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Abstract A new framework is presented for the study of the existence
and uniqueness of solutions to the Koopmans’ equation in the unbounded
case, that is based on the contraction mapping approach. In the bounded
below case with bounded consumption streams, uniqueness of the solution
in the whole class of weak–star continuous utility functions is obtained.
When the aggregator is unbounded below and/or consumption streams are
unbounded, existence of a weak–star continuous solution is shown, and a
simple criterium to check the sufficient conditions for existence is provided.

Key words Koopmans’ equation – recursive utility – contraction map-
ping.
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1 Introduction

Traditionally, the functional relation between current utility and future util-
ity has been considered additively separable over time. It is well–known that
this assumption is restrictive since in risk environment models the consid-
eration of expected additively separable utility makes the isolation of both
effects, risk aversion and marginal substitution rate, impossible. Recursive
utility remedies this drawback assuming that agents’ current utility of a
consumption stream is expressed as a function (the aggregator) of current
consumption and the utility of the future consumption stream. In this fash-
ion, recursive utility is adequate in models where the marginal substitution
rates are different across agents, and depend on consumption.

An extensive economic literature starting with Koopmans [4], who stated
a set of axioms guaranteeing the representation of the utility function by
means of an aggregator, has generalized the additively separable models to
the case of recursive utility models in which the marginal substitution rate
is allowed to vary with the agents’ consumption streams.

The approach initiated by Lucas and Stokey [6] is different, as these
authors suppose that the aggregator is given, and then they impose con-
ditions assuring the existence of an utility function associated to the ag-
gregator. The method is based on contraction mapping techniques and is
limited to bounded aggregators. Along this line, Boyd [2] and Becker and
Boyd [1] considers unbounded aggregators by means of the introduction
of a weighted norm on a certain space of continuous functions obeying an
adequate growth condition. Such a condition on the aggregator, together
with some assumptions linking this growth condition and the discounting
rate, assure the existence of a unique recursive utility in the prescribed class
of functions, via contraction mapping arguments as well. The approach we
follow in this paper is related with contraction mapping techniques, but it
differs in that we consider the whole space of continuous functions. Since
this space is not normable, we need to introduce a suitable metric. This
apparently slight generalization allows us to improve the results obtained
in [1,2] in the following directions:

(i) To obtain existence and uniqueness of the recursive utility function with
respect to the whole class of continuous utility functions when the ag-
gregator is bounded below and the consumptions streams are bounded
sequences;

(ii) To strength the continuity properties of the utility function in regions
where it is not identically −∞, from weighted–norm continuity to weak–
star continuity. Weak–star continuity of the recursive utility function is
a property with major implications in optimal growth theory, in cases
where agents have recursive preferences. This result immediately implies
that the recursive utility function achieves its maximum value on any
weak–star compact subset of the given commodity space;
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(iii) To provide a simple way to check the fulfillment of the sufficient con-
ditions assuring the existence of the utility function. The condition is
based in the application of the root test to the appropriate power series.

A different framework has been developed in Streufert [8,9] by intro-
ducing the notions of lower and upper convergence, leading to the concept
of biconvergence. In the more recent paper of Le Van and Vailakis [5] the
convergence properties of the sequence of utility functions obtained from
successive iteration of the Koopmans’ operator is analyzed.

2 Definitions and preliminary results

In this section we establish some definitions and results that will be used in
the study of the Koopmans’ equation. We follow the approach introduced by
the authors in Rincón–Zapatero and Rodŕıguez–Palmero [7] in the context
of dynamic programming.

2.1 Local Contractions

Let U be an arbitrary set in which a countable family of semidistances
{dj}∞j=1 is defined so that dj(U, V ) = 0 for all j ∈ N implies U = V for
all U, V ∈ U . It is then straightforward to check that

d(U, V ) =
∞∑

j=1

2−j dj(U, V )
1 + dj(U, V )

(1)

defines a metric on U . We are also interested in defining other metric on
some subsets of U , as follows: given a fixed element U0 ∈ U , and strictly
positive constants c and M , let the metric be

dc(U,U0) =
∞∑

j=1

cj dj(U,U0), (2)

and the set be
Uc,U0 = {U ∈ U : dc(U,U0) ≤ M}. (3)

We shall now define two local contraction concepts for operators defined
on U .

