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Abstract

We consider a stochastic, non–concave dynamic programming problem admitting in-
terior solutions and prove, under mild conditions, that the expected value function is
differentiable along optimal paths. This property allows us to obtain rigorously the Euler
equation as a necessary condition of optimality for this class of problems.
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1 Introduction

The Euler equation is a useful tool to analyze discrete time dynamic programming problems
with interior solutions. A way to obtain the Euler equation is from the Envelope Theorem
developed by Mirman and Zilcha (1975) and Benveniste and Scheinkman (1979). This result
asserts that interiority of solutions plus concavity imply differentiability of the value func-
tion, providing an expression for the derivative. Hence, under this approach, the validity of
the Euler equation as a necessary condition of optimality for interior solutions depends on
the differentiability of the value function. From a large body of literature that uses the Euler
equation to analyze stochastic models, it is worth mentioning Brock and Mirman (1972), Don-
aldson and Mehra (1983), Majumdar et al (1989), Coleman (1991), Nishimura and Stachurski
(2005), Nishimura et al (2012) or Cai et al (2014), to cite only a few of them. The aim of
this paper is to show that the Euler Equation holds in stochastic, non–concave models where
the optimal correspondence admits a selection that is interior to the technological constraint.
Variants of this result have previously been obtained in the deterministic case by Dechert and
Nishimura (1983), Amir (1996), Askri and Le Van (1998), Cotter and Park (2006) and Morand
et al (2018), among others, using different techniques and assumptions. Clausen and Strub
(2016) provide envelope theorems based on the so called ‘Sandwich Differentiable Lemma’ and
apply them to a great variety of models, including stochastic models, but it seems that there
is no specific claim in their paper that may apply directly to our framework without further
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work1. Dechert and Nishimura focus on the optimal growth model; Amir (1996) uses increas-
ing differences in the return function to show the differentiability of the value function; Askri
and Le Van (1998) impose Lipschitzianity of the value function and differentiability of the
instantaneous utility function, working with the generalized gradient of Clarke; while Morand
el al (2018) study Lipschitz dynamic programs without smoothness and without concavity,
and find lower and upper bounds in the directional derivatives of the value function, even
when the optimal policy is non–interior. Cotter and Park (2006) base their approach on the
results of Milgrom and Segal (2002), supposing that the utility function is equi-differentiable
and that the feasible set correspondence is independent of the state variables2.

In this paper, we deal with the stochastic case with an underlying Markov chain, and
impose only the differentiability of the return function and some natural and indispensable
integrability conditions. The contribution of our paper is best summarized in the following
table, while also indicating the state of the art concerning the differentiability of the value
function when the optimal policy function is interior. The assertions in the cells of the
table concern the value function at interior (endogenous) states and interior optimal policies,
provided that the return function is smooth. The contribution of this paper is to fill in the
bottom, righthand side cell and thus to obtain the Euler equation as a necessary condition of
optimality.

concave non–concave
deterministic the value function is dif-

ferentiable
the value function is dif-
ferentiable at the opti-
mal policy

stochastic the value function is dif-
ferentiable

the expected value func-
tion is differentiable at
the optimal policy

Table 1: Differentiability properties of the value function in concave/non–concave and deter-
ministic/stochastic models.

The paper is organized as follows. Section 2 describes the dynamic programming problem
and establishes the basic hypotheses. Section 3 contains the main result, consisting in the
differentiability of the expected value function at the optimal policy and showing the validity
of the Euler equation. Section 4 closes the paper with some conclusions.

2 Dynamic programming

Consider a dynamic programming model (X,Z,Γ, Q, F, β), where

1Notice that what we prove in this paper is the differentiability of the expected value function along the
optimal path; the differentiability of the plain value function along the optimal path cannot be inferred without
further assumptions.

2The consideration of a choice set correspondence depending on the endogenous variable requires some
additional regularity, even if it is possible to select an interior policy function, as is imposed later in this paper.
See Rincón–Zapatero and Santos (2009, 2102) for an Envelope Theorem in a concave dynamic problem with
constraints, and Rincón–Zapatero and Zhao (2018) for the deterministic recursive utility case.
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1. X ×Z is the set of possible states of the system. X and Z are non–empty Borel sets in
Rl and Rm, respectively.

2. Γ is a correspondence that assigns each state (x, z) a nonempty set Γ(x, z) of feasible
actions at (x, z). We let Y =

⋃
(x,z)∈X×Z Γ(x, z) and Ω = {(x, y, z) : (x, y) ∈ X×Z, y ∈

Γ(x, z)} be the graph of Γ.

