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Abstract

In this paper we study the problem of simultaneous minimization of risks, and maximization

of the terminal value of expected funds assets in a stochastic defined benefit aggregated pension

plan. The risks considered are the solvency risk, measured as the variance of the terminal fund’s

level, and the contribution risk, in the form of a running cost associated to deviations from the

evolution of the stochastic normal cost. To solve this bi–objective stochastic control problem

the concept of efficient solution is used.
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Keywords: Finance; Pension funding; Portfolio theory; Stochastic control; Mean–variance.

1



1 Introduction

The optimal management of dynamic pension plans is an interesting problem due to the impor-

tance that pension funds have currently in financial markets, as well as their fundamental role

in assuring the future wealth of participants in their retirement period.

Pension funds can be classified into the following two main categories: defined benefit (DB)

pension plans and defined contribution (DC) pension plans. In a DB plan benefits are fixed

in advance by the sponsor and contributions are designed to amortizes the fund according to a

previously chosen actuarial scheme. Future benefits due to participants are thus a liability for

the sponsor, who bears the financial risk. Of course, this risk is increased with the formation of a

risky portfolio that, however, offers higher expected returns, with the possibility then of reducing

the amortization quote. It is the concern of the sponsor to drive the dynamic evolution of the

fund having into account the tradeoff between risk and contribution. In a DC plan contributions

are fixed but benefits depend on the returns of the fund portfolio, so that the participants bear

the risk.

It has been in recent years an increasing interest of researches in the study of the optimal

management of DB pension plans. See e.g. Haberman and Sung (1994), Chang (1999), Cairns

(2000), Haberman et al (2000), Taylor (2002), Chang et al (2002) and Josa–Fombellida and

Rincón–Zapatero (2001, 2004, 2006a,b).

Beginning with the paper of Haberman and Sung, DB plans have been usually modelled as

linear–quadratic optimal control problems. This is due to the fact that the dynamics of the

fund is postulated linear, as in Merton’s model, and that it is generally accepted that managers’

objectives should be related with the minimization of solvency risk and contribution risk. These

risk concepts are defined as quadratic deviations of fund wealth and amortization rates with

respect to liabilities and normal cost, respectively. In an environment where liabilities are

random, the risks so formulated do not correspond to the variance, which is by far the most

common measure of risk. The aim of this paper is to study the optimal management of DB

plans when the solvency risk is identified with the variance of the unfunded actuarial liability.
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To this end, the problem is settled in the familiar mean–variance framework, translating the

static model of Markowitz to the continuous–time setting of a DB plan that evolves with time.

Markowitz (1952) designed the mean–variance model to compare securities and portfolios

based in a trade–off between their expected return and risk, measured as the variance of the

return. From the point of view of optimization, the problem of portfolio selection is a multiob-

jective programming problem where it is desired to attain the highest possible expected return

with the lowest possible variance. Since these objectives are in general mutually incompatible,

the best can be done is to select portfolios where it is not possible to increase return without

increasing risk, and reciprocally, where it is not possible to decrease risk without decreasing re-

turn. The set of pairs (return, variance) enjoying theses properties are called the Pareto frontier

or efficient points set, and the associated portfolios are called efficient.

It has been several attempts in the literature to translate the mean–variance methodology

from the static case to the dynamic setting. The most successful and fundamental is of course

the one initiated by Merton. It is worth noting, however, that Merton’s model does not exactly

fit the structure of the mean variance approach. It has been recently, in the papers by Zhou

and Li (2000) and Li and Ng (2000) that the methodology has been more faithfully carried out

to the dynamic setting, in continuous and in discrete time, respectively. In our paper we follow

the formulation of Zhou and Li (2000) but with some modifications due to the specificities of

a DB plan, as the inclusion of the supplementary cost as a control variable in addition to the

quantities invested in the risky assets. This point is explained in Remark 3.1 below. Moreover

we use the Hamilton–Jacobi–Bellmam approach instead of the maximum principle.

Problems of mean–variance type have been recently considered in pension plans from a

static point of view in Colombo and Haberman (2005) and in Huang and Cairns (2005). A

dynamic model for asset and liability management under the mean–variance criteria has been

studied in Chiu and Li (2006). The framework provided by these authors, although general,

cannot be applied directly to a DB plan since several of the constitutive elements of the pension

plan, as the amortization rate, normal cost, benefits and the technical actuarial rate, are not

contemplated in the model. More fundamentally, a DB plan is identified by two different elements
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of control: investment decisions in the portfolio and amortization rate. The latter is absent in

the framework provided by Chiu and Li (2006). The existence of an additional control variable

requires a modification in the objective functional, introducing a running cost associated to the

size of the amortization rate, more concretely, associated to quadratic deviations with respect to

the stochastic normal cost. Thus our problem combines terminal payoffs due to the final levels

of expected surplus/debt and of the variance of fund wealth (the stock variable) as well as an

integral term or running cost that takes care of the contribution risk (the amortization rate is a

flow variable).

Our paper follows Josa–Fombellida and Rincón–Zapatero (2004), where the benefits of the

DB plan are stochastic, modelled by a geometric Brownian motion. Note that benefits is a non–

tradable asset, hence the market is incomplete and, furthermore, we also consider the existence

of correlation between the sources of uncertainty in the benefits and in the asset returns.

The paper is organized as follows. Section 2 defines the elements of the pension scheme and

describes the financial market where the fund operates. Section 3 is devoted to formulate the

management of the DB plan in a mean–variance framework, with the simultaneous objectives

of minimizing the expected unfunded actuarial liability, as well as its variance at the final time,

and to minimize the contribution rate risk over the planning interval. The problem is solved

in Section 4 using first the well known scalarization method and then the device provided in

Zhou and Li (2000). Once the Pareto frontier is obtained, we compute the total expected

supplementary cost and the total expected contribution rate. Section 5 serves as a numerical

illustration of previous results. Finally, Section 6 is dedicated to establishing some conclusions.

All proofs are developed in Appendix A.

2 The pension model

Consider a DB pension plan of aggregated type where at every instant of time active participants

as well as retired participants coexist. Benefits payed to the participants at the age of retirement

are fixed in advance by the sponsor and are governed by an exogenous process which source of
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randomness is correlated with the financial market. To cover the liabilities in an efficient way,

the manager creates a portfolio and design an amortization scheme varying with time.

The main elements intervening in a DB plan are the following.

T : Planning horizon or date of the end of the pension plan, with 0 < T <∞.

F (t) : Value of fund assets at time t.

P (t) : Benefits promised to the participants at time t. They are related with the

salary at the moment of retirement.

C(t) : Contribution rate made by the sponsor at time t to the funding process.

AL (t) : Actuarial liability at time t, that is, total liabilities of the sponsor.

NC (t) : Normal cost at time t; if the fund assets match the actuarial liability, and if

there are no uncertain elements in the plan, the normal cost is the value of

the contributions allowing equality between asset funds and liabilities.