Definition 1 Let T : U −→ U be an operator.

(i) T is a 0–local contraction if and only if dj

(
T U,T V

)
≤ βj dj(U, V )

for all j ∈ N and for all U, V ∈ U , where 0 ≤ βj < 1.
(ii) T is a 1–local contraction if and only if dj

(
T U,T V

)
≤ β dj+1(U, V )

for all j ∈ N and for all U, V ∈ U , where β ≥ 0.

The two following theorems are the main tools for existence and unique-
ness of the recursive utility in a fairly general context.
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Theorem 1. Suppose that (U , d) is a complete metric space. Let T : U −→
U be a 0–local contraction. Then, for every U0 ∈ U , the operator T maps
the closed and bounded subset1

V =
{

U ∈ U : dj(U,U0) ≤
dj(T U0, U0)

1− βj
∀j ∈ N

}
into itself. Furthermore,

(a) T is a contraction on V and admits a fixed point U∗ on V, that is
unique on U .

(b) For any U ∈ U , T nU converges to U∗ in the metric d as n →∞.

Theorem 2. Let T : U −→ U be a 1–local contraction. Then, for every
U0 ∈ U satisfying dc(T U0, U0) < ∞ for some c > β, the operator T
maps the closed and bounded subset

Uc,U0 =

{
U ∈ U : dc(U,U0) ≤

dc(T U0, U0)
1− β

c

}

into itself. Furthermore, if (Uc,U0 , dc) is complete, then

(a) T is a contraction on Uc,U0 and admits a unique fixed point U∗ on
Uc,U0 .

(b) For any U ∈ Uc,U0 , T nU converges to U∗ in the metric dc as n →∞.

2.2 Recursive Utility

Consumption streams are elements of RN
+, that is, sequences c = (cj)∞j=1 of

non-negative real numbers. On this space we consider two linear operators:
the projection, πc = c1, and the shift operator, σc = (c2, c3, . . .). In some
economic models it is usual to consider a context in which agents’ prefer-
ences on a given consumption path c depend both on current consumption,
πc, and on the utility of future consumption, σc. This idea of aggregation
can be represented by means of a function W : X × Y −→ Y ∪ {−∞},
called aggregator, where X ⊆ R+ = {x ∈ R : x ≥ 0} and Y ⊆ R.

The following hypotheses on the aggregator W are standard in the
literature (see [1,6]), and will be also used throughout this paper.

(W1) W is continuous on X × Y .

(W2) W obeys a Lipschitz condition with respect to y

|W (x, y)−W (x, y′)| ≤ β(x) |y − y′|, ∀x ∈ X, ∀y, y′ ∈ Y,

where β : X −→ [0,∞) is a continuous function.

1 The set V is closed and bounded, with respect to the topology generated by
the metric d.
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In the seminal paper by Lucas and Stokey [6], it is supposed that the
aggregator is bounded. We eliminate this restriction from the assumptions.

Consider a subset X ⊆ RN
+ satisfying

σX ⊆ X and π

 ∞⋃
j=0

σjX

 ⊆ X, (4)

where σjc = (cj+1, cj+2, . . .) for all j ∈ N. Then, the aggregator W defines
a recursive operator K acting over the space of utility functions defined
on X via K U(c) = W (πc, U(σc)). A real function U defined on X ⊆ RN

+

is called recursive if it verifies the Koopmans’ equation

U(c) = K U(c) = W (πc, U(σc)),

that is to say, if U is a fixed point for the Koopmans’s operator K .
Given X ⊆ RN

+ with a topology τ , let C(X) be the space of τ–continuous
real functions and let Cc,U0(X) be the subset of C(X) satisfying (3) for some
U0 ∈ C(X) and c > 0. In order to find a countable family of semimetrics
{dj}∞j=1 on both U = C(X) and Uc,U0 = Cc,U0(X) in such a way that the
metrics d and dc (defined in (1) and (2) respectively) are complete, the set
X must satisfy in addition to (4) some other properties, and the topology
τ must be carefully selected. We suppose in the following that X ⊆ RN

+ is
a subset of the norm dual of a Banach space and that τ is the weak–star
topology2. The justification for this selection will be shown in Remark 1
below.