3. Q is the transition function, which associates a conditional probability distribution
Q(·|z) on Z to each z ∈ Z. Hence, the law of motion is assumed to be a first-order
Markov process, which could be degenerated, giving rise to a deterministic model.

4. F is the one–period return function, defined on Ω.

5. β ∈ (0, 1) is a discount factor.

Starting at some state (x0, z0), the agent chooses an action x1 ∈ Γ(x0, z0), obtaining a return
of F (x0, x1, z0) and the system moves to the next state (x1, z1), where z1 is drawn according
to the probability distribution Q(·|z0). Iteration of this process yields a random sequence
(x0, z0, x1, z1, . . .) and a total discounted return

∑∞
t=0 β

tF (xt, xt+1, zt). A history of length
t is zt = (z0, z1, . . . , zt). Let Zt be the set of all histories of length t. A (feasible) plan π
is a constant value π0 ∈ X and a sequence of measurable functions πt : Zt −→ X, such
that πt(z

t) ∈ Γ(πt−1(zt−1), zt), for all t = 1, 2, . . .. Denote by Π(x0, z0) the set of all feasible
plans starting at the state (x0, z0). Any feasible plan π ∈ Π(x0, z0), along with the transition
function Q, defines a distribution Pπ,(x0,z0) on all possible futures of the system {(xt, zt)}∞t=1,
as well as the expected total discounted utility

u(π, x0, z0) = Eπ,(x0,z0)

( ∞∑
t=0

βtF (xt, xt+1, zt)

)
.

The expectation Eπ,(x0,z0) is taken with respect to the distribution Pπ,(x0,z0). The prob-
lem is then to find a plan π ∈ Π(x0, z0) such that u(π, (x0, z0)) ≥ u(π̂, (x0, z0)) for all
π̂ ∈ Π(x0, z0), for all (x0, z0) ∈ X × Z. The value function of the problem is v(x0, z0) =
supπ∈Π(x0,z0) u(π, (x0, z0)).

The following functional equation plays a key role in the solution of the problem

v(x, z) = sup
y∈Γ(x,z)

(
F (x, y, z) + β

∫
Z
v(y, z′)Q(dz′|z)

)
, (x, z) ∈ X × Z. (2.1)

This equation is also referred as the “optimality equation” or “Bellman equation”. If there
exists a function v satisfying (2.1), then the associated policy correspondence G is

G(x, z) =

{
y ∈ Γ(x, z) : v(x, z) = F (x, y, z) + β

∫
Z
v(y, z′)Q(dz′|z)

}
.

If G is non–empty and admits a measurable selection, then we say that the plan π is generated
by G when there is a measurable selections g from G, such that π0 = g(x0, z0) and πt(z

t) =
g(πt−1(zt−1), zt), all zt ∈ Zt, t = 1, 2, . . ..

There is a close connection between solutions of the functional equation and the value
function. Under suitable hypotheses, the value function solves the equation. However, a
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famous example due to Blackwell (1965), shows that the value function may not be Borel
measurable, even when all the primitives of the problem are Borel measurable, and hence the
Bellman equation cannot characterize the value function in this case. On the other hand,
there are sufficient conditions that, applied to solutions of (2.1), allow us to identify the value
function, see e.g., Theorem 9.2 in Stokey and Lucas with Prescott (1989).

We define the Markov operator

Mf(x, z) =

∫
Z
f(y, z′)Q(dz′|z), (2.2)

for integrable functions f .
The Euler equation is obtained for plans that are at interior states and choose interior

actions. We say that the state (x, z) is interior, if x is in the interior of the set X; and we
say that the action y at (x, z) is interior, if y is in the interior of the set Γ(x, z). A plan π
is interior at (x, z), if (x, z) is interior and, with probability one under Pπ,(x,z), only interior
states are reached and only interior actions are taken.

We shall use the notation DiF (x, y, z) for the partial derivatives of F at (x, y, z) with
respect to the ith coordinate, for i = 1, . . . , 2l. We let the vectors DxF = (D1F, . . . ,DlF )
and DyF = (Dl+1F, . . . ,D2lF ) and use a similar notation for the partial derivatives for other
functions. No role is played by the derivatives of F with respect to z. Also, given x ∈ X, Nx

denotes a neighborhood of x in X, that is, the intersection of a neighborhood of x in Rl with
X.

We impose the following assumptions.
B1: The correspondence Γ is non–empty, compact-valued, and continuous. The space of

shocks Z is compact.
B2: The correspondence G is nonempty and permits a measurable selection g(x, z) at

any (x, z) ∈ int(X) × Z, that generates an optimal and interior plan, π. Moreover, for all
x ∈ int(X), the mapping z → g(x, z) is bounded.