UAL(t) : Unfunded actuarial liability at time t, equal to AL (t)− F (t).

SC (t) : Supplementary cost at time t, equal to C(t)−NC (t).

δ : Constant rate of valuation of the liabilities, which can be specified by the

regulatory authorities.

Following Josa–Fombellida and Rincón–Zapatero (2004) we suppose that disturbances there

exist affecting the evolution of benefits and hence the evolution of the normal cost and the

actuarial liability. To model this randomness, we consider a probability space (Ω,F ,P), where

F = {Ft}t≥0 is a complete and right continuous filtration generated by the one–dimensional

Brownian motion {B(t)}t≥0 and P is a probability measure on Ω. The more general case is

to suppose benefits P is a diffusion process built from B, that is, P satisfies the stochastic

differential equation (SDE)

dP (t) = κ(t, P (t))dt+ η(t, P (t))dB(t), 0 ≤ t ≤ T, P (0) = P0,

where P0 is the value of the initial liabilities, and where κ and η are functions such that the SDE

has a unique solution. For analytical tractability, we will need a more concrete specification
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for benefits, P . We will suppose that benefits follows a geometric Brownian motion. It is the

natural extension of the deterministic case where P is an exponential function (see Bowers et al

(1986)). This assumption is natural since in general benefits depends on salary and population

plan, which show in the average exponential growth subject to random disturbances that may

supposed to be proportional to the variables’ size.

Assumption 1 The benefits P satisfies

dP (t) = κP (t) dt+ ηP (t) dB(t), t ≥ 0,

where κ ∈ R and η ∈ R+. The initial condition P (0) = P0 is a random variable that represents

the initial liabilities.

To compute the actuarial functions AL and NC , we suppose that all information accumulated

up to time t is used, under the real probability measure P. The definitions of actuarial liability

and normal cost given in Josa–Fombellida and Rincón–Zapatero (2004), extend to the stochastic

case these concepts from Bowers et al (1986) as follows

AL (t) =
∫ d

a
e−δ(d−x)M(x)E (P (t+ d− x)|Ft) dx,

NC (t) =
∫ d

a
e−δ(d−x)m(x)E (P (t+ d− x)|Ft) dx,

for every t ≥ 0, where E(·|Ft) denotes conditional expectation with respect to Ft, and where

M(x) is a distribution function representing the percentage of actuarial value of future benefits

accumulated until age x, and where m(x) is its associated density function. Without lost of

generality we are supposing that all members enter into plan at age a and retire at the common

age d. Thus, to compute the actuarial functions at time t, the manager makes use of the

information available up to that time, in terms of the conditional expectation. This procedure,

instead of looking for a risk neutral probability measure and then to compute the conditional

expectation under this measure, is justified since the liabilities are non tradeable in the financial

market, thus the inherent risk cannot be hedged. The behavior of the actuarial functions AL

and NC are then given in the following result, see Proposition 2.1 in Josa–Fombellida and

Rincón–Zapatero (2004).
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Proposition 2.1 Under Assumption 1 there are constants ψAL and ψNC such that AL = ψALP

and NC = ψNCP . Furthermore, ψNC = 1 + (κ − δ)ψAL and the identity NC (t) − P (t) =

(κ− δ)AL (t) holds for every t ≥ 0.

From this proposition we deduce:

dAL (t) = κAL (t) dt+ ηAL (t) dB(t), AL (0) = ψALP0 (1)

and also

dNC (t) = κNC (t) dt+ ηNC (t) dB(t), NC (0) = ψNCP0.

We will denote by AL 0 and NC 0 the initial values of the actuarial liability and the normal

cost, respectively, that is AL 0 = ψALP0 and NC 0 = ψNCP0.

In the rest of this section we describe the financial market where the fund operates. Given

an (n+ 1)–dimensional standard Brownian motion (w0, w1, . . . , wn)>, we consider the complete

probability space (Ω,G ,P) generated by it, that is to say, G is the filtration {Gt}t≥0 , with

Gt = σ {w0(s), w1(s), . . . , wn(s); 0 ≤ s ≤ t} .

The plan sponsor manages the fund in the planning interval [0, T ] by means of a portfolio

formed by n risky assets
{
Si
}n

i=1
, which are correlated geometric Brownian motions, generated

by w = (w1, . . . , wn)>, and a riskless asset S0, as proposed in Merton (1971), that is, whose

evolutions are given by the equations:

dS0(t) = rS0(t)dt, S0(0) = 1, (2)

dSi(t) = Si(t)
(
bidt+

n∑
j=1

σijdwj(t)
)
, Si(0) = si > 0, i = 1, 2, ..., n. (3)

Here r > 0 denote the short risk–free rate of interest, bi > 0 the mean rate of return of the ith

risky asset and σij ≥ 0 the covariance between asset i and j, for all i, j = 1, . . . , n. It is assumed

bi > r for all i, so the sponsor has incentives to invest with risk. We suppose that there exists

correlation qi ∈ [−1, 1] between B and wi, for i = 1, . . . , n. As a consequence, B is expressed in

terms of {wi}n
i=0 as B(t) =

√
1− q>q w0(t) + q>w(t), where q>q ≤ 1 for q = (q1, q2, . . . , qn)>.

In this way the influence of salary and inflation in the evolution of liabilities P is taken into

account, as well as the effect of inflation on the prices of the assets.
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The amount of fund invested in time t in the risky asset Si is denoted by λi(t), i = 1, 2, . . . , n.

The remainder, F (t) −
∑n

i=1 λi(t), is invested in the bond. Borrowing and shortselling is al-

lowed. A negative value of λi means that the sponsor sells a part of his risky asset Si short

while, if
∑n

i=1 λi is larger than F , then he or she gets into debt to purchase the stocks, bor-

rowing at the riskless interest rate r. We suppose the investment strategy {Λ(t) : t ≥ 0},

with Λ(t) = (λ1(t), λ2(t), . . . , λn(t))>, is a control process adapted to filtration {Gt}t≥0, Gt–

measurable, markovian and stationary, satisfying

E
∫ T

0
Λ(t)>Λ(t)dt <∞, (4)

where E is the expectation operator. The contribution rate process C(t) is also an adapted

process with respect to {Gt}t≥0 verifying

E
∫ T

0
SC 2(t)dt <∞. (5)

Therefore, the fund dynamic evolution under the investment policy Λ is1:

dF (t) =
n∑

i=1

λi(t)
dSi(t)
Si(t)

+

(
F (t)−

n∑
i=1

λi(t)

)
dS0(t)
S0(t)

+ (C(t)− P (t)) dt. (6)

By substituting (2) and (3) in (6), we obtain:

dF (t) =
(
rF (t) +

n∑
i=1

λi(t)(bi − r) + C(t)− P (t)
)
dt+

n∑
i=1

n∑
j=1

λi(t)σij dwj(t), (7)

with initial condition F (0) = F0 > 0.

