,

f1(u) = r + ub(u),

σ1(u) = uσ(u).

Consider again a HARA utility function. We have already tested that condition (i)

holds with k = −ρ−1. For (ii), let us be more specific. Choose b(u) = b exp (−βu)

and σ(u) = σ with b, and σ positive constants, and let β be non–negative, satisfying

−ρ−1b exp (−β)(1 − β) + σ2 > 0. Notice that β = 0 gives the Merton problem for
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a small investor, where the above inequality means that the optimal proportion of

wealth invested in the risky asset is not bigger than one, which is a desirable feature–it

says that no borrowing is allowed–. Wealth dynamics becomes

dX(s) = X(s)(r + bu(s)e−βu(s)) dt + X(s)σu(s) dw(s), t ≤ s ≤ T.

Condition (ii) gives the equation

−ρ−1b exp (−βλ)(1− βλ) + σ2λ = 0 (42)

for the determination of λ. The function h(u) = −ρ−1b exp (−βu)(1 − βu) + σ2u

is continuous and by assumption, h(1) = −ρ−1b exp (−β)(1 − β) + σ2 > 0. Since

h(0) = −ρ−1b < 0 and h is strictly monotone increasing in [0, 1], equation (42) admits

a unique solution, φ̂ = λ ∈ (0, 1), which is the constant optimal control. Finally, (iii)

is satisfied since the left hand side factor defining a is independent of x. Thus, large

investors with HARA utility may behave as in the typical Merton’s problem where

the investment decisions do not affect the price, that is, the optimal investment rule

for large investors is also proportional to total wealth as it is for small investors.

The value function of the problem can also be found

V (t, x) = exp ((a− δ)(T − t))A(T )(1− ρ)−1x1−ρ,

where a = (1 − ρ) (r + bλ exp (−βλ)− (1/2)ρσ2λ2). Finally, the generalized Hamil-

tonian G is concave with respect to u in the relevant range of values [0, 1], since

the value function is strictly increasing and strictly concave. This can be verified by

testing that the second order derivative

Guu = bβe−βu(βu− 2)xVx + σ2x2Vxx < 0,

for all u ∈ [0, 1], selecting β < 2.

Of course, conditions (i)–(iii) apply to much more general pairs of functions b, σ.

From an economic point of view, our selection implies that by buying the risky asset,

the investor diminishes the mean market price of the risky stock, having no effect on

its volatility. For general b and σ, condition (ii) is k(λb(λ))′ + (λσ(λ))(λσ(λ))′ = 0

for some λ ∈ [0, 1], which should be tested for the specific model at hand. Obviously,

the concavity of the generalized Hamiltonian can also be studied as in the parametric

example considered.

We have selected the particular pair b, σ above as an illustration of the result,

and to show the difficulties associated in solving the problem by means of the HJB
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equation. Whilst with our methods the problem has been solved fairly well, finding

the solution with the HJB equation is difficult, as the maximization condition

bxe−βu(1− βu)Vx + x2σ2uVxx = 0

cannot be solved explicitly to express u in terms of Vx, Vxx. Thus, the PDE (8) for

the adjoint feedback γ cannot be explicitly given, since

γx

γ
= F = −be−βu(1− βu)

σ2xu

cannot be solved for u = u(x, γ, γx).

7 Conclusions

This paper proposes a systematic method to find a PDE for the optimal control to

study one–dimensional stochastic models of Mayer type. These models are usual in

financial economics, as in the mean variance portfolio problem or the Merton problem

without consumption. The PDE for the optimal control is a Euler companion to the

usual HJB equation. Whereas this equation is fully non–linear, the former is of

quasilinear type. This fact allows us to show the existence of the optimal control in

the Merton problem with time varying (but deterministic) coefficients, even for utility

functions with an unbounded absolute risk tolerance index (but with at most linear

growth). We also provide sufficient conditions in terms of the PDE found, similar to

the verification theorems in [5]. The connection between the optimal control and the

value function is explicitly found through the adjoint feedback γ. Finally, the theory

is applied to a family of problems that shows multiplicative separability in the state

and the control variable, showing how the new PDE helps in determining the (a priori

hidden) solution in the form of a constant control. The classical Merton’s problem

belongs to this class, but also the problem which considers a large investor whose

decision can influence the price of the stock. Surprisingly enough, it is shown that

the optimal investment rule of this problem with non–linear dynamics is proportional

to the wealth level, as in the traditional model, when the investor shows HARA

preferences.

A Appendix

We show here how the PDE (17) is obtained.

26



Consider the PDE (13),

∂

∂t
F (t, x, φ) +

∂

∂x
G(t, x, φ, F (t, x, φ), F 2(t, x, φ))

+
∂2

∂x2
G(t, x, φ, 1, F (t, x, φ)) = 0.

The first summand is:

∂

∂t
F (t, x, φ) = Ft + Fuφt.

Recalling that

G(t, x, φ, F (t, x, φ), F 2(t, x, φ)) = f(t, x, φ)F (t, x, φ)+
1

2
σ(t, x, u)σ>(t, x, u)F 2(t, x, φ),

then second summand is

∂

∂x
G(t, x, φ, F (t, x, φ), F 2(t, x, φ))

= fxF + fFx + σxσ
>F 2 + σσ>FFx +


(

=0 (by (7))︷ ︸︸ ︷
fu + σuσ

>F )F + fFu + σσ>FFu


 φx

= fxF + fFx + σxσ
>F 2 + σσ>FFx +

(
f + σσ>F

)
Fuφx.

In the same way, taking into account that

G(t, x, φ, 1, F (t, x, φ)) = f(t, x, φ) +
1

2
σ(t, x, u)σ>(t, x, u)F (t, x, φ),

the total derivative with respect to x is

∂

∂x
G(t, x, φ, 1, F (t, x, φ))

= fx + σxσ
>F +

1

2
σσ>Fx +




=0︷ ︸︸ ︷
fu + σuσ

>F +
1

2
σσ>Fu


 φx

= fx + σxσ
>F +

1

2
σσ>Fx +

1

2
σσ>Fuφx.
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Deriving again in the last expression we get

∂2

∂x2
G(t, x, φ, 1, F (t, x, φ))

=
∂

∂x

(
fx + σxσ

>F +
1

2
σσ>Fx +

1

2
σσ>Fuφx

)

= fxx + σxxσ
>F + σxσ

>
x F + 2σxσ

>Fx +
1

2
σσ>Fxx

+
(
fxu + σxuσ

>F + σxσ
>
u F + 2σxσ

>Fu + σuσ
>Fx + σσ>Fxu

)
φx

+

(
σuσ

>Fu +
1

2
σσ>Fuu

)
φ2

x +
1

2
σσ>Fuφxx.

Putting together all the above expressions we arrive to

Ft + Fuφt + fxx + (fx + σxxσ
> + σxσ

>
x )F + (f + σσ>F + 2σxσ

>)Fx + σxσ
>F 2 +

1

2
σσ>Fxx

+
(
fxu + (f + σσ>F + 2σxσ

>)Fu + (σxuσ
> + σxσ

>
u )F + σuσ

>Fx + σσ>Fxu

)
φx

+

(
σuσ

>Fu +
1

2
σσ>Fuu

)
φ2

x +
1

2
σσ>Fuφxx = 0,

(43)

Now we divide the PDE (43) by Fu 6= 0 to get (17).
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