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Abstract

We study the asset allocation of defined benefit pension plans of the type designed and

sponsored by firms with the aim of providing a lifetime pension to the employees at the age

of retirement. Benefits are stochastic, combining Poisson jumps with Brownian uncertainty.

The sponsor dynamically forms portfolios where the risky asset is also subjected to Poisson

jumps and Brownian uncertainty, possibly correlated with the evolution of benefits. The

objective is to assure future benefits, while controlling the contribution made to the fund

reserves. The problem is solved analytically using dynamic programming techniques.
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1 Introduction

The objective of this paper is to study the asset allocation of defined benefit pension plans

of the type designed and sponsored by firms with the aim of providing a lifetime pension to

the employees at the age of retirement. A pension plan may serve as an instrument to real-

locate individuals’ wealth from their working life to retirement, a period where typically there

might be no source of wealth to sustain consumption other than a low support from the state.

Moreover, pension plans have become influential institutions in the financial markets for their

high capitalization. However, in most developed countries the pension system is been subject

to controversy and concern because the age pyramid is changing due to the reduction of the

birth rate and a longer life expectancy, which, in our context, means that a smaller workforce

should fund a large number of retirees. This demographic change has caused a steady increase

in contributions, resulting in excessive costs to the pension plan sponsor. However, depending

on the performance of the real economy, even the most aggressive contribution scheme cannot

guarantee a real level of future benefits. To mitigate this problem the sponsor may form a risky

portfolio to earn higher returns, assuming then some risk.

Our model is purely actuarial, leaving aside the evolution of the real economy. All information

is supposed to be captured in the evolution of the financial market and in the pension benefits.

Note also that we do not include any explanation of labor supply shortfalls caused by current

demographic trends, and we take these as given. The sponsor does not care about the overall

economic progress, nor does it have tools to influence it. The sponsor is only concerned with

the evolution of the pension plan, and we cannot infer any consequence for the output of the

economy. Hence we are examining here the “book balancing” problem, which is an interesting

endeavor for actuaries.

There are two major types of pension plans: Defined Benefit (DB therefore) and Defined

Contribution. In a DB plan, the benefits are fixed in advance and contributions are designed to

maintain the fund in balance, that is, to fund employees’ promised benefits. Usually, benefits

are linked to salaries, and the contributions are shared by employer and employee. The sponsor
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bears the risk of funding the pension fund to assure future benefits, and the employee does not

suffer possible investment losses. In contrast, in the latter scheme, the individual builds his/her

own pension fund, selecting a fixed contribution rate and an investment strategy across assets,

such as equities and bonds. Benefits are not fixed anymore, but the inherent risk is entirely

borne by the individual. It is important to note that the decisions regarding contributions

and investment depends, of course, on the member’s preferences. In a DB plan, it is also

necessary to set preferences that capture appropriate objectives of the sponsor. We choose,

as is customary in the literature, quadratic preferences as in Haberman and Sung (1994) or

Josa–Fombellida and Rincón–Zapatero (2001). Quadratic preferences are adequate to model

the sponsor’s concern towards the solvency risk and the amortization rate risk. These risks

are defined as quadratic deviations of the fund level and the contribution rate from liabilities

and normal cost, respectively. Whereas solvency risk is related with the security of the pension

fund in attaining the promised liabilities, the contribution risk takes care of the stability of the

pension fund scheme. Liabilities are simply the aggregation of all future benefits of retirees.

Note that we avoid the consideration of different costs of being over/underfunded, although

the asymmetry of costs might be more appropriate in some contexts. For example, firms with

different tax shelters or different financial slack, as in Bodie et al (1987), could value differently

the over/underfunded phases. From a technical point of view, asymmetry leads to piecewise

quadratic preferences, henceforth to a non–smooth cost function. The problem becomes harder

to solve, and no explicit solution seems to be available.

We are interested in aggregated pension plans of DB type, where benefits are stochastic

and include both Brownian motions and Poisson jumps. The interest in considering jumps in

the evolution of benefits is justified from several facts. First, since benefits are generally linked

with salaries, sudden shocks in the latter give rise shocks in the former. The recent economic

and financial crisis, which especially affects the peripheral members of the Euro zone, has

motivated a significative reduction in salaries of civil servants. Wage reduction could not have

been planned in advance, thus it can be considered as a random event resulting in a jump down

of benefits. This random event seems to have originated in the financial markets, thus it is
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necessary to model benefits as correlated with jumps affecting the risky assets. Second, changes

in legislation may lead to changes in the valuation of benefits. An example is a recent UK

government edict, that base future cost–of–living increases on the consumer price index rather

than the generally higher retail price index; in our context, this implies a change in the technical

rate of actualization to be defined below. Consequently, liabilities would fall suddenly.

This basic framework has already been explored by us with dynamic programming methods,

Josa–Fombellida and Rincón–Zapatero (2001, 2004, 2008a, 2008b, 2010), and by many other

authors, such as Battocchio et al (2007), Berkelaar and Kouwenberg (2003), Cairns (2000),

Chang (1999), Chang et al (2003), Haberman and Sung (1994, 2005), Haberman et al (2000) or

Taylor (2002). Motivated by the possibilities of jumps in the real evolution of pension plans,

in this paper, we add jumps to the stochastic processes governing the evolution of benefits and

risky assets, with the aim of obtaining a closed–form solution that allows us to isolate the effects

of the jumps both in the optimal investment strategy and the optimal contribution rate.