Next we will assume the matrix notation: σ = (σij), b = (b1, b2, . . . , bn)>, 1 = (1, 1, . . . , 1)>

and Σ = σσ>. We take as given the existence of Σ−1, that is to say, σ−1. Finally the vector of

standardized risk premia or Sharpe ratio of the portfolio is denoted by θ = σ−1 (b− r1) . So,

we can write (7) as:

dF (t) =
(
rF (t) + Λ>(t)(b− r1) + C(t)− P (t)

)
dt+ Λ>(t)σdw(t), (8)

that, with the initial condition F (0) = F0, determines the fund evolution.
1This is the familiar equation obtained and justified in e.g. Merton (1990, p. 124). The only difference is that

consumption is replaced here by P − C.
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We assume throughout the paper, as in Josa–Fombellida and Rincón–Zapatero (2004), that

the technical interest rate coincides with the rate of return of the bond plus an additional term

related with the market risk of the liabilities. In fact, this definition of δ adjusts the risk of the

discounted future value of the liabilities, as if the preferences of the sponsor were risk–neutral.

We are using here the equilibrium approach of Constantinides (1978), as it is detailed in the

Appendix. On the other hand, this value of δ allows us to obtain the optimal contribution and

portfolio in explicit form.

Assumption 2 The technical rate of actualization is δ = r + ηq>θ.

Notice that if either benefits are deterministic of there is no correlation between benefits

and the financial market, then δ is the risk–free rate of interest. With positive (resp. negative)

correlation, the valuation of liabilities is r plus a positive (resp. negative) term, weighted by

the product of the instantaneous variance of P and the Sharpe ratio of the assets. This is the

right way to price liabilities, since with positive (resp. negative) correlation it is expected that

liabilities and assets move in the same (resp. opposite) direction.

By (1), equation (8) in terms of X = −UAL = F −AL and of SC = C −NC is

dX(t) =
(
rF (t)+Λ>(t)(b−r1)+SC (t)+NC (t)−P (t)−κAL (t)

)
dt+Λ>(t)σdw(t)−ηAL (t)dB(t).

By Proposition 2.1 and Assumption 2, the above can be written

dX(t) =
(
rX(t) + Λ>(t)(b− r1) + SC (t)− ηq>θAL (t)

)
dt+ Λ>(t)σdw(t)− ηAL (t)dB(t),

and using the independent Brownian motions {wi}n
i=0

dX(t) =
(
rX(t) + Λ>(t)(b− r1) + SC (t)− ηq>θAL (t)

)
dt

− ηAL (t)
√

1− q>q dw0(t) + (Λ>(t)σ − ηAL (t)q>)dw(t), (9)

with the initial condition X(0) = X0 = F0 −AL 0.

To fix the nomenclature, we will suppose along the paper that the fund is underfunded at

time 0, X0 < 0, so that X has the meaning of debt. The same interpretation of the results are

valid when the fund is overfunded, but then X is surplus.
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3 The problem formulation

The objective of the manager is double. On the one hand, it is to minimize the expected

unfunded actuarial liability EUAL(T ) = −EX(T ) = −(EF (T ) − EAL (T )), or equivalently to

maximize the expected value of fund’s assets. Note that as we are supposing X < 0 most

often we refer to X as debt. On the other hand, the aim is to minimize the variance of the

terminal debt, VarX(T ), and the contribution risk SC 2 on the interval [0, T ]. This bi–objective

problem reflects the concern of the promoter of increase fund assets to pay due benefits, but at

the same time not subject the pension fund to large variations to provide stability to the plan.

Minimization of the contribution risk (related with the security of plan) has been considered in

other works as Haberman and Sung (1994), Haberman et al (2000) and Josa–Fombellida and

Rincón–Zapatero (2001, 2004).

Thus we are considering a multi–objective optimization problem with two criteria2:

min
(SC,Λ)∈AX0,AL0

(J1(SC ,Λ), J2(SC ,Λ)) .= min
(SC,Λ)∈AX0,AL0

(
−EX(T ),E

∫ T

0
SC 2(t) dt+ VarX(T )

)
,

(10)

subject to (9), (1). Here AX0,AL0 is the set of measurable processes (SC ,Λ), where SC satisfies

(5), Λ satisfies (4) and such that (1) and (9) admit a unique solution Gt–measurable adapted to

the filter {Gt}t≥0.

An admissible control process (SC ∗,Λ∗) is Pareto efficient (or simply efficient) if there exists

no admissible (SC ,Λ) such that

J1(SC ,Λ) ≤ J1(SC ∗,Λ∗), J2(SC ,Λ) ≤ J2(SC ∗,Λ∗),

with at least one of the inequalities being strict. The pairs (J1(SC ∗,Λ∗), J2(SC ∗,Λ∗)) ∈ R2 form

the Pareto frontier. We will call to SC ∗ an efficient supplementary cost (or efficient contribution

rate), and Λ∗ an efficient portfolio. Throughout the text the term optimal must be understood

in the sense of efficiency. Actually, we are not interested in the representation and properties
2The complete notation for the objective functionals would be J1((t, x, y); (SC ,Λ)) = −EtxyX(T ) =

−E(X(T )|X(t) = x,AL (t) = y) and J2((t, x, y); (SC ,Λ)) = Etxy

R T

t
SC 2(s)ds + VartxyX(T ).
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of the Pareto frontier, but in the pairs (−EX(T ),VarX(T )) for optimal X(T ), that we call the

mean–variance efficient frontier.

Remark 3.1 Problem (1), (9), (10) is a mean–variance problem similar to the one studied in

Zhou and Li (2000), but with the additional control variable SC in the state equation (9), and an

additional running cost. The model could be also formulated as a family of problems depending

on z ∈ R

min
(SC,Λ)∈AX0,AL0

{
J2(SC ,Λ) = E

∫ T

0
SC 2(t) dt+ E(X(T )− z)2

}
,

subject to EX(T ) = z and (1), (9).

According to Da Cunha and Polak (1967) when the objective functionals defining the multi-

objective program are convex, the Pareto optimal points can be found solving a scalar optimal

control problem where the dynamics remain the same and where the objective functional is

a convex combination of the original cost functionals. In our case the equations (1), (9) are

linear, so both J1 and J2 are obviously convex. Therefore, the original problem (1), (9), (10) is

equivalent to the scalar problem

min
(SC,Λ)∈AX0,AL0

J1(SC ,Λ)+µJ2(SC ,Λ) = min
(SC,Λ)∈AX0,AL0

−EX(T )+µ
(

E
∫ T

0
SC 2(t) dt+ VarX(T )

)
,

(11)

subject to (1), (9), with µ > 0 a weight parameter. As µ varies in the interval (0,∞), the

solutions of (11) describe the Pareto frontier. Notice that µ serves the manager to transfer

linearly units of risk to units of expected return, and reciprocally. The size of µ indicates which

one of the objectives is of more concern for the manager, to reduce risk or to reduce debt.