For general unbounded aggregators the existence of a recursive utility
function on the whole RN

+ cannot be expected, thus we consider commodity
spaces X where consumption streams are bounded above and below in their
growth rate, as [1,2].

Given a consumption stream w ≥ 1, consider the Riesz ideal

A(w) = {c ∈ RN : |ct| ≤ λwt for some λ > 0, for all t ≥ 1}.

Consider the norm ‖c‖w = supj∈N |cj/wj |. Notice that (A(w), ‖·‖w) is the
norm dual of the separable Banach space of sequences q ∈ RN

+ satisfying
‖q‖1w =

∑∞
j=1 |qj |wj < ∞. We take as natural candidates for commodity

spaces the non–negative cones

X = A+(w) = {c ∈ RN
+ : c ≤ λw for some λ > 0}, (5)

2 For a Banach space E, the weak–star topology on the norm dual E∗ is the
weakest topology so that E is the topological dual of E∗. Notable properties of
the weak–star topology are that every weak–star closed and norm–bounded set of
E∗ (in the dual norm defined on E∗) is compact by Alaoglu’s Theorem, and that
every weak–star compact subset is norm–bounded. All these facts can be found
in, e.g., Willard [11].
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with w increasing, or the sets

X = A+(v,w) = {c ∈ RN
+ : λ1v ≤ c ≤ λ2w for some 0 < λ1 < λ2}, (6)

where v and w are consumption streams in RN
+ such that v is decreasing,

w is increasing, and 0 ≤ v < 1 ≤ w.
The sets given in (6) work well in cases of aggregators for which it is

necessary to keep c away from the null consumption stream 0 (typically,
when W (0, y) = −∞). Note that A+(0,w) = A+(w), so we refer in the
following analysis to A+(w) or A+(0,w), indistinctly.3

Commodity spaces X of the sort given in (5) and (6) are subsets of
the dual of a Banach space and satisfy (4): If c ∈ X = A+(v,w), then
λ1vj ≤ cj ≤ λ2wj for all j ∈ N, for some 0 < λ1 < λ2. Define λ1 =
λ1 v‖σv‖ and λ2 = λ2‖σw‖w, where v‖v‖ denotes infj∈N vj+1/vj . Then
λ1vj ≤ cj+1 ≤ λ2wj for every j ∈ N, so that σc ∈ A+(v,w). Thus,
σX ⊆ X. On the other hand, π(

⋃∞
j=0 σjX) ⊆ X is clear.

In the following lemma it is supposed that if v is not the null sequence,
then v‖σv‖ < 1 and also that ‖σw‖w > 1. Obviously, these inequalities
always can be obtained.

Lemma 1 Let X given as in (5) or (6) with the weak–star topology. Then,
(C(X), d) and (Cc,U0(X), dc) are complete metric spaces.

Proof Consider the sets Kj defined as

Kj =
{
c ∈ A+(v,w) : (v‖σv‖)j ≤ v‖c‖, ‖c‖w ≤ (‖σw‖w)j

}
, ∀j ∈ N.

(7)
It is readily seen that each Kj is weak–star closed and norm bounded, thus
weak–star compact by Alaoglu’s Theorem. The family {Kj}∞j=1 satisfies
Kj ⊂ Kj+1 and A+(v,w) = ∪∞j=1Kj . The first property is obvious. To
show the latter, let c ∈ A+(v,w). Then, λ1vj ≤ cj ≤ λ2wj for all j ∈ N,
for some 0 < λ1 < λ2. By the hypotheses imposed, it is then possible to
choose j ∈ N satisfying (v‖σv‖)j ≤ λ1 and (‖σw‖w)j ≥ λ2. Thus, c ∈ Kj .

Consider now the countable family of seminorms {pj}∞j=1 given by

pj(U) = sup{|U(c)| : c ∈ Kj} = ‖U‖Kj , ∀j ∈ N,

and the corresponding countable family of semidistances, {dj}∞j=1, defined,
as usual, by dj(U, V ) = pj(U − V ) for all j ∈ N. The metrics d and dc

appearing in (1) and (2) transform into

d(U, V ) =
∞∑

j=1

2−j ‖U − V ‖Kj

1 + ‖U − V ‖Kj

and dc(U, V ) =
∞∑

j=1

cj ‖U − V ‖Kj
,

3 When v and w are of the type vj = δj and wj = αj for 0 < δ < 1 <
α, for all j ∈ N, then the sets A+(w) and A+(v,w) are the weighted spaces
`∞+ (α) = {c ∈ RN

+ : supj∈N cj/αj < ∞} and `∞+ (δ, α) = {c ∈ RN
+ : infj∈N cj/δj >

0, supj∈N cj/αj < ∞}, respectively.
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respectively. We prove the lemma only for (C(X), d), since for (Cc,U0(X), dc)
the proof is similar.