It is likely that the first paper considering Poisson jumps in dynamic asset allocation in

continuous time is Merton (1971). In the pension funding framework, Ngwira and Gerrard

(2007) considers the optimal management of a defined benefit pension plan, built on the model

of Josa–Fombellida and Rincón–Zapatero (2004), but in a finite horizon and where jumps only

appear in the risky asset, as in Wu (2003), but without considering correlation with benefits.

The inclusion of Poisson uncertainty requires the use of a more general Hamilton–Jacobi–

Bellman equation (HJB therefore) and verification theorems á la Fleming and Soner (2006).

The monograph of Oksendal and Sulem (2005) provides a framework to analyze these problems

with dynamic programming methods that cover general Lévy processes.

We find that Poisson jumps affect the optimal solutions and the optimal fund evolution

in a simple way, and that their effects can be neatly isolated. The solution obtained in Josa–

Fombellida and Rincón–Zapatero (2004) now contemplates an additional summand that includes

various parameters of the Poisson jumps. Moreover, we show how it is possible to select the tech-

nical rate of actualization in order to get an optimal contribution proportional to the unfunded

liabilities, even in this complicated framework. This rule of amortization is well known and has
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drawn attention among practitioners for its ease of implementation, and has been proposed in

the literature as having good properties of stabilization of the fund. We found it there as a

byproduct of the minimization of solvency risk and contribution rate risk.

The paper is organized as follows. Section 2 defines the elements of the pension scheme

and describes the financial market where the fund operates. To simplify matters, we consider

that the fund’s wealth is invested in a portfolio with a single risky asset and a bond. Section

3 is devoted to accurately formulating the management of the DB plan as a stochastic optimal

control problem with the objective of minimizing the solvency risk and the contribution rate

risk over an infinite horizon. We suppose that the pension plan stands forever and that the

pay–as–you–go scheme never breaks. The optimal solutions are obtained by solving the HJB

equation, and the optimal contribution and optimal investment strategy are provided, together

with explanations of their main properties, as well as of the optimal fund. Section 4 serves as

a numerical illustration of previous results. Finally, Section 5 establishes some conclusions. All

proofs are relegated to Appendix A.

2 The pension model

Consider a DB pension plan of aggregated type where, at every instant of time, active partic-

ipants coexist with retired participants. We suppose that the benefits paid to the participants

at the age of retirement are fixed in advance by the sponsoring plan, in the sense that they are

indexed to e.g. salaries, so that the benefit promise is real rather than nominal. We provide a

general framework where benefits are given by a stochastic process possibly correlated with the

financial market.

It is supposed that every participant enters the plan at the same age a and retires at age d.

But this takes place along time, thus we need to consider both the time elapsed since the plan

started and the age of the participants. Figure 1 below illustrates this point. We suppose that

both the plan’s rate of entrance and rate of retirement are exogenous and constant, so that the

population of the pension plan remains constant or increases/decreases at a constant rate. This
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makes the model tractable and is an acceptable assumption in the long run.
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Figure 1: The time–age structure of the pension plan.

Participants accumulate benefits as they get older according to some pre–fixed distribution

function M(x) depending on age x. Roughly speaking, the main concern of the sponsoring

plan is to set aside a reserve large enough to ensure that the benefit promise can be honored

when the worker retires. To this end, actuaries must forecast future benefits and determine the

contribution stream needed to match future benefits needs. The so prescribed yearly accruals

take care of the pension benefit obligation of the employer and are called the plan’s normal cost.

However, the employer’s contribution must also contemplate past unfunded pension liabilities

as well as the expected rate of return on pension fund investment. Finally, stochastic shocks

can affect the plan. Typically, if the current reserves of the pension fund do not suffice to cover

projected liabilities (stock underfunding), then actuarial practice prescribes employers to reduce

this gap over time by making contributions in excess of normal cost.

The main elements intervening in the DB plan are the following.
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F (t) : value of fund assets at time t;

P (t) : benefits promised to the participants at time t; they are related with the

salary at the moment of retirement;

C(t) : contribution rate made by the sponsor at time t to the funding process;

AL (t) : actuarial liability at time t, that is, total liabilities of the sponsor;

NC (t) : normal cost at time t; if the fund assets match the actuarial liability,

and if there are no uncertain elements in the plan, the normal cost is

the value of the contributions allowing equality between asset funds and

liabilities;

UAL(t) : unfunded actuarial liability at time t, equal to AL (t)− F (t);

SC (t) : supplementary cost at time t, equal to C(t)−NC (t);

M(x) : proportional value of the future benefits accumulated until age x ∈ [a, d],

where a is the common age of entrance in the fund and d is the common

age of retirement; M is a probability distribution function on [a, d];

δ : constant rate of valuation of the liabilities, which can be specified by the

regulatory authorities;

r : constant risk–free market interest rate.

2.1 The actuarial functions

Following Josa–Fombellida and Rincón–Zapatero (2004), we suppose that random disturbances

affect the evolution of benefits and hence the evolution of the normal cost and the actuar-

ial liability. The novelty here is that benefits and the risky asset (we consider a single risky

asset to gain clarity in the exposition) are jump diffusion processes where the uncertainty is

given by a Brownian motion and a Poisson process. To model the randomness of the pen-

sion plan and the financial market, we consider a probability space (Ωw, Fw,Pw), where Pw

is a probability measure on Ωw and Fw = {Fw
t }t≥0 is a complete and right continuous fil-

tration generated by the two–dimensional standard Brownian motion (w0, w1), that is to say,

Fw
t = σ {(w0(s), w1(s)); 0 ≤ s ≤ t}, t ≥ 0. We also consider a two–dimensional Poisson pro-
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cess (N1, N2) with constant intensity (λ1, λ2), λ1, λ2 ∈ R+, defined on a complete probability

space (ΩN , FN ,PN ), where FN
t = σ {(N1(s), N2(s)); 0 ≤ s ≤ t}, t ≥ 0. It is known that the

process Hi(t) = Ni(t) − λit, i = 1, 2, is a FN–martingale, which is called the compensated

Poisson process; see Jeanblanc–Picqué and Pontier (1990) and Garćıa and Griego (1994). Let

(Ω, F ,P) = (Ωw×ΩN , Fw⊗FN ,Pw⊗PN ) denotes the product probabilistic space. We suppose

(N1, N2) and (w0, w1) are independent processes on this space.