B3: The utility function F is continuous, and for each z ∈ Z, the functions (x, y) →
DiF (x, y, z) are continuous on the interior of Ωz = {(x, y) : (x, y, z) ∈ Ω}, for all i = 1, . . . , 2l.

B4: The value function v satisfies the Bellman equation and is continuous on int(X)×Z.
B5: For every interior state (x0, z0) and interior action y0 ∈ Γ(x0, z0), there exists a

neighborhood Nx0 3 x0 independent of z0, such that y0 ∈ Γ(x, z0), for all x ∈ Nx0 .
Hypothesis B1 is standard. The compactness of Z is usually assumed in applications. In

our context, it is important for dealing with integrability issues. To weaken this assumption
would require additional assumptions on F and on the sequences of shocks, complicating the
obtention of the differentiability results. Le Van and Stachurski (2007) study the dependence
of the stationary distribution when the space of shocks is not compact. Hypothesis B2 estab-
lishes the boundedness of g with respect to z, for any fixed x. This is imposed for technical
reasons. Regarding B3, it is more stringent than the smoothness condition imposed on F ,
when F is concave in (x, y). Under concavity, only the differentiability of x → DiF (x, y, z)
is required. Lack of concavity has to be compensated with the differentiability of F , not
only with respect to the state, but also with respect to the decision variable. If we consider
uncertainty in addition to non–concavity, as it is the case here, the hypothesis has to be
strengthened to get B3. Hypothesis B4 holds under the standard hypotheses we have im-
posed if F is bounded, as well as in the unbounded case under further conditions that link
the discount factor and the growth of F on the feasible correspondence. See Boyd III (1990)
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or Rincón–Zapatero and Rodŕıguez–Palmero (2003, 2007) to cite only some works that deal
with this problem. B4 is taken for granted here, since we are interested in the differentiability
properties of the value function. Continuity of v in (x, z) is imposed for the purpose of
clarity in the exposition. Since v satisfies the Bellman equation by hypothesis, the proof of
Theorem 3.1 below is still valid by merely supposing that v(·, z) is continuous in the interior
of X for each z ∈ Z. B5 is a mild interiority assumption that plays an important role in the
construction of differentiable upper and lower envelopes of the value function3.

3 Differentiability of value function and Euler equation

In the next theorem, we use the notation x · y for the inner product of vectors in Rl and ‖x‖
for the Euclidean norm. The next theorem is the main result of the paper. Part (a) provides
an envelope theorem for non–concave models with interior solutions. It has two distinctive
features: (i) it is the expected value function which is differentiable, not the value function
itself; and (ii) it is differentiable at the optimal path. Of course, (ii) has been well known in
the deterministic case since the work of Dechert and Nishimura (1983). Regarding (i), this is
new, to our knowledge. Part (b) asserts that the Euler equation holds. Note that, in the proof,
we start the reasoning at (π0, z1) and not at (x0, z0), that is, a period ahead of the initial
state. This is because, to follow the method of Mirman–Zilcha or Benveniste–Scheinkman
to get differentiability in the non–concave case, we cannot use the well known fact that a
concave function which is the upper envelope of a smooth function is also smooth. In our
case, we need to complete the information with the fact that the continuation value function
will be a lower envelope of a smooth function. These two properties hold at the same time
for tomorrow’s states and not at current ones. Recall the expression of the Markov operator
M given in (2.2).

Theorem 3.1. Let the problem (X,Z,Γ, Q, F, β) satisfy Assumptions B1–B5. Then, for
any interior state (x0, z0) ∈ X × Z, the expected value function Mv(·, z0) is continuously
differentiable at π0 and the following holds with probability one under Pπ,(x0,z0):
(a) the envelope equation

DxMv(πt(z
t), zt) =

∫
Z
DxF (πt(z

t), πt+1(zt+1), zt+1)Q(dzt+1|zt), t = 0, 1, . . . ;

(b) the stochastic Euler equation

DyF (πt(z
t), πt+1(zt+1), zt+1)

+ β

∫
Z
DxF (πt+1(zt+1), πt+2(zt+2), zt+2)Q(dzt+2|zt+1) = 0, t = 0, 1, . . . .