Problem (1), (9), (11) is not a standard stochastic optimal problem due to the term (EX(T ))2

in the variance, and the dynamic programming approach can not be applied here. Following

Zhou and Li (2000) or Li and Ng (2000) we propose an auxiliar problem that turns out be a

stochastic problem of linear quadratic type:

min
(SC,Λ)∈AX0,AL0

J(SC ,Λ) .= min
(SC,Λ)∈AX0,AL0

E
∫ T

0
SC 2(t) dt+ E

(
X2(T )− 2γX(T )

)
, (12)

subject to (1), (9), where γ ∈ R.
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The relationship between problems (1), (9), (11) and (1), (9), (12) is shown in the following

result.

Proposition 3.1 For any µ > 0, if (SC ∗,Λ∗) is an optimal control of (1), (9), (11) with

associated optimal debt X∗, then it is an optimal control of (1), (9), (12) for γ = (2µ)−1 +

EX∗(T ).

The main consequence of Proposition 3.1 is that any optimal solution of problem (1), (9),

(11) can be found solving problem (1), (9), (12). This will be done in the following section.

4 Optimal contributions and portfolio of the auxiliar problem

and efficient frontier

In this section we find the efficient frontier for the original problem (1), (9), (10). Previously we

solve the problem (1), (9), (12), depending on the parameter γ.

Theorem 4.1 The optimal rate of supplementary cost and the optimal investment in the risky

assets are given by

SC ∗(t,X,AL ) = f(t)
(
γe−r(T−t) −X

)
, (13)

Λ∗(t,X,AL ) =Σ−1(b− r1)
(
γe−r(T−t) −X

)
+ ησ−>qAL , (14)

where

f(t) =
(1− c1)e(2r−θ>θ)(T−t)

1− c1e(2r−θ>θ)(T−t)
, ∀t ∈ [0, T ], (15)

with c1 = 1/(−2r + θ>θ + 1).

The efficient strategies depend on the term γe−r(T−t) −X(t) that, by the definition of γ in

Proposition 3.1, decomposes in three terms that we collect into two summands

1
2µ
e−r(T−t) +

[
E
(
X(T )e−r(T−t)

)
−X(t)

]
.
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The first summand is always positive, increasing with time, and depends inversely on µ, the

parameter weighing the relative importance of the objective of variance minimization with re-

spect to the objective of debt reduction. The summand in brackets is the expected value of debt

reduction planned, valued at time t. Notice from the expression of SC ∗ that if this reduction

is positive, then amortization rate is higher than the normal cost. In the same way, the first

summand in Λ∗ is also positive. Of course, this behavior is also observed for small values of

µ, even if there is no reduction of the expected debt. As the control of variance becomes less

important for the sponsor, that is, µ decreases, the investment strategies are riskier.

In contradistinction to the supplementary cost, optimal investment depends also on AL and

on the elements giving the randomness of assets and benefits. If the actuarial liability AL

is positively correlated with the financial market (an extreme case being uncorrelated, where

q = 0), then the investment in the risky assets is greater than if the correlation is negative. It

is remarkable that it does not depend on the rate of growth of benefits, κ.

A technical assumption to obtain some properties of the optimal solutions is necessary. We

suppose that twice the risk–free rate of interest is lesser than the norm square of the Sharpe

ratio.

Assumption 3 The Sharpe ratio vector satisfies 2r < θ>θ.

This hypothesis implies for the constant c1 and the function f defined in Theorem 4.1 that

0 < c1 < 1 and 0 < f(t) < 1, for all 0 ≤ t < T .

Theorem 4.1 gives also a linear relationship between the supplementary cost and investment

strategies, which vector coefficient is 1/f(t) times the optimal growth portfolio, Σ−1(b− r1):

Λ∗ =
1
f(t)

Σ−1(b− r1)SC ∗ + ησ−>qAL . (16)

This can be considered as a “rule of thumb” for the sponsor: at time t, each monetary unit of

additional amortization with respect to the computed normal cost, must be accompanied by an

investment of 1
f(t)Σ

−1(b − r1) monetary units in risky assets, plus ησ−>qAL units due to the

stochastic elements defining the pension plan.
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The following result characterizes the efficient frontier in terms of the expected returns and

variance (disregarding the influence of the contribution risk).

Theorem 4.2 The mean–variance efficient frontier of the problem (1)–(9)–(10) is given by

VarX(T ) =
(

1− β

β

)2 (
eθ
>θT − 1

) (
EX(T )− erTX0

)2
+ ν, (17)

where

β =1− e−θ>θT 1− c1

1− c1e(2r−θ>θ)T
= 1− e2rT f(0),

ν = η2(1− q>q)AL 2
0e

(2κ+η2)T

∫ T

0

e(2r−θ>θ−2κ−η2)t

(1− c1e(2r−θ>θ)t)2
dt.

Expression (17) shows the familiar quadratic relation between debt and its variance. The

minimum possible variance, VarX(T ) = ν ≥ 0, is attained when the sponsor borrows money for

the total amount of debt at date t = 0 for T years, so that EX(T ) = erTX0.

From (17), the expected debt and the standard deviation, σ2
X(T ), at time T are related by

EX(T ) = erTX0 +
β

(1− β)
√
eθ>θT − 1

√
σ2

X(T )− ν.

There are two cases where it is a straight line: when the benefits are exponential and determin-

istic, η = 0, and when the market is complete (Brownian B only depends on w), q>q = 1. In

both cases the capital market line is

EX(T ) = erTX0 +
β

(1− β)
√
eθ>θT − 1

σX(T ),

The slope, β/
(
(1 − β)

√
eθ>θT − 1

)
, is the price of risk. This is positive because 0 < β < 1 by

Assumption 3. It shows how much the expected optimal debt decreases if its standard deviation

increases by one unit.

Observe that parameter ν and in consequence the terminal variance in (17) does not depend

on the sign of correlations qi.

Remark 4.1 The optimal investment decisions, contribution rate and fund’s wealth evolution

can be expressed in terms of the optimal expected debt at time T , EX∗(T ), instead of using the
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parameters γ or µ. This provides a more clever interpretation of the results. The substitution

of γ may be done from the equality erT (1− β)X0 + βγ = EX∗(T ), which is obtained in (29) in

the Appendix. Taking into account (14) and (29), the investment at instant t is

Λ∗(t,X,AL ) = Σ−1(b− r1)

(
e−r(T−t)

β

(
z − erTX0

)
−
(
X − ertX0

))
+ ησ−>qAL ,

where z = EX∗(T ). This shows the existing relation between the desired expected levels of debt

at time T and the optimal composition of the portfolio at every instant of time t.