First note that, for each j ∈ N, dj satisfies all the axioms in order to
be a distance except that dj(U, V ) = 0 does not imply U = V . However,
whenever dj(U, V ) = 0 for every j ∈ N, then clearly U = V because the
family of compacts subsets {Kj}∞j=1 is increasing and their union fill C(X).
With this property at hand, and the fact that the map x 7→ x/(1 + x) is
increasing, it is obvious that d is a distance. To prove that it is complete,
let {Un}∞n=1 be a Cauchy sequence in the metric d. Then ‖Un−Um‖Kj

→ 0
for every j ∈ N as n, m → ∞, so that {Un}∞n=1 converges uniformly on
every compact Kj to a continuous function Uj . Then define the function
U = Uj on every Kj . To show that U is continuous, let {ca}a∈I be a net
of elements of X converging in the weak–star topology to a limit c ∈ X,
which is unique since this topology is Hausdorff. Weak–star convergent nets
are norm bounded, thus the set K = {ca}a∈I ∪ {c} is norm bounded
and in consequence there exists j ∈ N such that K ⊆ Kj . Now, since
U is continuous on Kj , U(ca) → U(c). In consequence, U is weak–star
continuous and d is complete. ut

Notice that convergence in distance d means uniform convergence on
the compact subsets of X, and the same property is true for the metric dc.

Remark 1 The commodity space A+(w) endowed with the topology de-
rived from the norm ‖ · ‖w cannot be covered with a countable family
of compact sets, since the unit ball is not compact in the topology gener-
ated by the norm. In consequence, is not possible to define on the space
of norm–continuous functions a countable family of seminorms with the
properties described in the proof of Lemma 1 and C(X) is not metrizable.
On the other hand, a weaker topology such as the product topology is not
suitable either: consider for instance that A+(w) = `N

+ is the space of all
bounded consumption streams, and take an arbitrary increasing family of
compact subsets {Kj}∞j=1 covering `N

+. Then, πt(Kj) ⊆ R+ is compact for
all t ∈ N, since the projection π is continuous in the product topology, so
αtj = maxπt(Kj) is well-defined. It is obvious, however, that the compact
set K = {c}∞j=1 ∪ {0}, where cj = (0, . . . , 0, 1 + αjj , 0, . . .), for all j ∈ N,
is not contained in any element of the countable family {Kj}∞j=1. Thus
the space of continuous functions with respect to the product topology is
metrizable, but C(X, d) is not complete.

Remark 2 The compact subsets Kj just defined in (7) satisfy σKj ⊆ Kj+1,
for all j ∈ N. To show this, notice the following properties: ‖σc‖w ≤
‖c‖w‖σw‖w, and v‖σc‖ ≥ v‖c‖ v‖σv‖. Then, for c ∈ Kj , it follows
‖σc‖w ≤ (‖σw‖w)j ‖σw‖w = (‖σw‖w)j+1, and a similar argument shows
v‖σc‖ ≥ (v‖σv‖)j+1, which proves the statement. On the other hand, in
cases where w is a bounded consumption stream, and v = 0, we can
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consider the compact subsets defined as

Kj =
∞∏

j=1

[0, j]N, ∀j ∈ N, (8)

selection which permits to trivially obtain A+(v) = ∪∞j=1Kj , and σKj ⊆
Kj . This last property is important for proving that the Koopmans’ oper-
ator K is a 0–local contraction, a case for which global uniqueness of the
recursive utility function can be obtained.

3 Main results

Our first result in this section shows that K is a 0–local contraction on
C(X) , whenever X = A+(w) and w is a bounded consumption stream.
Therefore, the conclusions of Theorem 1 are applicable to the operator K .
In consequence, the utility function whose existence is asserted is the unique
weak–star continuous function satisfying the Koopmans’ equation.