The stochastic actuarial liability and the stochastic normal cost are defined as in Josa–

Fombellida and Rincón–Zapatero (2004). It is simply the conditional expected value with respect

to the objective probability measure of the accumulated projected benefits, discounted at the

technical rate of actualization. Recall that we are adopting an actuarial viewpoint to define

liabilities and that the financial market is incomplete since benefits are not tradeable, and thus

cannot be used as an instrument to hedge the risk. Benefits cannot be replicated due to the

existence of Poisson jumps and because the Brownian motions in the asset returns and benefits

are correlated. See Section 2.2 below. Thus, the actuarial liability and the normal cost are

AL (t) = E
(∫ d

a
e−δ(d−x) M(x)P (t + d− x) dx |Ft

)
,

NC (t) = E
(∫ d

a
e−δ(d−x) M ′(x)P (t + d− x) dx |Ft

)
,

for every t ≥ 0, where E(·|Ft) denotes conditional expectation with respect to the filtration Ft

and where M ′ denotes the derivative of M .

Using basic properties of conditional expectation, the previous definitions can be expressed

as

AL (t) =
∫ d

a
e−δ(d−x) M(x)E (P (t + d− x) |Ft) dx,

NC (t) =
∫ d

a
e−δ(d−x) M ′(x)E (P (t + d− x) |Ft) dx.

For analytical tractability, we suppose that benefits are given by a jump–diffusion process,

where the diffusion part increases on average at an exponential rate, extending in this way

the results obtained previously in Josa–Fombellida and Rincón–Zapatero (2004), where P is
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supposed to be a geometric Brownian motion, and in Bowers et al (1986), where P is an expo-

nential deterministic function. This assumption is natural since, in general, benefits depend on

salary, which on average show exponential growth subject to random disturbances that may be

supposed proportional to the variables’ size. This is the content of the following hypothesis.

Assumption 1 The benefit P satisfies the stochastic differential equation (SDE therefore)

dP (t) = µP (t) dt + βP (t) dB(t) + η1P (t−) dN1(t) + η2P (t−) dN2(t), t ≥ 0,

where B is a standard Brownian motion on (Ωw, Fw,Pw), and where µ ∈ R, β 6= 0 and ηi > −1,

i = 1, 2. The initial condition P (0) = P0 is a random variable that represents the initial

liabilities.

Note that B and (N1, N2) are independent stochastic processes.

The actuarial functions AL and NC are related in a simple way, shown in the next proposi-

tion, which will be used in what follows. We introduce new notation:

ψAL =
∫ d

a
e(µ−δ+λ1η1+λ2η2)(d−x)M(x) dx,

ψNC =
∫ d

a
e(µ−δ+λ1η1+λ2η2)(d−x)M ′(x) dx.

Proposition 2.1 Under Assumption 1, the actuarial functions satisfy AL (t) = ψALP (t) and

NC (t) = ψNCP (t), and they are linked by the identity

(δ − µ− λ1η1 − λ2η2)AL (t) + NC (t)− P (t) = 0, (1)

for every t ≥ 0. Moreover, the actuarial liability satisfies the SDE

dAL (t) = µAL (t) dt + βAL (t) dB(t) + η1AL (t) dN1(t) + η2AL (t)dN2(t), (2)

with initial condition AL (0) = AL 0 = ψALP0.

Figure 2 shows a solution of (2) with AL 0 = 1 and with N1, N2 as specified in Section 4

below. The vertical segments with basis in the horizontal axis point out the time and magnitude

of the jumps due to N1 (dotted) and N2 (solid).
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Figure 2: Paths of AL .

2.2 The financial market

In this section, we describe the financial market where the fund operates. The plan sponsor

manages the fund in the planning interval [0,∞) by means of a portfolio formed by a risky asset

S, which is a jump–diffusion process correlated with the benefit process and is generated by

(w1, N2) and a riskless asset S0

dS0(t) = rS0(t)dt, S0(0) = 1, (3)

dS(t) = bS(t)dt + σS(t)dw1(t) + ϕS(t−)dN2(t), S(0) = s > 0. (4)
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Recall that r > 0 denotes the short risk–free rate of interest. The mean rate of return of the

risky asset is b > 0, and σ > 0 and ϕ > −1 are constant parameters. Note that we assume

that the volatility is constant and we do not consider the more general case of a stochastic

volatility; this would require the introduction of an additional state variable, breaking down the

linear–quadratic structure of the model. We denote by θ the Sharpe ratio or market price of

risk for this portfolio, that is

θ =
b− r + λ2ϕ√

σ2 + λ2ϕ2
, (5)

see for instance Björk and Slinko (2006), Appendix A. It is assumed that b + λ2ϕ > r, so the

sponsor has incentives to invest in the risky asset. We suppose that there exists a correlation

q ∈ [−1, 1] between B and w1. As a consequence, B is expressed in terms of (w0, w1) as

B(t) =
√

1− q2 w0(t) + qw1(t), where q2 ≤ 1. In this way, the influence of salary and inflation

on the evolution of liabilities P is taken into account, as well as the effect of inflation on the

prices of the assets. It is worth noting that with this formulation the benefit process P depends

on the financial market.