The regions of no short–selling and no borrowing in a given asset Si, i.e. 0 ≤ λ∗i (t) ≤ F (t),

for i = 1, . . . , n, are given in the following inequalities

eiΣ−1(b− r1)
1 + eiΣ−1(b− r1)

ϕ(t) + kiAL (t) ≤ F (t) ≤ ϕ(t) + k′iAL (t),

with ei = (0, . . . , 1, 0 . . . , 0), ϕ(t) = e−r(T−t)
(
z − erTX0

)
/β + ertX0,

ki =
eiΣ−1(b− r1) + ηeiσ

−>q

1 + eiΣ−1(b− r1)
, k′i =

eiΣ−1(b− r1) + ηeiσ
−>q

eiΣ−1(b− r1)
.

Again from (29) in the Appendix and Proposition 3.1, we obtain z = erTX0+β/(2µ(1−β)) >

erTX0, by Assumption 3, that is, the expected terminal unfunded liability is lesser than the debt

accrued at t = T for borrowing money at date t = 0 at an interest rate r. Then, ϕ > 0 and in

consequence there is a minimum floor for the amount invested in the risky portfolio, which is

obtained as µ→∞

Λ∗(t,X,AL ) > Σ−1(b− r1)
(
ertX0 −X

)
+ ησ−>qAL .= Λ∗inf(t,X,AL ).

Formally, Λ∗inf is the optimal portfolio corresponding to the minimum variance, VarX(T ) = ν

and EX(T ) = erTX0, when µ→∞.

Analogously, (13) and (29), allows us to rewrite the optimal rate of contribution at instant

t as

C∗(t,X) = NC (t) + f(t)

(
e−r(T−t)

β

(
z − erTX0

)
−
(
X − ertX0

))
.

From this, it is easily obtained that C∗(t,X) > NC(t) in the underfunded region, X < 0. As

f > 0 by Assumption 3, the contribution is bounded below by

C∗(t,X) > NC (t) + f(t)
(
ertX0 −X

) .= C∗inf(t,X),
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with C∗inf(t,X) the limit of the optimal contribution rate as µ→∞.

The contribution rate C∗ is not exactly a spread method of amortizing the liability, that is,

the supplementary cost is not proportional to the unfunded actuarial liability. However, for a

particular level of terminal debt, EX(T ) = erT (1− β)X0, the supplementary cost reduces to

SC ∗(t,X) = −f(t)X(t) = f(t)UAL(t),

with variance VarX(T ) = (1− β)2(eθ
>θT − 1)X2

0e
2rT + ν.

The following proposition gives the total optimal contribution.

Proposition 4.1 The total expected discounted value of the optimal contribution and the op-

timal supplementary cost in the interval [0, T ] of problem (1), (9), (10), denoted C and SC

respectively, are given by

SC .= E
∫ T

0
e−rtSC ∗(t,X(t)) dt = π

(
EX(T )− erTX0

)
,

C
.= E

∫ T

0
e−rtNC (t) dt+ SC =

1− e−(r−κ)T

r − κ
NC 0 + SC ,

where

π =
1− β

β

e2rT − 1
2r

e−rT .

The relation between SC and EX(T ) is linear, with positive slope π, since 0 < β < 1 by

Assumption 3. Thus, a reduction of one monetary unit of expected debt at time T is attained

with an extra expected amortization of π monetary units over the total expected discounted

normal cost computed along the time horizon [0, T ].

In the case that the manager borrows money to cover the debt X0 at t = 0 and does not

invest in risky assets, then EX(T ) = erTX0, i.e. the efficient point with minimum variance, the

total contribution is

C inf = E
∫ T

0
e−rtC∗inf(t,X(t))dt =

1− e−(r−κ)T

r − κ
NC 0.

So we have that as π > 0 then C > C inf . In conclusion the efficient strategy with EX(T ) = erTX0

gives the smaller terminal variance, VarX(T ) = ν, and the smaller total contribution, C inf .

Other interesting fact is that total contribution does not depend on diffusion parameter η,

so it coincides with total contribution in the case of deterministic benefits.
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The following result confirms that the higher returns obtained from the mixed portfolio in

comparison with the returns of the bond, lead to a lower expected contribution in the former

case.

Corollary 4.1 a) The total expected value of the supplementary cost is less when the manager

invests in the mixed portfolio than when he or she invests only in the bond.

b) If q>θ ≥ 0 then the total expected value of the optimal contribution rate is less when the

manager invests in the mixed portfolio than when he or she invests only in the bond.

5 A numerical illustration

In this section we illustrate the results of section above in a specific example. In order to give a

more sound illustration of the model’s properties we consider two risky assets. The objective is

to observe the behavior of the terminal standard deviation, the initial investment and the total

expected optimal contribution, with respect to the terminal date, the expected terminal debt

and the correlations between benefits and risky assets.

Assumptions. The values of parameters that we consider are the following.

• benefits are random with η = 0.03 and κ = 0.2;

• the risk free rate of interest is r = 0.06;

• risky investment is in two assets (n = 2) with b = (0.12, 0.10)> and σ =

 0.15 0.07

0.07 0.10

;

this implies a Sharpe ratio θ = (0.317, 0.178)>;

• the initial values are AL 0 = 1, F0 = 0.8, so that the initial liability is X0 = −0.2, that is,

the fund is 20% underfunded; benefits at time t = 0 are supposed to be 1% of AL 0, that

is, P0 = 0.01.

We consider four values of the time horizon, T = 1, 2, 5 and 10 years. The goal of the

manager is to reduce expected debt EX(T ) to values −0.15, −0.10, −0.05 and 0, that is to say, to
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attain the 25%, 50%, 75% and 100%, of debt reduction, respectively. The last variable elements

that we consider are the correlations q = (q1, q2)>. We suppose the norm square of correlation

vector, q>q = q21 + q22, takes the values 0, 0.50 and 1. More values could be considered obtaining

similar properties. The extreme values are uncorrelation and perfect correlation, respectively.

In order to fix the correlations we suppose symmetric cases, i.e. q1 = ±q2, so the vectors q

considered are (0, 0)>, (±1/2,±1/2)> and (±
√

2/2,±
√

2/2)>.

The remainder elements depending on correlations are easily found. For instance, the tech-

nical interest rate δ can be calculated from Assumption 2, and from this Proposition 2.1 for

t = 0 allows to obtain NC 0 in each case. Observe that EX(T ) ≥ erTX0 is satisfied for all values

of the parameters proposed.

Table 1 shows for several final dates of the pension plan what the terminal standard deviation

must be in order to reduce debt. We observe that the standard deviation does not depend on

the sign of the correlations and it grows with respect to the planning horizon when q>q < 1,

but it decreases when q>q = 1. In fact, it is more sensible to changes in the horizon length than

to changes in the reduction of debt.

Another interesting fact is that the standard deviation is reduced when the norm square of

correlation vector is increased, attaining the minimum value when the market is complete.

[INSERT TABLE 1 HERE]

The total amount of initial investment proportion in the risky assets, (λ1 + λ2)/F0, chosen

to reduce debt to the prescribed levels, is shown in the Table 2. The investment in the bond

is 1 − (λ1 + λ2)/F0, that can be obtained from the table. There are two cases of short–selling,

which appear of course when both correlations are the more negative allowed values. In some

cases borrowing to invest in the risky assets is needed. Specially, this happens when the target

is to eliminate completely debt in a short period of time. As expected, the risky investment

increases with higher debt reduction levels. Note that there is a “horizon effect” in the investment
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strategies, since that they do not follow a monotononic pattern with respect to final time T .