Theorem 3 Let W be an aggregator satisfying (W1) and (W2). Let w ∈
RN

+ be a bounded consumption stream and consider βj = maxc∈Kj
β(π(c)) <

1, for all j ∈ N, where Kj =
∏∞

j=1[0, j]N. Then,

(a) The Koopmans’ equation has a unique solution U∗ on C(A+(w)). Fur-
thermore, U∗ satisfies

‖U∗‖Kj
≤
‖K 0‖Kj

1− βj
, ∀j ∈ N.

(b) For any U ∈ C(A+(w)), K nU converges to U∗ in the metric d as
n →∞.

Proof According to Lemma 1 and Theorem 1, we only need to prove that
K is a 0–local contraction on C(A+(w)). Given a function U ∈ C(A+(w)),
K U is weak–star continuous from (W1), and because π and σ are weak–
star continuous linear operators. Let U, V ∈ C(A+(w)) and let c ∈ Kj ,
where Kj is defined as in (8). Then,

|K U(c)−K V (c)| = |W (πc, U(σc))−W (πc, V (σc))|
≤ β(πc) |U(σc)− V (σc)| (from (W2))

≤ max
c∈Kj

β(πc) |U(σc)− V (σc)|

≤ βj max
c∈Kj

|U(c)− V (c)| (since σKj ⊆ Kj)

= βj ‖U − V ‖Kj
.

Thus, we have ‖K U − K V ‖Kj
≤ βj ‖U − V ‖Kj

and K is a 0–local
contraction. ut
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Now, we establish the corresponding result for the commodity spaces
appearing in Lemma X = A+(v,w). The result, which permits to cover
aggregators unbounded below, W (0, y) = −∞, and undiscounted or even
upcounted models, states some joint restrictions on the preferences and
the rate of growth of the consumption streams. Such joint restrictions are
unavoidable whether another techniques are used, as those derived in [2],
[8], or [5].

Theorem 4. Let W be an aggregator satisfying (W1) and (W2). Let U0 ∈
C(A+(v,w)) be such that the series

dc(K U0, U0) =
∞∑

j=1

cj ‖K U0 − U0 ‖Kj

converges for some c > β with β = supx∈X β(x). Then,

(a) The Koopmans operator has a unique solution U∗ on the set

Cc,U0(A+(v,w)) =
{

U ∈ C(A+(v,w)) : dc(U,U0) ≤
dc(K U0, U0)

1− β/c

}
(b) For any U ∈ Cc,U0(A+(v,w)), K nU converges to U∗ in the metric

dc as n →∞.

Proof According to Lemma 1 and Theorem 2 we only need to prove that
K is a 1–local contraction on Cc,U0(A+(v,w)). Given a function U ∈
Cc,U0(A+(v,w)), K U is weak–star continuous from (W1), and because π
and σ are weak–star continuous linear operators. Let U, V ∈ Cc,U0(A+(v,w))
and let c ∈ Kj , where Kj is defined in (7). Then,

|K U(c)−K V (c)| = |W (Πc, U(σc))−W (Πc , V (σc))|
≤ β |U(σc)− V (σc)| (from (W2))

≤ max
c∈Kj

β |U(σc)− V (σc)|

≤ β ‖U − V ‖Kj+1 (since σKj ⊆ Kj+1).

Thus, we have ‖K U − K V ‖Kj
≤ β ‖U − V ‖Kj+1 and K is a 1–local

contraction. ut

Remark 3. In applications, it is important to determine the range of values
of c for which the series

∑∞
j=1 cj ‖K U0 − U0 ‖Kj

converges. Here is a
well–known result: let

∑∞
j=1 cjaj be a power series of real (or complex)

numbers and let λ = lim supj→∞ |aj |
1
j . If cλ < 1, then the series converges

uniformly. If cλ > 1, then the series diverges.
Notice that in this context, where aj = ‖K U0−U0 ‖Kj

, the limit always
exists (it can be +∞), since aj is an increasing sequence of real numbers.
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When U0 ≡ 0 we can summarise the conditions established in Theorem 4
as follows:

lim sup
j→∞

‖W (πc, 0)‖1/j
Kj

= λ, and βλ < 1.