2.3 The fund wealth

For properly funding the liabilities promised, the sponsoring plan adopts an amortization scheme

and proceeds actively in the financial market to form suitable portfolios. The share of portfolio

invested in the risky stock S at time t is denoted by π(t). The remainder, F (t) − π(t), is

invested in the bond. Borrowing and shortselling are allowed. A negative value of π means that

the sponsor sells a part of his risky asset S short while, if π is larger than F , then the sponsor

gets into debt to purchase the stocks, borrowing at the riskless interest rate r. As is common in

the literature, we restrict strategies to fulfill some technical conditions: the investment strategy

{π(t) : t ≥ 0} is a control process adapted to the filtration {Ft}t≥0, Ft–measurable, Markovian

and stationary, satisfying

E
∫ T

0
π2(t)dt < ∞, (6)
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and the contribution rate process C(t) is also an adapted process with respect to {Ft}t≥0

verifying

E
∫ T

0
SC 2(t)dt < ∞. (7)

Under the investment/contribution policy chosen, the dynamic fund evolution is given by

dF (t) = π(t)
dS(t)
S(t)

+ (F (t)− π(t))
dS0(t)
S0(t)

+ (C(t)− P (t)) dt. (8)

By substituting (3) and (4) in (8), we obtain that

dF (t) =
(

rF (t) + (b− r)π(t) + C(t)− P (t)
)

dt + σπ(t) dw1(t) + ϕπ(t−)dN2(t), (9)

with initial condition F (0) = F0 > 0, determines the fund evolution.

3 The optimal strategies

In this section, we analyze how the sponsor selects the optimal contribution rate and investment

strategy. As explained in the Introduction, we model the sponsor’s preferences as quadratic,

penalizing deviations from prescribed targets, identified with the normal cost and the actuarial

liability. These quadratic deviations are clearly related with the solvency and stability objectives

of the funding process. In the optimization process, the sponsor faces two elements of random-

ness: one due to the benefits, which is inherent to the pension plan; the other being financial

market variables, specifically the risky asset.

The objective functional to be minimized over the class of admissible controls AF0,AL0 , is

given by

J((F0,AL 0); (SC , π)) = EF0,AL0

∫ ∞

0
e−ρt

(
κSC 2(t) + (1− κ)(AL (t)− F (t))2

)
dt. (10)

Note that we choose SC = C−NC as the control variable instead of C, leading to an equivalent

control problem. Here, AF0,AL0 denotes the set of Markovian processes (SC , π), adapted to the

filtration {Ft}t≥0 where C satisfies (7), π satisfies (6), and where F and AL satisfy (9) and (2),

respectively. In the above, EF0,AL0 denotes conditional expectation with respect to the initial

conditions (F0,AL 0).
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Notice that the objective functional is a convex combination of parameter κ, 0 < κ ≤ 1,

which reflects the relative importance of solvency against stability for the sponsor. With this

formulation, the optimal solution is efficient, in the sense that it is not possible to improve one

of the objectives without worsening the other, that is, the solution is in the Pareto frontier of

the attainable payoffs in the solvency risk–contribution rate risk plane. The time preference of

the sponsor is given by ρ > 0.

The value function is defined as

V̂ (F,AL ) = min
(SC,π)∈AF,AL

J((F,AL ); (SC , π)).

Since the problem is autonomous and the horizon unbounded, we may suppose that V̂ is time

independent. It is clear that the value function so defined is non–negative and strictly convex.

The connection between value functions and optimal feedback controls in stochastic control

theory under Poisson–diffusion setting is accomplished by the HJB; see Sennewald (2007).

The following result characterizes the solution under the assumption of a time preference

rate satisfying a lower bound. We shall use the Sharpe ratio given in (5).

Theorem 3.1 Suppose that Assumption 1 holds. If the inequality

2µ + β2 + 2(λ1η1 + λ2η2) + λ1η
2
1 + λ2η

2
2 < ρ (11)

is satisfied, then the optimal contribution rate and the optimal investment in the risky assets are

given by

C∗ = NC − αFF

κ
F − αF,AL

2κ
AL , (12)

π∗ = −
(

θ√
σ2 + λ2ϕ2

)
F − αF,AL

2αFF

(
θ√

σ2 + λ2ϕ2
+

βσq + λ2η2ϕ

σ2 + λ2ϕ2

)
AL , (13)

respectively, where αFF is the unique positive solution to the equation

α2
FF + κ

(
ρ− 2r + θ2

)
αFF − κ(1− κ) = 0, (14)
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and αF,AL is the unique solution to the equation

κ

(
−ρ + r + µ + λ1η1 + λ2η2 − θ2 − θ(βσq + λ2η2ϕ)√

σ2 + λ2ϕ2

)
αF,AL

−αFF αF,AL + 2κ(µ− δ + λ1η1 + λ2η2)αFF − 2κ(1− κ) = 0. (15)

Remark 3.1 The optimal strategies SC ∗ and π∗ are linear functions of the fund assets F and

the actuarial liability AL , and depend on the parameters of the financial market and the benefit

process, and also, through αF,AL, depend on the technical rate of interest δ, and on µ, η1 and

λ1.