Proof. Let the state be (x0, z0) and let π0 ∈ G(x0, z0). The optimal plan π is interior, thus
by B5 , there exists Nπ0 such that for all z1 ∈ Z, π1(z1) ∈ Γ(y, z1) for all y ∈ Nπ0 . We take
Nπ0 to be a compact neighborhood of π0. The function φ : Nπ0 × Z −→ R given by

φ(y, z1) := F (y, π1(z1), z1) + βMv(π1(z1), z1) (3.1)

3A previous version of the paper claimed that B1 and B2 imply B5. That this is wrong was pointed out
by one referee, who provided the following counterexample: let a deterministic model with X = [−1, 1] and
Γ(x) := {y ∈ [−1, 1] : |y| ≥ |x|}, for x ∈ X. The correspondence obeys B1 and B2, y0 = 0 belongs to the
interior of Γ(0) = [−1, 1], but 0 /∈ Γ(x) for x 6= 0.
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is well defined. Clearly, it is of class C1 with respect to y. Let us show that it is measurable
with respect to z1 and bounded in Nπ0 × Z. We will use repetitively the following property
that can be found in Bergé (1963): since Γ is continuous with compact values and Nπ0 × Z
is compact, the set Γ(Nπ0 × Z) is compact. The first summand of the right hand side of
(3.1), F (y, π1(z1), z1), is measurable, since π1(z1) is measurable and F is continuous. The
continuity of F guarantees that F (y, π1(z1), z1) is bounded in Nπ0×Z. The second summand
in (3.1) is Mv(π1(z1), z1). Since v is a solution of the Bellman equation, it holds

Mv(π1(z1), z1) =
1

β
v(π0, z1)− 1

β
F (π0, π1(z1), z1).

Clearly, by continuity, both terms on the right hand side of the equality are measurable and
bounded in z1. Thus, the function z1 → φ(y, z1) is integrable with respect to z1 for y ∈ Nπ0 .
As a consequence, the function Φ, given by

Φ(y, z0) =

∫
Z
φ(y, z1)Q(dz1|z0), (3.2)

is well defined for all y ∈ Nπ0 . Moreover, since φ is continuous in y and bounded in Nπ0 ×Z,
by Theorem 20.3 in Aliprantis and Burkinshaw (1990), function Φ is continuous in y. By
(3.1), φ(π0, z1) = v(π0, z1) and v(y, z1) ≥ φ(y, z1) in Nπ0 . Hence, integrating, we have

Φ(π0, z0) =

∫
Z
φ(π0, z1)Q(dz1|z0) =

∫
Z
v(π0, z1)Q(dz1|z0) = Mv(π0, z0). (3.3)

and

Φ(y, z0) =

∫
Z
φ(y, z1)Q(dz1|z0) ≤

∫
Z
v(y, z1)Q(dz1|z0) = Mv(y, z0), (3.4)

all y ∈ Nπ0 . Now we show that the function Φ is differentiable with respect to x. To prove this,
note that the partial derivatives Diφ(y, z1) = DiF (y, π1(z1), z1), i = 1, . . . , l, are measurable.
Also, |Diφ(y, z1)| ≤ C in Γ(Nπ0 × Z) for some constant C. This is because Γ(Nπ0 × Z) is a
compact subset of the interior of X and then, by continuity, |DiF | is bounded. By Theorem
20.4 in Aliprantis and Burkinshaw (1990), Φ(·, z0) is differentiable at π0 and differentiating
under the integral is allowed, to obtain

DxΦ(π0, z0) =

∫
Z
Dxφ(π0, z1)Q(dz1|z0) =

∫
Z
DxF (π0, π1(z1), z1)Q(dz1|z0). (3.5)

Observe that, by (3.3) and (3.4)

lim inf
y→π0

Mv(y, z0)−Mv(π0, z0)−DxΦ(π0, z0) · (y − π0)

‖y − π0‖

≥ lim inf
y→π0

Φ(y, z0)− Φ(π0, z0)−DxΦ(π0, z0) · (y − π0)

‖y − π0‖
= 0,

(3.6)

where, the equality holds since Φ(·, z0) is differentiable.
On the other hand, since π0 belongs to the interior of Γ(x0, z0), there is a neighborhood

N ′π0 of π0 which is in the interior of Γ(x0, z0). For any y ∈ N ′π0 , let us define the function

ψ(y, z0) =
1

β
(v(x0, z0)− F (x0, y, z0)) .
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Note that ψ is continuously differentiable. Moreover,

ψ(π0, z0) =
1

β
(v(x0, z0)− F (x0, π0, z0)) = Mv(π0, z0)

and, for y ∈ N ′π0 , F (x0, y, z0) + βMv(y, z0) ≤ v(x0, z0), hence ψ(y, z0) ≥Mv(y, z0). Then we
can compute

lim sup
y→π0

Mv(y, z0)−Mv(π0, z0)−Dxψ(π0, z0) · (y − π0)