The investment is sensible with respect to the sign of the correlations and the norm square

of the correlations vector. With negative signs, a more conservative strategy is implemented

and the investment behavior is more aggressive for higher levels of correlations.

[INSERT TABLE 2 HERE]

Table 3 shows the total expected terminal optimal value of the contribution rate. The total

contribution grows with the debt reduction and with the planning horizon. The correlation has

little influence in the total contribution although it is smaller with positive correlation.

[INSERT TABLE 3 HERE]

Table 4 shows the total expected optimal value of the supplementary cost when the portfolio

comprises the bond and two risky assets, whereas Table 5 shows the result when investment

is only in the bond. In both cases the supplementary cost grows with debt reduction, and a

horizon effect appears as in the other components of the plan previously analyzed.

We observe in the tables the result obtained in Corollary 4.1: supplementary cost is greater

when the investment is made only in the bond. Risky investment allows to get higher mean

returns, making possible to diminish the expected amortization rate.

[INSERT TABLE 4 HERE]
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[INSERT TABLE 5 HERE]

Table 6 is the corresponding one to Table 1, but showing the total expected contribution when

the investment is in the bond only. When the inequality q>θ ≥ 0 holds, the total contribution

with safe investment is higher than with investment in risky assets, see Corollary 4.1. When

the opposite inequality holds, the property is not generally true. For example, in Table 3 are

emphasized values where the optimal contributions with investment in risky assets is greater

than the corresponding with investment only in the bond; of course in all of them q verifies

q>θ < 0.

[INSERT TABLE 6 HERE]

Finally, in all the cases of Tables 4, 5, 6 there is no dependency with respect to the correla-

tions.

6 Conclusions

We have analyzed the management of a pension funding process of an aggregated defined benefit

pension plan where the benefits are stochastic. The objective is to determine contributions and

investments strategies maximizing the expected terminal fund and at the same time minimizing

both the contribution risk and the variance of the unfunded actuarial liability. The problem is

formulated as a modified mean variance optimization problem and has been solved by means of

dynamic programming techniques.

The efficient frontier has a parabolic form, but it is not a perfect square because it is modified

by a constant due to the randomness of benefits and to correlations between risky assets and

benefits. This effect appears also in the optimal investment strategies, with a term depending
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on the current level of the actuarial liability modified by a factor involving the instantaneous

variance of benefits and of risky assets, and its correlation. Other summand depends on the

preferences of the sponsor, that is, of the relative importance of the objectives in the minimization

functional. The remainder summand is proportional to the present expected value of debt

reduction. We have also found what seems to be a new result in the literature of DB pension

funds due to the stochastic character of the pension plan: there is a linear relationship between

the optimal supplementary cost and the vector of optimal investment strategies, given in (16).

A correction term is present due to the random behavior of benefits.

We have also proved that under suitable conditions about the sign of the correlations, the

total expected contribution is lesser when the investment is in the mixed portfolio than when

it is in the bond only. On the other hand, borrowing money provides the sponsor an efficient

strategy with the minimal variance and minimal total contribution but, of course, the expected

reduction of the actuarial liability is lesser than under the mixed portfolio.

A numerical illustration shows the analytical results proved in the paper, as well as other

features of the model.

Further research should be directed to include: no–shortselling and no–borrowing restric-

tions, final bankruptcy prohibition, stochastic riskless rate of interest and other biobjective

problems.
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A Appendix

Proof of Proposition 3.1. The proof relies in a standard separation argument for concave
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functions. It follows the arguments in Zhou and Li (2000), but we have an extra term in the

form of the running cost giving the contribution risk. Let (SC ∗,Λ∗) be an optimal solution of

problem (1), (9), (11), with associated process X∗, where γ = µ−1/2 + EX∗(T ). Let us suppose

it is not optimal solution of (1), (9), (12). Then there exists an admissible strategy (SC ,Λ)

such that the associated path X verifies J(SC ,Λ) < J(SC ∗,Λ∗), that is to say,

E
∫ T

0
SC 2(t)dt− E

∫ T

0
(SC ∗)2(t)dt

+ EX2(T )− E(X∗)2(T )− 2γ (EX(T )− EX∗(T )) < 0. (18)

The function g(y1, y2, y3) = µ(y1 + y3)− µy2
2 − y2 is concave in R3 because the Hessian matrix

is matrix is negative semi–definite. Observe

g

(
EX2(T ),EX(T ),E

∫ T

0
SC 2(t)dt

)
= J1(SC ,Λ) + µJ2(SC ,Λ),

which is the objective function of problem (1), (9), (11).

The concavity3 of g and (18) imply

g

(
EX2(T ),EX(T ),E

∫ T

0
SC 2(t)dt

)

≤ g

(
E(X∗)2(T ),EX∗(T ),E

∫ T

0
(SC ∗)2(t)dt

)
+ µ

(
EX2(T )− E(X∗)2(T )

)
− (1 + 2µEX∗(T )) (EX(T )− EX∗(T ))

+ µ

(
E
∫ T

0
SC 2(t)dt− E

∫ T

0
(SC ∗)2(t)dt

)

≤ g

(
E(X∗)2(T ),EX∗(T ),E

∫ T

0
(SC ∗)2(t)dt

)
+ µ

(
EX2(T )− E(X∗)2(T )− 2γ (EX(T )− EX∗(T ))

+ E
∫ T

0
SC 2(t)dt− E

∫ T

0
(SC ∗)2(t)dt

)

< g

(
E(X∗)2(T ),EX∗(T ),E

∫ T

0
(SC ∗)2(t)dt

)
. (19)

3If g : R3 → R is a concave function of class C1, then ∀x, y ∈ R3, g(x) − g(y) ≤ ∇g(y)(x − y), where ∇g(y)

denotes the gradient vector of g at y, i.e. ∇g(y) = (gy1 , gy2 , gy3).
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Therefore J1(SC ,Λ)+µJ2(SC ,Λ) < J1(SC ,Λ)+µJ2(SC ∗,Λ∗), by (19), that is to say, (SC ∗,Λ∗)

is not optimal for (1), (9), (11), which is a contradiction. �

Proof of Theorem 4.1. In order to prove this result we use the dynamic programming

approach, see Fleming and Soner (1993). Consider the value function of the control problem

(1)–(9)–(12),

V̂ (t,X,AL ) = min
(SC,Λ)∈AX,AL

{J((t,X,AL );SC ,Λ) : s.t. (1), (9)} .