We can distinguish two terms in the optimal investment decisions (13). The first summand

is proportional to F , with a coefficient proportional to the opposite of θ, while the second

one is proportional to AL , with a coefficient that also depends on the randomness parameters

and the correlation between benefit and risky asset. One of the summands of this coefficient,

θ/
√

σ2 + λ2ϕ2 = (b − r + λ2ϕ)/(σ2 + λ2ϕ
2), is that corresponding to the so called optimal–

growth portfolio strategy, (b−r)/σ2, of the model without jumps. An interesting consequence is

that there exists a linear relationship between the optimal supplementary cost and the optimal

investment strategy,

π∗ =

(
θ√

σ2 + λ2ϕ2

) (
κ

αFF

)
SC ∗ −

(
βσq + λ2ϕη2

σ2 + λ2ϕ2

)(
αF,AL

2αFF

)
AL .

Thus, for each unit of additional amortization with respect to the normal cost, the manager must

invest θ√
σ2+λ2ϕ2

κ
αFF

units in the risky assets, plus an additional amount (positive or negative)

of

−
(

βσq + λ2ϕη2

σ2 + λ2ϕ2

)(
αF,AL

2αFF

)
AL ,

which depends directly on liabilities.

Remark 3.2 The manager must borrow at rate r to invest in the risky asset, that is to say

π∗ > F ∗, when the level of the fund is below k0AL , where the constant k0 is defined as

k0 = −
(

b− r + λ2ϕ + βσq + λ2ϕη2

b− r + λ2ϕ + σ2 + λ2ϕ2

)(
αF,AL

2αFF

)
,
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and he/she needs to short sell asset, that is to say π∗ < 0, when the fund is above the value

k1AL , where

k1 = −
(

b− r + λ2ϕ + βσq + λ2ϕη2

b− r + λ2ϕ

)(
αF,AL

2αFF

)
.

Thus, the manager does not need either to short–sell or to borrow, 0 ≤ π∗ ≤ F ∗, when the

fund reserves F ∗ are between k0AL and k1AL . In other way, when the liquidity of the fund,

L = F/AL , is below k0, the optimal strategy demands to borrow to invest in the risky asset and

to contribute in excess of the normal cost, whereas if L is above k1, it is optimal selling short

the risky asset and to contribute well below the normal cost.

Now we explore how the optimization process helps to lessen the solvency risk and provides

stability to the funding process. This will be done in terms of expected values. To this end, let

us rewrite the SDE (2) for AL as

dAL (t) = (µ + λ1η1 + λ2η2)AL (t)dt + β
√

1− q2AL (t)dw0(t) + βqAL (t)dw1(t)

+ η1AL (t)dH0(t) + η2AL (t)dH1(t), (16)

where H0, H1 are the compensated Poisson processes defined in Section 2.1. Consider the optimal

fund time path F ∗ given in (24) in the Appendix and take conditional expectations both in (24)

and in (16) to obtain

EF0,AL0F
∗(t)− EF0,AL0AL (t) = (F0 − aAL 0)e

(
r−θ2−αFF

κ

)
t

+ (a− 1)AL 0e

(
2µ+β2+2(λ1η1+λ2η2)+λ1η2

1+λ2η2
2

)
t, (17)

with

a =
µ− δ + λ1η1 + λ2η2 − αF,AL

2κ −
(

θ2 + θ(βσq+λ2η2ϕ)√
σ2+λ2ϕ2

)
αF,AL

2αFF

µ + λ1η1 + λ2η2 − r + θ2 + αFF
κ

.

Given the plethora of parameters, convergence of the difference of the expected values to zero

cannot be guaranteed without imposing additional conditions. This convergence is of course a

desirable property of the managing process. For instance, if µ ≥ 0, η1 ≥ 0, η2 ≥ 0 and a 6= 1,

then the second term of (17) is not bounded.
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A similar comment applies to the contribution rate and the normal cost

EF0,AL0C
∗(t)− EF0,AL0NC (t) = −αFF

κ
EF0,AL0F

∗(t)− αF,AL

2κ
EF0,AL0AL (t).

We will choose the technical rate of actualization δ to assure convergence. Moreover, this

selection simplifies the amortization scheme to a popular and successful method, widely studied

in the literature and used by practitioners, that consists in taking the supplementary cost SC

proportional to the unfunded actuarial liability UAL, which is often quoted as a “spread method”

of funding; see Owadally and Haberman (1999). From (12), to achieve this, the identity αF,AL =

−2αFF must be fulfilled. Substituting the identity into (15) and comparing with (14), we obtain

an expression for the technical actualization rate, which must coincide with the rate of return

of the bond modified to get rid of the sources of uncertainty. Specifically we assume:

Assumption 2 The technical rate of actualization is

δ = r + θ

(
βσq + λ2η2ϕ√

σ2 + λ2ϕ2

)

According to this selection, the liabilities are valued with r plus a summand that involves the

Sharpe ratio times a factor depending on the correlation parameters and the standard deviation

of the portfolio. It is important that δ does not depend on parameters µ, λ1 and η1 associated

to P , but only on the parameters defining the financial market and the correlation parameter

between benefits and the risky asset. Notice that, if there is no correlation, q = 0 = ϕ, then δ

is simply the risk–free rate of interest.

Corollary 3.1 Suppose that Assumptions 1 and 2 hold. If the inequality (11) is satisfied, then

the optimal contribution rate and the optimal investment strategy are given by

C∗ = NC +
αFF

κ
UAL,

π∗ =

(
θ√

σ2 + λ2ϕ2

)
UAL +

(
βσq + λ2η2ϕ

σ2 + λ2ϕ2

)
AL , (18)

respectively, where αFF is the unique positive solution to the equation (14).
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Remark 3.3 By construction, the supplementary cost SC ∗ is proportional to the unfunded

actuarial liability UAL, whereas for the optimal investment decisions π∗, (18), we can distinguish

two terms. The first is again proportional to UAL, but the second is a correction term which

depends on the risk parameters of the model and of AL . This second term is zero when there

is no uncertainty in the benefits, as in Josa–Fombellida and Rincón–Zapatero (2001), or when

there is no correlation between benefits and the risky asset. Another feature is that the optimal

strategies do not depend on µ, η1 and λ1, which are the randomness coefficients of P . In fact,

ϕ = 0 gives the same strategies found in Josa–Fombellida and Rincón–Zapatero (2004), where

there were no Poisson jumps.