‖y − π0‖

≤ lim sup
y→π0

ψ(y, z0)− ψ(π0, z0)−Dxψ(π0, z0) · (y − π0)

‖y − π0‖
= 0,

(3.7)

since ψ(·, z0) is differentiable. Now, a well known method of reasoning will prove that
DxΦ(π0, z0) = Dxψ(π0, z0). Note that

Mv(y, z0)−Mv(π0, z0)−Dxψ(π0, z0) · (y − π0)

‖y − π0‖

− Mv(y, z0)−Mv(π0, z0)−DxΦ(π0, z0) · (y − π0)

‖y − π0‖

= (DxΦ(π0, z0)−Dxψ(π0, z0)) · (y − π0)

‖y − π0‖
.

If we let y → π0 along the direction DxΦ(π0, z0) − Dxψ(π0, z0), that is, if we take y =
π0 + λ(DxΦ(π0, z0)−Dxψ(π0, z0)), then

Mv(y, z0)−Mv(π0, z0)−Dxψ(π0, z0) · (y − π0)

‖y − π0‖

− Mv(y, z0)−Mv(π0, z0)−DxΦ(π0, z0) · (y − π0)

‖y − π0‖
= ‖DxΦ(π0, z0)−Dxψ(π0, z0)‖.

Letting λ→ 0, by the definition of lim sup and lim inf, we have

‖DxΦ(π0, z0)−Dxψ(π0, z0)‖

≤ lim sup
y→π0

Mv(y, z0)−Mv(π0, z0)−Dxψ(π0, z0) · (y − π0)

‖y − π0‖

− lim inf
y→π0

Mv(y, z0)−Mv(π0, z0)−DxΦ(π0, z0) · (y − π0)

‖y − π0‖
.

Hence, by (3.6) and (3.7), ‖DxΦ(π0, z0)−Dxψ(π0, z0)‖ ≤ 0 and thusDxΦ(π0, z0) = Dxψ(π0, z0)
as claimed above. Consequently, Mv(·, z0) is differentiable at π0 and

DxMv(π0, z0) = DxΦ(π0, z0) = Dxψ(π0, z0).

Now, by (3.5) and since Dxψ(y, π0) = − 1
βDyF (x0, y, z0), we have

DxMv(π0, z0) =

∫
Z
DxF (π0, π1(z1), z1)Q(dz1|z0) = − 1

β
DyF (x0, π0, z0),
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or

DyF (x0, π0, z0) + β

∫
Z
DxF (π0, π1(z1), z1)Q(dz1|z0) = 0.

By induction, this process can be iterated, starting now at (π1(z1), z1), since (π1(z1), z1) is
an interior state by assumption. In this way, we get the Envelope Equation (a) and the Euler
Equation (b) of the theorem at any t ≥ 1.

3.1 Deterministic problems

If the problem is deterministic, that is, if Q is degenerated, then the theorem holds with weaker
assumptions, as the integrability is not a issue. We replace B3 by the following assumption
and state the corresponding theorem below.
B3’: The function F : Ω −→ R is continuous and differentiable in the interior of Ω.

In the theorem below, the assumptions have to be interpreted as independent of z. The
theorem has already been established and proved by Dechert and Nishimura (1983) in the
particular case of a nonconvex optimal growth model.

Theorem 3.2. Let the problem (X,Γ, F, β) satisfy Assumptions B1, B2, B3’, B4 and B5.
Then, for any interior state x0 ∈ X, the function v is differentiable at g(x0) and the following
hold:
(a) the Envelope equation

Dxv(xt) = DxF (xt, xt+1), t = 1, 2, . . . ;

(b) the Euler equation

DyF (xt, xt+1) + βDxF (xt+1, xt+2) = 0, t = 1, 2, . . . ,

where xt+1 = g(xt), t = 1, 2, . . . .

4 Conclusions

We have obtained the Euler equation as a necessary condition of optimality for interior so-
lutions in non–concave problems. To do it, we have proved that the expected value function
is differentiable at tomorrow’s optimal states. This property suffices to construct the Euler
equation. Future work should be directed to exploring the case where the endogenous state
variable obeys a law of motion that depends on the previous state, actions, and stochastic
shocks. This seems to be a challenging problem as, to our knowledge, there are no general
results, even in the concave case; one exception being Blume et al (1982) in their study of the
higher order differentiability of the value and the policy function in concave problems.
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Uniqueness of Solutions of the Bellman Equation in the Unbounded Case,” Econometrica,
71, 1519-1555.

[24] Rincón–Zapatero, J.P., and C. Rodŕıguez–Palmero (2007): “Recursive Utility
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