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1. Nonsmooth chain rule and Inada condition

In this section, we firstly introduce some preliminary notations and auxiliary lemmas.

Then the proof of the main result will be presented later.

1.1. Examples of aggregators

There are many examples of aggregators studied in the literature. We consider the

following three examples:

Time additively separable aggregator: consider the aggregator W(x, y, z) = u(x, y)+

βz, where u : X × X → R is a utility function and β ∈ (0, 1) is the discount factor. Under

suitable assumptions, U(x) =
∑∞

t=0 β
tu(xt, xt+1) is induced from this aggregator. More

details could be found in Stokey, Lucas and Prescott (1989, Ch.5).

Epstein–Heynes aggregator: consider the aggregator W(x, y, z) = (−1 + z)e−v(x,y)

where v : X× X→ R is a continuous and differentiable function satisfying v > 0, ∂v/∂x >

0, ∂v/∂y > 0. Under suitable assumptions, this aggregator yields the utility function as

follows:

U(x) = −
∞∑
t=1

exp

[
−

t∑
τ=1

v(xτ−1, xτ )

]

Koopmans-Diamond-Williamson aggregator: the Koopmans-Diamond-Williamson

aggregator (hereafter the KDW aggregator) is given by W(x, y, z) = (β/d) ln(1 + a(f(x)−
y)b + dz) where a, b, d, β > 0 with b, β < 1 and with f : R+ → R+, 0 ≤ y ≤ f(x). In fact,

there is no closed–form expression from the KDW aggregator. However, Becker and Boyd

ISupport from the Ministerio de Economı́a y Competitividad (Spain), grants ECO 2014-56384-P, MDM
2014-0431, and Comunidad de Madrid, MadEco-CM S2015/HUM-3444 is gratefully acknowledged. The
second author is grateful for university starting fund. We thank participants at the XXVI European
Workshop on General Equilibrium Theory in Salamanca for useful comments.

∗Corresponding Author. Email: yanyunzhao@zuel.edu.cn.

Preprint submitted to Elsevier March 15, 2019



(1997, Ch.3) show that there is a unique recursive utility function for the KDW aggregator.

This result is extended in Marinacci and Montrucchio (2010) to cover cases where β ≥ 1. In

fact, a whole class of upcounting aggregators are identified in Marinacci and Montrucchio

(2010) that admit a unique recursive utility function, and they are the so-called Thompson

aggregators.

1.2. Nonsmooth chain rule

For a concave function F : Rn → R ∪ {−∞}, the effective domain is the set dom F =

{x ∈ Rn : F (x) > −∞}. We say F is proper if dom F is nonempty. As usual, if F is given

in a convex subset C ⊆ Rn, we extend F to Rn by defining F = −∞ on the complement of

C and then the extended function is concave. The set ∂F (x0) defined by

∂F (x0) := {q ∈ Rn : F (x)− F (x0) ≤ qT (x− x0), ∀x ∈ Rn}

is the superdifferential of F at x0. In our finite dimensional setting, the superdifferential is

nonempty at interior points of the domain of F . The elements q of ∂F (x0) are supergradients.

When F is differentiable, the superdifferential reduces to a singleton, which single element

is the gradient of F at x0: ∂F (x0) = {∇F (x0)} when ∇F (x0) exists. Reciprocally, if F is

continuous in the interior of its domain and ∂F (x0) contains only one point (which is the

gradient of F ), then F is differentiable at x0.

Let f = (`, f1, . . . , fd), where ` : Rm → Rk is linear and each fi : Rm → R ∪ {−∞} is

concave and let F : Rk × Rd → R ∪ {−∞} be concave. We will consider the composition

F ◦ f . It is well-known that F ◦ f is not concave unless further conditions are imposed. Let

the usual ordering on Rd, that is, for s = (s1, . . . , sd) and s′ = (s′1, . . . , s
′
d) elements of Rd,

we say s ≤ s′ if si ≤ s′i for each i. The function F is said to be isotone on S ⊆ Rd if for any

r ∈ Rk, F ((r, s)) ≤ F ((r, s′)) whenever s, s′ ∈ S and s ≤ s′. Let the correspondence

M(f1, . . . , fd)(a) := {s ∈ Rd : (f1, . . . , fd)(a) ≤ s}

and its image, R(M(f1, . . . , fd)) :=
⋃
a∈Rm M(f1, . . . , fd)(a).

Theorem 1.1. Let f = (`, f1, . . . , fd), where ` : Rm → Rk is linear and each fi : Rm → R∪
{−∞} is concave and continuous on the interior of its domain; let F : Rk×Rd → R∪{−∞}
be concave, and isotone on R(M(f1, . . . , fd)). Then F ◦ f is concave and if

dom ` ∩
d⋂
i=1

int(dom fi) 6= ∅,
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then for any a with f(a) finite, the superdifferential of F ◦ f is given by

∂(F ◦ f)(a) =
{
`∗(α1, . . . , αk)

T
}

+ αk+1∂f1(a) + · · ·+ αk+d∂fd(a), (1)

where (α1, . . . , αk+d) ∈ ∂F (a) and `∗ is the adjoint matrix of `.