This is a joint restriction in the growth of W (x, 0), the rate of growth of
consumption, and the size of the implicit discount factor.

4 Examples

The following examples illustrates the applicability of theorems 3 and 4. In
the first model the case where K is a 0–local contraction is studied, ob-
taining uniqueness of the utility function. It also shows how our techniques
can be applied to undiscounted models with β = 1. The second example
illustrate the case of an unbounded below aggreagator, W (0, y) = −∞. We
improve the analysis with respect to previous results on the statement of
the weak–star continuity of the utility function.

Example 1 (Uzawa–Epstein–Hynes). Let W (x, y) = (u(x) + y)e−v(x), intro-
duced in [10] and also studied in [3], where it is supposed that u, v are con-
tinuous and strictly increasing on X = [0,∞), with u < 0 and v(0) ≥ 0.
Assumption (W1) holds as well as (W2) for β = e−v(0). Suppose first
that v(0) > 0. Let w be a bounded consumption stream, and consider
the space A+(w) = `N

+. Since β = e−v(0) < 1, Theorem 3 applies as-
suring the existence of a unique fixed point U∗ on C(A+(w)). On the
other hand, let w be a consumption stream satisfying 1 < ‖σw‖w < ∞.
Now, let U0 be the null function. Since u is strictly increasing, it follows
lim supj→∞ ‖K 0‖1/j

Kj
≤ lim supj→∞(β|u(0)|)1/j = λ = 1. Thus, Theorem 4

and Remark 3 assure the existence of a fixed point U∗ on C(A+(w)). Fur-
thermore, uniqueness of the fixed point is verified on the sets of the form
Cc,0(A+(w)), for all c ∈ (β, 1).

When v(0) = 0 Theorem 3 is not applicable on C(A+(w)), as β = 1.
However, Theorem 4 again applies on the commodity space Cc,0(A+(v,w)),
for all consumption streams v,w satisfying 0 < ε < v‖σv‖ < 1 < ‖σw‖w <
∞, where now X = [ε,∞) (the reason is that, for such a selection, β =
e−v(ε) < 1). Hence, Theorem 4 guaranties the existence and uniqueness of
a fixed point U∗ on Cc,0(A+(v,w)), for all c ∈ (β, 1).

Example 2 (Logarithmic case). Suppose that W satisfies (W1), (W2) and
is such that a + b lnx ≤ W (x, 0) ≤ A + B lnx for all x > 0, for some
non-negative constants a, b, and A,B > 0. Obviously, W (0, y) = −∞, so
that W is unbounded below. Take then consumption streams v = {vj}∞j=1

and w = {wj}∞j=1 satisfying the hypotheses of Theorem 2, and define λ1 =

lim supj→∞ |A + B lnwj |1/j , and λ2 = lim supj→∞ |a + b ln vj |1/j . Then,
for any c ∈ Kj , it follows

K 0(c) ≥ a + b lnπc = a + b ln c1 ≥ a + b ln vj ,
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and, in the same way,

K 0(c) ≤ A + B lnπc = A + B ln c1 ≤ A + B lnwj .

Hence, lim supj→∞ ‖K 0‖1/j
Kj

≤ min{λ1, λ2}. Therefore, Theorem 4 and Re-
mark 3 show that, for all β < min{λ1, λ2}, a unique recursive utility func-
tion U∗ exists on Cc,0(A+(v,w)), for all c ∈ (β, 1).

References

1. Becker, R.A., Boyd III, J.H.: Capital theory, equilibrium analysis and recur-
sive utility. Oxford: Blackwell 1997

2. Boyd III, J.H.: Recursive utility and the Ramsey problem. Journal of Eco-
nomic Theory 50, 326–345 (1990)

3. Epstein, L., Hynes, J.A.: The rate of time preference and dynamic economic
analysis. Journal of Political Economy 91, 611–635 (1983)

4. Koopmans, T.J.: Stationary ordinal utility and impatience. Econometrica 28,
287–309 (1960)

5. Le Van, C., Vailakis, Y.: Recursive utility and optimal growth with bounded
or unbounded returns. Journal of Economic Theory 123, 187-209 (2005)

6. Lucas Jr., R.E., Stokey, N.L.: Optimal growth with many consumers. Journal
of Economic Theory 32, 139–171 (1984)
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