The following result establishes the stability and solvency of the pension plan in the long–run,

in terms of the expected values.

Proposition 3.1 Suppose that Assumptions 1, 2 and the inequality (11) are satisfied. If the

inequality

αFF > κ
(
r − θ2

)
, (19)

holds, then the expected unfunded actuarial liability and the expected supplementary cost converge

in the long term to zero, that is to say,

lim
t→∞EF0,AL0UAL∗(t) = lim

t→∞EF0,AL0SC
∗(t) = 0.

Attending to the definition of αFF , inequality (19) is automatically fulfilled when ρ ≤ θ2. In

the case ρ > θ2, it reduces to

κ <
1

1 + (ρ− r)(r − θ2
) .

4 A numerical illustration

This offers some numerical explorations to illustrate the dynamic evolution of the optimal fund,

the optimal contribution rate and the optimal portfolio strategy. The simulation is built with

a numerical algorithm for systems of jump–diffusion SDEs borrowed from Cyganowski et al

17



(2002), adapted to our specific setting, that contemplates several Poisson jumps and a correlation

between Brownian motions. The system is formed by the linear SDEs given in (24) in the

Appendix for F ∗ and in (2) for AL . The method used for simulation is a generalized Euler

scheme proposed by Maghsoodi (1996). We refer the interested reader to the cited reference

Cyganowski et al (2002) for further details on the method and for an implementation of the

algorithm1 in Maple. The continuous–time stochastic processes N1 and N2 carry information on

the number of jumps until time t, on the distribution of the jump times, and on the distribution

of the jump magnitudes. It is assumed that the jump times are independent and identically

distributed, and the same property is true for the jump magnitudes. Moreover, we assume that

the former distribution is lognormal with mean µi and variance σi, i = 1, 2, that we select as

µ1 = µ2 = 1, σ1 = σ2 = 0.1 to perform the experiments.

We consider the following values for the parameters:

• Time interval: T = 10;

• Benefits: µ = 0.1, β = 0.08, η1 = ±0.1, λ1 = 0.25, η2 = ±0.1, and λ2 = 0.3;

• Technical rate of actualization: Given by assumption 2, δ = 0.03423; we could have consid-

ered the general case, not imposing Assumption 2 over the technical rate of actualization;

• Financial market: r = 0.03, b = 0.1, σ = 0.2, ϕ = 0.06; this implies a Sharpe ratio

θ = 0.3352;

• Correlation between the risky asset and benefits is q = 0.5;

• Time preference: ρ = 0.9;

• Relative weight of risks: κ = 0.5;

• Initial values: AL 0 = 1, F0 = 0.5; thus, we consider that the plan is 50% underfunded at

the initial date.
1We can provide our own algorithm to the interested reader, upon request.

18



All cases satisfy the conditions imposed in Theorem 3.1 and Proposition 3.1.

Figures 3 and 4 below show the evolution of the ratio of fund reserves to the actuarial liability,

the relative investment made in the risky stock and the evolution of supplementary cost. The

jump times and jump magnitudes are also drawn in the graphs as vertical segments with their

basis in the horizontal axis. In all cases the optimal fund approaches the actuarial liability, and

especially at the beginning, the gap between F and AL is rapidly diminishing with an aggressive

investment strategy, as can be seen in the middle graph. In Figure 3 (a) the parameters are

η1 = η2 = 0.1 (upward jumps both in benefits and in risky assets). As predicted by the theory, see

Remark 3.2, the fund borrows to invest in the risky asset when the optimal fund ratio L = F/AL

is below k0 = 0.54719. However, with the selected parameters it is not optimal selling short the

risky asset, since the liquidity is never over k1 = 1.35. The supplementary cost shows that the

fund contributes in excess to the normal cost when it is underfunded. Panel (b) shows a similar

picture, but now with η1 = −0.1 and η2 = 0.1 (downward jumps in benefits and upward jumps

in benefits). Notice that k0 and k1 are the same as before. Now, it is optimal selling short the

risky asset in some periods. This property becomes more pronounced in Figures 4 (a) and (b),

where the parameters are η1 = 0.1, η2 = −0.1 and η1 = −0.1, η2 = −0.1, respectively. In both

cases, k0 = 0.49508 and k1 = 1.22143.