Proof. Let f1 := (f1, . . . , fd). Let a1, a2 ∈ Rd and let λ ∈ [0, 1]; let, to simplify notation,

aλ = λa1 + (1− λ)a2. We have

(F ◦ f)(aλ) = F ((`(aλ), f1(aλ)))

= F ((λ`(a1) + (1− λ)`(a2), f
1(aλ)))

≥ F ((λ`(a1) + (1− λ)`(a2), λf
1(a1) + (1− λ)f1(a2)))

= F ((λ(`(a1), f
1(a1)) + (1− λ)(`(a2), f

1(a2)))

≥ λF ((`(a1), f
1(a1)) + (1− λ)F ((`(a2), f

1(a2)))

= λ(F ◦ f)(a1) + (1− λ)(F ◦ f)(a2).

Thus, F ◦f is concave. Now, if f(a) is finite and F , f and F ◦f are concave, then the chain

rule for concave functions, states (see e.g. Ward and Borwein (1987); isotonicity of F with

respect to all variables plays no role in establishing this formula)

∂(F ◦ f)(a) = α1∂`1(a) + . . .+ αk∂`k(a) + αk+1∂f1(a) + · · ·+ αk+d∂fd(a),

where (α1, . . . , αk+d) ∈ ∂F (f(a)) and ` = (`1, . . . , `k). Since each `i is a linear mapping,

we have ∂`i(a) = {`i}, where we use the same notation to designate the mapping `i and its

representation as matrix. Hence, we get (1).

Proposition 1. Consider a dynamic optimization problem (X,Γ,W). Then, for any

concave function v : X −→ R ∪ {−∞}, the function V (x, y) := W (x, y, v(y)) is concave

and for any (x0, y0) with v(y0) finite, the superdifferential of V is given by

∂V (x0, y0) = {(α1, α2 + α3q) : (α1, α2, α3) ∈ ∂W (x0, y0, v(y0)), q ∈ ∂v(y0)} . (2)

Proof. Letting f = (`, v), where ` is the identity mapping of Rn × Rn and where v is

concave by assumption, we have that w = W ◦ f is concave by Theorem 1.1, since W is

increasing with respect to the third component. The expression (2) comes from (1), since

the superdifferential of the function (x, y)→ v(y) is {0} × ∂v(y).

Of course, when W is differentiable, we can plug αi = DiW (x0, y0, v(y0)), i = 1, 2, 3

into (2).
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Consider the convex set A = {(x, y) : y ∈ Γ(x), x ∈ Rn}. If (x0, y0) ∈ A, the normal

cone to A at (x0, y0) is defined as

NA(x0, y0) := {(ξ1, ξ2) ∈ R2n : (ξ1, ξ2) · (x− x0, y − y0) ≤ 0, for all (x, y) ∈ A}. (3)

The indicator function of A is the convex function defined by

δA(x, y) :=

0, (x, y) ∈ A

∞, (x, y) 6∈ A.

It is well-known that ∂δA(x, y) = NA(x, y).

Theorem 1.2. Consider a dynamic optimization problem (X,Γ,W). Assume that the value

function J is concave and finite on X. Then, for any (x0, y0) ∈ A, the superdifferential of

J at x0 is characterized as follows.

∂J (x0) =
{
q0 ∈ Rn : ∃(α1, α2, α3) ∈ ∂W (x0, y0,J (x0)), ∃(p1, p2) ∈ NA(x0, y0),

∃q ∈ ∂v(y0) such that q0 = α1 − p1, α2 + α3q=p2

}
.

(4)

Proof. Let V (x, y) = W (x, y,J (y)). By Proposition 1, w is concave and its superdifferential

is given in (2). The Bellman equation can be written

J (x) = max
y∈Rn

{
V (x, y)− δA(x, y)

}
.

Let x0 ∈ X and let y0 be a maximizing argument in the Bellman equation and that we

assume that exists. Then, by Proposition 4.3 in Aubin (1993), q0 ∈ ∂J (x0) if and only if

(q0, 0) ∈ ∂ (V − δA) (x0, y0). The theorem follows by observing that ∂ (V − δA) (x0, y0) =

∂V (x0, y0) − NA(x0, y0) and substituting the expression for ∂V (x0, y0) from Proposition

1.

1.3. Inada condition

Let {xt+1}∞t=0 be an optimal path starting at x0 ∈ X. We conclude from Theorem 1.2

that for any t ≥ 0

∂J (xt) 6= ∅ if and only if
(
∂W (xt, xt+1,J (xt+1)) 6= ∅ and ∂J (xt+1) 6= ∅

)
. (5)

This means that if the superdifferential of the value function is not empty at xt, then it

is not empty along an optimal path at time t + 1, t + 2, . . . ; also, in this case an optimal

path never visits regions of A where the superdifferential of W is empty. This allows us to
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establish a generalization of one of the Inada conditions for dynamic problems with recursive

utility.