It is well known V̂ is solution of the HJB equation:

Vt + min
SC,Λ

{
SC 2 + (rX + Λ>(b− r1) + SC − ηq>θAL )VX

+ κAL VAL +
1
2
(Λ>ΣΛ− 2ηALΛ>σq + η2AL )VXX

+
1
2
η2AL 2VAL,AL + (ηALΛ>σq − η2AL 2)VX,AL

}
= 0, (20)

V (T,X,AL ) = X2 − 2γX. (21)

Note that in (20) we have used (9) and the SDE of AL as function of the Brownian motions

{wi}n
i=0, obtained from (1), that is

dAL (t) = κAL (t)dt+ ηAL (t)
√

1− q>qdw0(t) + ηAL (t)q>dw(t).

If there exists a smooth solution V of this equation, strictly convex with respect to X, then the

minimizer values of the supplementary cost and investments are given by

ŜC (VX) = −VX

2
, Λ̂(VX , VXX , VX,AL) = −Σ−1(b− r1)

VX

VXX
+ ηAL σ−>q

(
1−

VX,AL

VXX

)
.

(22)

After substitution of these values in (20) we obtain V̂ satisfies

Vt+rXVX − 1
4
V 2

X − 1
2
θ>θ

V 2
X

VXX
+ κAL VAL +

1
2
η2AL 2VAL,AL +

1
2
η2AL 2(1− q>q)VXX

− η2AL 2(1− q>q)VX,AL − ηAL θ>qVX
VX,AL

VXX
− 1

2
η2AL 2q>q

V 2
X,AL

VXX
= 0,
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with the final condition (21). We try a quadratic solution of the form

V̂ (t,X,AL ) = β0(t) + βX(t)X + βAL(t)AL+ βXX(t)X2 + βAL,AL(t)AL 2 + βX,AL(t)XAL ,

so that from (22) the optimal controls must be

Λ =Σ−1(b− r1)
(
−βX

2βXX
−X −

βX,AL

2βXX
AL
)

+ ηAL σ>q
(

1−
βX,AL

βXX

)
,

SC = − 1
2

(βX + 2βXXX + βX,ALAL ) = βXX

(
− βX

2βXX
−X −

βX,AL

2βXX
AL
)
.

(23)

The following ordinary differential equations are obtained for the above coefficients:

β̇0 =
β2

X

4
+
θ>θ

4
β2

XβXX , β0(T ) = 0,

β̇X =(−r + θ>θ)βX + βXβXX , βX(T ) = −2γ, (24)

β̇AL = − κβAL +
1
2

(
θ>θ + ηθ>q

) βXβX,AL

βXX
+

1
2
βXβX,AL, βAL(T ) = 0,

β̇XX =(−2r + θ>θ)βXX + β2
XX , βXX(T ) = 1. (25)

β̇AL,AL = − (2κ+ η2)βAL,AL +
(
θ>θ

4
+
η

2
θ>q + η2q>q

)
β2

X,AL

βXX

+ η2(1− q>q)(βX,AL − βXX) +
β2

X,AL

4
, βAL,AL(T ) = 0,

β̇X,AL =(−r − κ+ η + θ>θ)βX,AL + βXXβX,AL, βX,AL(T ) = 0. (26)

The method of resolution of this system is standard. The solution of the equation (25), of Ricatti

type, can be found for example in Kloeden–Platen (1999), p. 572,

βXX(t) = f(t),

and using this explicit expression of βXX we can obtain from (24) (see Arnold (1974), p. 139)

βX(t) = −2γe−r(T−t)f(t).

Substituting in (26), βXAL is given by

β̇X,AL = (−r − κ+ η + θ>θ + f(t))βX,AL, βX,AL(T ) = 0,

that is to say βX,AL = 0. Plugging these expressions into (23) we obtain (13) and (14), respec-

tively. �
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Proof of Theorem 4.2. Under the optimal feedback control (13)–(14), the stochastic differ-

ential equation for process X, (9), is:

dX(t) =
(
(r − θ>θ − f(t))X(t) + (θ>θ + f(t))γe−r(T−t)

)
dt

− η
√

1− q>qAL (t)dw0(t) + θ>
(
γe−r(T−t) −X(t)

)
dw(t),

with X(0) = X0. Applying the Ito’s formula to X2 we obtain

dX2(t) = 2
(
(r − θ>θ/2− f(t))X2(t) + f(t)γe−r(T−t)X(t) + (1/2)θ>θγ2e−2r(T−t)

+(1/2)η2(1− q>q)AL 2(t)
)
dt

− 2η
√

1− q>qAL (t)X(t)dw0(t) + 2θ>
(
γe−r(T−t)X(t)−X2(t)

)
dw(t),

with X2(0) = X2
0 . Taking expectations on both previous stochastic differential equations we

obtain that functions m1(t) = EX(t) and m2(t) = EX2(t) satisfy the linear ordinary differential

equations

ṁ1(t) = (r − θ>θ − f(t))m1(t) + (θ>θ + f(t))γe−r(T−t), m1(0) = X0,

ṁ2(t) = (2r − θ>θ − 2f(t))m2(t) + 2f(t)γe−r(T−t)m1(t)

+ θ>θγ2e−2r(T−t) + η2(1− q>q)AL 2
0e

(2κ+η2)t, m2(0) = X2
0 , (27)

where in (27) we have used that EAL 2(t) = AL 2
0e

(2κ+η2)t, by (1).

Following Arnold (1974), p. 139,

m1(t) = EX(t) = e
R t
0 (r−θ>θ−f(s))ds

(
X0 + (θ>θ + f(t))γ

∫ t

0
e−

R s
0 (r−θ>θ−f(v))dve−r(T−s)ds

)
,

that, after some calculations it is

EX(t) = e(r−θ>θ)t
(
1− c1e

(2r−θ>θ)(T−t)
)

×

(
X0

1− c1e(2r−θ>θ)T
+ γe−(r−θ>θ)T

(
e−θ>θ(T−t)

1− c1e(2r−θ>θ)(T−t)
− e−θ>θT

1− c1e(2r−θ>θ)T

))
, (28)

for all t ∈ [0, T ]. For t = T we have

EX(T ) = αX0 + βγ, (29)
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where

β =1− e−θ>θT 1− c1

1− c1e(2r−θ>θ)T
= 1− e2rT f(0),

α = erT (1− β).

Analogously,

m2(t) = EX2(t) = e
R t
0 (2r−θ>θ−2f(s))ds

(
X2

0 + 2γ
∫ t

0
e−

R s
0 (2r−θ>θ−2f(v))dvf(s)e−r(T−s)m1(s)ds

+θ>θγ2

∫ t

0
e−

R s
0 (2r−θ>θ−2f(v))dve−2r(T−s)ds

+η2(1− q>q)AL 2
0

∫ t

0
e−

R s
0 (2r−θ>θ−2f(v))dve(2κ+η2)sds

)
,

that, after some calculations it is transformed in

EX2(T ) = δX2
0 + 2αγεX0 + γ2(β − (1− β)ε) + ν, (30)

where

δ =α2eθ
>θT ,

ε =1− (1− β)eθ
>θT ,

ν = η2(1− q>q)AL 2
0e

(2κ+η2)T

∫ T

0

e(2r−θ>θ−2κ−η2)t

(1− c1e(2r−θ>θ)t)2
dt.