FIGURES 3 AND 4 AROUND HERE

5 Conclusions

We have analyzed, by means of dynamic programming techniques, the management of an ag-

gregated defined benefit pension plan, where the benefit and the risky asset are jump diffusion

processes. The objective is to determine the contribution rate and the investment strategy,

minimizing both the contribution and the solvency risk. We have found that there is a linear

relationship between the optimal supplementary cost and the optimal investment strategy, and

between this strategy and the optimal fund, with correction terms due to the random behavior

of benefits.
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The parameters associated to the Poisson processes intervene in the optimal strategies and

in the optimal fund evolution. However, it is possible to select the technical rate of interest such

that the optimal contribution does not depend on the parameters of the benefit process, getting

a spread amortization and the stability and security of the plan in the long term. Moreover, this

selection makes the optimal investment policy depends on benefits only through the correlation

with the financial market.
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A Appendix

Proof of Proposition 2.1. We consider the SDE for P in Assumption 1. The processes

Hi(t) = Ni(t)− λit are FN–martingales, i = 1, 2; see e.g. Jeanblanc–Picqué and Pontier (1990)

and Garćıa and Griego (1994). Thus we take the conditional expectation in

P (s) = P (t) +
∫ s

t
µP (u)du +

∫ s

t
βP (u)dB(u) +

∫ s

t
η1P (u)dH0(u) +

∫ s

t
η1P (u)λ1du

+
∫ s

t
η2P (u)dH1(u) +

∫ s

t
η2P (u)λ2du

and we obtain

m(s) = P (t) +
∫ s

t
µm(u)du +

∫ s

t
η1λ1m(u)du +

∫ s

t
η2λ2m(u)du,

with m(s) = E (P (s) |Ft), s ∈ [t, T ], that is to say

m′(s) = (µ + λ1η1 + λ2η2) m(s), m(t) = P (t);

see Garćıa and Griego (1994). Then m(s) = m(t)e(µ+λ1η1+λ2η2)(s−t), and for s = t + d− x, the

conditional expectation is

E (P (t + d− x) |Ft) = P (t)e(µ+λ1η1+λ2η2)(d−x),
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thus, recalling the definition of AL and ψAL, we get:

AL (t) =
∫ d

a
e−δ(d−x) M(x)E (P (t + d− x) |Ft) dx

=P (t)
∫ d

a
e(µ+λ1η1+λ2η2−δ)(d−x) M(x) dx = P (t)ψAL.

Analogously, NC (t) = ψNCP (t).

Now, by means of an integration by parts, we have

ψNC =
∫ d

a
e(µ+λ1η1+λ2η2−δ)(d−x)dM(x)

= e(µ+λ1η1+λ2η2−δ)(d−x)M(x)
∣∣∣
x=d

x=a

+
∫ d

a
e(µ+(p0λ1+p1λ2)η−δ)(d−x)(µ + λ1η1 + λ2η2 − δ)M(x) dx

=1 + (µ + λ1η1 + λ2η2 − δ)ψAL.

In consequence

NC (t) = ψNCP (t)

= P (t) + (µ + λ1η1 + λ2η2 − δ)ψALP (t)

= P (t) + (µ + λ1η1 + λ2η2 − δ)AL (t),

which is (1). In order to deduce the stochastic differential equation that the actuarial liability

satisfies, we use Assumption 1:

dAL (t) = d(ψALP )(t)

= ψALdP (t)

= ψAL(µP (t)dt + βP (t)dB(t) + η1P (t−)dN1(t) + η2P (t−)dN2(t))

= µAL (t) dt + βAL (t) dB(t) + η1AL (t−)dN1(t) + η2AL (t−)dN2(t),

with the initial condition AL (0) = AL 0 = ψALP0. ¤
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Proof of Theorem 3.1. For the problem of Section 3, the HJB equation is

−ρV + min
SC,π

{
κSC 2 + (1− κ)(F −AL )2 +

(
rF + (b− r)π + SC + NC − P

)
VF

+µAL VAL +
1
2
σ2π2VFF +

1
2
β2AL 2VAL,AL + βσqπVF,AL

+λ1 (V (F, (1 + η1)AL )− V (F,AL ))

+λ2 (V (F + ϕπ, (1 + η2)AL )− V (F,AL ))} = 0. (20)

If there is a smooth solution V of the equation (20), strictly convex, then the maximizers

values of the contribution rate and the investment rates are given by

ŜC =− VF

2κ
, (21)

(b− r)VF (F,AL ) + σ2π̂VFF (F,AL ) + βσqAL VF,AL(F,AL )

+ λ2ϕVF (F + ϕπ̂, (1− η2)AL ) = 0, (22)

respectively. The structure of the HJB equation obtained, once we have substituted these values

for SC and π in (20), suggests a quadratic homogeneous solution

V (F,AL ) = αFF F 2 + αF,ALFAL + αAL,ALAL 2.

Imposing this solution in (21) and (22), we obtain

ŜC =− αFF

κ
F − αF,AL

2κ
AL ,

π̂ = − b− r + λ2ϕ

σ2 + λ2ϕ2
F − b− r + βσq + λ2ϕ(1 + η2)

σ2 + λ2ϕ2

αF,AL

2αFF
AL ,

and, substituting in (20) and using (1), the following set of three equations for the coefficients

is obtained: (14), (15) and

4κ(ρ− 2µ− β2 − λ1(2 + η1)η1 − λ2(2 + η2)η2)αFF αAL,AL

+αFF α2
F,AL − 4κ(µ− δ + λ1η1 + λ2η2)αF,ALαFF

+κ
(b− r + βσq + λ2ϕ(1 + η2))2

σ2 + λ2ϕ2
α2

F,AL − 4κ(1− κ)αFF = 0. (23)
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It is clear that (14) admits a positive solution, thus V is strictly convex. In order to prove

that the solution of (20) is the value function and that C∗ and π∗, given by (12) and (13)

respectively, are the optimal strategies of the stochastic control problem, it is sufficient to check

that the transversality condition

lim
t→∞ e−ρtEF0,AL0V (F ∗(t),AL (t)) = 0

holds, where AL satisfies (2) and F ∗ is the optimal fund

dF ∗(t) =
((

r − (b− r)
b− r + λ2ϕ

σ2 + λ2ϕ2
− αFF

κ

)
F ∗(t)

+
(
− (b− r)

b− r + βσq + λ2ϕ(1 + η2)
σ2 + λ2ϕ2

αF,AL

2αFF
− αF,AL

2κ
+ µ− δ + λ1η1 + λ2η2

)
AL (t)

)
dt

− σ
(b− r + λ2ϕ

σ2 + λ2ϕ2
F ∗(t) +

b− r + βσq + λ2ϕ(1 + η2)
σ2 + λ2ϕ2

αF,AL

2αFF
AL (t)

)
dw1(t)

− ϕ
(b− r + λ2ϕ

σ2 + λ2ϕ2
F ∗(t−) +

b− r + βσq + λ2ϕ(1 + η2)
σ2 + λ2ϕ2

αF,AL

2αFF
AL (t−)

)
dN2(t), (24)

obtained after substitution in (9) of the expressions for C∗ and π∗.