Corollary 1.1. Consider a dynamic optimization problem (X,Γ,W). Assume that the

value function J is concave and finite on X and let x0 ∈ X, y0 ∈ H(x0) such that

∂W (x0, y0,J (y0)) = ∅. Then x0 is at the boundary of X.

Proof. By (5), ∂W (x0, y0,J (y0)) = ∅ implies ∂J (x0) = ∅; since for any concave function

its superdifferential is not empty in the interior of its domain and dom J = X, we conclude

that x0 is a boundary point of X.

Let the dynamic problem (X,Γ,W) be given as follows. The state space is X = Rn+, the

technological correspondence Γ(x) = {y ∈ Rn : 0 ≤ y ≤ f(x)} where f = (f1, . . . , fn) and

each fi is concave and nondecreasing, with domfi = X, and an aggregator W (x, y, z) =

w(f(x) − y, z), where the function w is concave in (c, z) and increasing in the variable z.

Then W is concave by Theorem 1.1.

Let ∂w
∂h denote the directional derivative of w in direction h in the sense of convex

analysis. Also, let c = f(x)− y.

We have the following result.

Corollary 1.2. Consider a dynamic optimization problem (X,Γ,W) as described in Corollary

1.1 above. Assume that the value function J is concave and finite on X and suppose

∂w

∂h
(c0, z) = −∞ (6)

for c0 = (c01, . . . , c
0
n) and all z ∈ R, where c0i = 0 for some i and some direction h. Then for

any x0 > 0, an optimal y0 ∈ H(x0) has i-th component y0i 6= fi(x0).

Proof. Suppose, by way of contradiction, that y0i = fi(x0), i.e. c0i = 0. Condition (6) means

∂w(c0, z) = ∅, thus ∂W (x0, f(x0), z) = ∅ for all z. By Corollary 1.1, x0 is at the boundary

of Rn+, contradicting that x0 > 0.

To illustrate Corollary 1.2, consider the KDW aggregator described in Example 1.1,

where W(x, y, z) = (β/d) ln(1 + a(f(x) − y)b + dz), a, b, d, β > 0, b, β < 1 and with f :

R+ → R+, concave and nondecreasing, and 0 ≤ y ≤ f(x). Note that for this problem

w(c, z) = (β/d) ln(1+acb+dz). It is easy to see that the Inada condition on the production

function f ′(0+) =∞ implies (6). Hence an optimal y0 from x0 > 0 satisfies 0 ≤ y0 < f(x0),

that is, the optimal consumption is positive, c0 > 0.

Now we are in a position to prove theorem 3.1 in the main context.
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Proof. Let x0 ∈ int(X). Then the superdifferential J (x0) is nonempty as described in

Theorem 1.2. Under assumption (D3), the normal cone to A at (x0, y0) with x0 ∈ int(X)

is given by

−NA(x0, y0) =
{

(p1, p2) ∈ R2n : (p1, p2) =
∑

i∈s(x0,y0)

λi(Dxg
i(x0, y0), Dyg

i(x0, y0)),

λi ≥ 0, ∀i ∈ s(x0, y0)
}
.

(7)

Let (xt+1)
∞
t=0 be an optimal path from x0. Then, using (4) and (7), we have that for any

q0 ∈ ∂J (x0), there exist λi ≥ 0 for some i ∈ s(x0, x1), and q1 ∈ ∂J (x1), such that

q0 = DxW(x0, x1,J (x1)) +
∑

i∈s(x0,x1)

λiDxg
i(x0, x1)

−DyW(x0, x1,J (x1)) = DzW(x0, x1,J (x1))q1 +
∑

i∈s(x0,x1)

λiDyg
i(x0, x1).

Following identical steps as in Lemma 5.1 in Rincón-Zapatero and Santos (2009), but with

the obvious adaptations to our case, we get

q0 = DxW(x0, x1,J (x1)) (8)

−Dxgs(x0, x1)
>Dyg

+
s (x0, x1) {DyW(x0, x1,J (x1)) +DzW(x0, x1,J (x1))q1} .

For t = 1, 2, . . ., we define the following condensed notations:

βt =

t∏
i=1

DzW(xi−1, xi,J (xi))

Gt =
t∏
i=1

G(xi−1, xi)

By simple iterations of (8) from t = 1 to t = T > 1, it follows that q0 ∈ ∂J (x0) if and only

if there exists qT ∈ ∂J (xT ) such that

q0 =
T−1∑
t=0

βtGt{DxW(xt, xt+1,J (xt+1)) +G(xt, xt+1)DyW(xt, xt+1,J (xt+1))}+ βTGT qT .
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