In order to find the mean–variance efficient frontier we obtain the terminal variance:

VarX(T ) = EX2(T )− (EX(T ))2

= δX2
0 + 2αγεX0 + γ2(β − (1− β)ε) + ν − (EX(T ))2

= δX2
0 + 2α

1
β

(EX(T )− αX0)εX0 +
1
β2

(EX(T )− αX0)2(β − (1− β)ε) + ν − (EX(T ))2

=
1− β

β

β − ε

β

(
EX(T )− erTX0

)2
+ ν

=
(

1− β

β

)2 (
eθ
>θT − 1

) (
EX(T )− erTX0

)2
+ ν,

where in the second equality we have used (30) and in the third one we have used (29). �
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Proof of Proposition 4.1. By (13),

E
∫ T

0
e−rtSC ∗(t,X(t))dt =

∫ T

0
e−rtf(t)

(
γe−r(T−t) − EX(T )

)
dt

=
(1− c1)e−θ>θT

1− c1e(2r−θ>θ)T

(
γe−rT −X0

) ∫ T

0
e2rtdt

=π
(
EX(T )− erTX0

)
,

where the second equality is due to (15) and (28), and the third to the definition of β and (29).

�

Proof of Corollary 4.1. We suppose the manager wishes an expected terminal fund EX(T ) =

z with both investment possibilities, in the mixed portfolio and in the fixed rent.

a) Consider the total supplementary cost as a function of the Sharpe ratio of the portfolio,

θ>θ:

SC (y) =
e2rT − 1

2r
e−rT

(
z − erTX0

)( 1
β(y)

− 1
)
, y ∈ [0, T ],

where

β(y) = 1− e−Ty 1− c1(y)
1− c1(y)e−T (−2r+y)

,

with c1(y) = 1/(−2r+ y+1). The expected total supplementary cost in the first situation

is SC (θ>θ) and in the second SC (0).

It is very easy to check

β′(y) = Te−Ty (−2r + y)2 + (−2r + y) + e−(−2r+y)T /T(
−2r + y + 1− e−(−2r+y)T

)2 > 0

by Assumption 3. Using z ≥ erTX0 we obtain SC ′(y) < 0, that is to say, SC is a strictly

decreasing function in R. Therefore SC (θ>θ) < SC (0).

b) The expected total contribution is in the first case

C =
1− e−(r−κ)T

r − κ
NC 0 + SC(θ>θ).
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By Proposition 2.1 and Assumption 2, NC 0 = P0 + (κ − r − ηq>θ)AL 0, that is smaller

or equal to P0 + (κ − r)AL 0, because q>θ ≥ 0. Total contribution in the second case is

obtained making θ = 0, so the proof finishes applying a). �

Justification of Assumption 2. Consider first only one worker, with age x. Once the liability

is valued for one worker, the aggregated case is easily obtained as it is shown below. The sponsor

wishes to value at the current time t the asset Y x(t, P ) consisting in paying P monetary units

at the age of retirement d, where P is a geometric Brownian motion according to Assumption 1.

Since P is not tradeable and we suppose the existence of two independent sources of uncertainty,

to value Y x we resort to equilibrium arguments, following the approach of Constantinides (1978).

To simplify the exposition, let us consider that only a risky asset S exists, which is freely traded

in the market. The multidimensional case is straightforward. The method considers that the

risk uncorrelated with S is not priced. Consider the asset at any intermediate time, Y x(t+τ, P ),

0 ≤ τ ≤ d − x. Forming a portfolio with one unit of asset Y x and ξ units of S, R = Y x + ξS,

and applying Itô’s Lemma, we have

dR = dY x + ξdS

=
(
Y x

p κP +
1
2
Y x

ppη
2P 2 + Y x

τ + ξbS

)
dt+ Y x

p ηP dB + ξσS dw

=
(
Y x

p κP +
1
2
Y x

ppη
2P 2 + Y x

τ + ξbS

)
dt+ Y x

p ηP
√

1− q2dw0 + (Y x
p ηPq + ξσS) dw.

The first equality is the self–financing condition, the second one follows from Itô’s Lemma, using

that P is geometric Brownian motion, and the last equality uses B =
√

1− q2w0 + qw. The

selection ξ = −Y x
p ηPq/σS eliminates the risk related with Brownian w. We also disregard the

risk orthogonal to it, that is, the risk related with w0 is not priced. The total return of the

hedge portfolio must be equal to the risk free rate of interest, r(Y x + ξS). Thus we obtain the

pricing PDE

rY x = Y x
τ + Y x

p P
(
κ− qη

σ
(b− r)

)
+

1
2
Y x

ppη
2P 2

with boundary conditions Y x(t+ d− x, P ) = P , Y x(t+ τ, 0) = 0. The solution is

Y x(t+ τ, P ) = Pe−(r−κ+qηθ)(d−x−τ),

28



hence at time of valuation t (τ = 0), Y x(t, P (t)) = P (t)e−(r−κ+qηθ)(d−x). Now, to obtain the

total liability AL (t) we aggregate the result for any age x ∈ [a, d] having into account the way

benefits accumulates depending on age, to obtain

AL (t) =
∫ d

a
Y x(t, P (t))M(x) dx = P (t)

∫ d

a
e−(r−κ+qηθ)(d−x)M(x) dx.

On the other hand, the actuarial definition of AL given in Section 2 and Assumption 1 provide

AL (t) = P (t)
∫ d

a
e−(δ−κ)(d−x)M(x) dx.

See the proof of Proposition 2.1 in Josa–Fombellida and Rincón–Zapatero (2004). Comparing

the expressions obtained, we conclude that δ must be chosen equal to r+ qηθ in order to attain

a risk–neutral valuation of the liabilities.
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Table 4

Total expected discounted supplementary cost

Expected debt SC

z = EX(T ) T = 1 T = 2 T = 5 T = 10

−0.15 0.049 0.053 0.059 0.060

−0.10 0.088 0.087 0.084 0.074

−0.05 0.127 0.122 0.108 0.088

0 0.167 0.157 0.133 0.102

Table 5

Total expected discounted supplementary cost:

safe investment

Expected debt SC 0

z = EX(T ) T = 1 T = 2 T = 5 T = 10

−0.15 0.059 0.067 0.089 0.118

−0.10 0.106 0.111 0.126 0.145

−0.05 0.153 0.156 0.163 0.173

0 0.200 0.200 0.200 0.200

Table 6

Total expected discounted contribution:

safe investment

Expected debt C
0

z = EX(T ) T = 1 T = 2 T = 5 T = 10

−0.15 0.220 0.413 1.175 3.391

−0.10 0.267 0.458 1.212 3.419

−0.05 0.314 0.502 1.249 3.446

0 0.361 0.546 1.286 3.473