Following Jeanblanc–Picqué and Pontier (1990), we can apply Itô’s formula with a Poisson

jump to the processes (F ∗)2, F ∗AL and AL 2. Taking expected values, the functions defined by

φ(t) = EF0,AL0(F
∗)2(t), ψ(t) = EF0,AL0(F

∗AL )(t) and ξ(t) = EF0,AL0AL 2(t) satisfy the linear

differential equations

φ′(t) =
(
2r − 2

αFF

κ
− θ2

)
φ(t) + 2

(−αF,AL

2κ
+ µ− δ + λ1η1 + λ2η2

)
ψ(t)

+
(b− r + βσq + λ2ϕ(1 + η2))2

σ2 + λ2ϕ2

α2
F,AL

4αFF
ξ(t),

ψ′(t) =
(
r − αFF

κ
+ µ + λ1η1 + λ2η2 − θ2 − (βσq + λ2ϕη2)(b− r + λ2ϕ)

σ2 + λ2ϕ2

)
ψ(t)

+
(
− (b− r + βσq + λ2ϕ(1 + ηp1))2

σ2 + λ2ϕ2

αF,AL

2αFF
− αF,AL

2κ
+ µ− δ + λ1η1 + λ2η2

)
ξ(t),

ξ′(t) =
(
2µ + β2 + 2(λ1η1 + λ2η2) + λ1η

2
1 + λ2η

2
2

)
ξ(t),

with initial conditions φ(0) = F 2
0 , ψ(0) = F0AL 0 and ξ(0) = AL 2

0, respectively. Therefore

ξ(t) = AL 2
0e

(2µ+β2+2(λ1η1+λ2η2)+λ1η2
1+λ2η2

2)t,
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hence limt→∞ e−ρtEF0,AL0AL 2(t) = 0 if and only if (11) holds. On the other hand,

ψ(t) = (F0 − a1AL 0)AL 0e

(
r−αFF

κ
+µ+λ1η1+λ2η2−θ2− (βσq+λ2ϕη2)(b−r+λ2ϕ)

σ2+λ2ϕ2

)
t
+ a1ξ(t),

where a1 is a constant depending on the parameters of the model. Then limt→∞ e−ρtEF0,AL0(F
∗AL )(t) =

0, if and only if, both (11) and the inequality

r − αFF

κ
+ µ + λ1η1 + λ2η2 − θ2 − (βσq + λ2ϕη2)(b− r + λ2ϕ)

σ2 + λ2ϕ2
< ρ (25)

simultaneously hold. The latter condition (25) follows from (11) and (14). To check this, we first

observe that, by the definition, αFF is the positive solution of (14), then αFF > −κ
2 (ρ−2r+θ2),

i.e. r − αFF
κ < ρ

2 + θ2

2 . Secondly, notice that

−b− r + λ2ϕ

σ2 + λ2ϕ2
(βσq +λ2ϕη2) <

b− r + λ2ϕ

σ2 + λ2ϕ2
(−βσ) <

1
2

(b− r + λ2ϕ)2

σ2 + λ2ϕ2
+

1
2

β2σ2

σ2 + λ2ϕ2
<

θ2

2
+

β2

2
,

because b− r + λ2ϕ > 0 and −1 ≤ q ≤ 1. These inequalities and (11) imply (25).

On the other hand,

φ(t) =
(
F 2

0 + a2AL 2
0 − a3F0AL 0

)
e

(
2r−2

αFF
κ
−θ2

)
t − a2ξ(t) + a3ψ(t),

where a2 and a3 are constants. Hence limt→∞ e−ρtEF0,AL0(F
∗)2(t) = 0 by (11) and by the

definition of αFF .

Since V is a homogeneous quadratic polynomial in F and AL , e−ρtEF0,AL0V (F ∗(t), AL(t))

converges to 0 when t goes to ∞.

Finally, we check that there exists a unique solution. The constant

αFF = −κ

2
(ρ− 2r + θ2) +

1
2

√
κ2(ρ− 2r + θ2)2 + 4κ(1− κ),

is the unique positive solution to equation (14), there exists a unique solution αF,AL to (15)

because the coefficient of αF,AL in (15) is 6= 0, by (25), and there exists a unique solution αAL,AL

to (23), by (11). ¤

Proof of Proposition 3.1. Using αF,AL = −2αFF , we obtain a = 1 in (17). Thus, from (17),

we obtain that

EF0,AL0UAL∗(t) = EF0,AL0AL (t)− EF0,AL0F
∗(t) = (AL 0 − F0)e

(
r−θ2−αFF

κ

)
t
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converges to zero when t goes to ∞, by (19). Analogously,

EF0,AL0SC
∗(t) =

αFF

κ
EF0,AL0UAL∗(t)

converges to zero when t goes to ∞. ¤
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