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Summary:
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stochastic, a powerful tool for solving infinite horizon optimization problems; 2) analyze in detail the
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in the analysis of stability of discrete dynamical systems coming from Euler Equations.
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1 Deterministic Stationary Discounted Dynamic Programming

1.1 Motivation. Ramsey growth model

This section presents an schematic presentation of this classical model.

Setup

• Production Function

Yt = F (Kt, Nt), F : R2
+ −→ R+,


Y output
K capital
N labor

• Feasibility constraints
Ct + It ≤ Yt,

It = Kt+1 − (1− δ)Kt,
Ct,Kt, Nt ≥ 0

,


C consumption
I investment
δ depreciation rate, 0 ≤ δ ≤ 1

• Preferences

S(C0, C1, . . .) =
∞∑
t=0

βtu(Ct), u : R+ −→ R, S : R∞+ −→ R, 0 < β < 1discount rate

• Per capita variables

y = Y/N , k = K/N , c = C/N

Assume that F is homogeneous of degree one, hence yt = F (kt, 1) = f̃(kt) for some function f .

From the feasibility constraints we get ct + Nt+1

Nt
kt+1 − (1− δ)kt ≤ f̃(kt).

Preferences are given by S(c0, c1, . . .) =
∑∞

t=0 β
tu(ctNt).

Assume that Nt+1/Nt = n and that u(c) = cθ/θ. Then

S(c0, c1, . . .) =

∞∑
t=0

βtu(ctNt) = N θ
0

∞∑
t=0

(nθβ)t
cθt
θ

Planners’ Problem

• Normalize

Nt = 1 (leisure has no value)

• PP in per capita form

Given k0 > 0 and denoting f(kt) = f̃(kt) + (1− δ)kt

v(k0) = max
{ct}∞0 ,{kt+1}∞0

{ ∞∑
t=0

βtu(ct) : ct + kt+1 ≤ f(kt), ct, kt ≥ 0

}

The timing is as follows: ct is chosen at the end of period t + 1; the remaining capital, kt+1,
produces output f(kt+1) at the end of period t+ 2 and then ct+1 is chosen, and so on
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• Reduced form

Assume ct + kt+1 = f(kt) for all t ≥ 1

v(k0) = max

{ ∞∑
t=0

βtU(kt, kt+1) : 0 ≤ kt+1 ≤ f(kt), t ≥ 0

}
,

where U(kt, kt+1) = u(f(kt)− kt+1).

• Finite horizon

v(T, k0) = max

{
T∑
t=0

βtU(kt, kt+1) : 0 ≤ kt+1 ≤ f(kt), 0 ≤ t ≤ T

}

This is a finite dimensional programming problem, that can be handled with Kuhn-Tucker
multipliers. In fact, it is a parametric optimization problem of the type we have studied in Math
II (see the notes of the course)

• Two-period problem (we eliminate T from the notation)

v(k0) = max
(k1,k2)∈G(k0)

W (k0, k1, k2)

where W : R2
+ −→ R is W (k0, k1, k2) = U(k0, k1) + βU(k1, k2) and G : R+ ⇒ R2

+ is

G(k0) = {(k1, k2) ∈ R2
+ : k1 ≤ f(k0), k2 ≤ f(k1)}

Assuming continuity of both u and f the Maximum Theorem applies, thus a solution exists, v
is continuous and the optimal correspondence G∗ has compact values and is uhc. If both U and
f are concave, then v is concave and G∗ has convex values. Moreover, if W is strictly concave,
then the solution is unique and G∗(k0) = (k∗1(k0), k∗2(k0)) is a continuous function

• How to solve it? Two methods

Kuhn-Tucker multipliers: Consider the Lagrangian of the problem

L(k0; k1, k2, λ1, λ2) = U(k0, k1) + βU(k1, k2) + λ1(f(k0)− k1) + λ2(f(k2)− k1).
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Assuming smoothness, at the optimum we have that for t = 1, 2{
ktL
′
kt

= 0, kt ≥ 0, L′kt ≤ 0

λtL
′
λt

= 0, λt ≥ 0, L′λt ≥ 0.

The usual procedure is to solve the system with equalities and then to check whether the solutions
satisfy the set of inequalities. Under suitable convexity, K-T are sufficient for optimality.

Dynamic Programming: Find the optimal solution of the last stage of the problem, and then
use backward induction to reach the beginning of the problem This requires to separate present
and future utilities, what is possible due to . . .

The Principle of Optimality: an optimal policy is such that whatever the initial capital and
initial consumption decision are, the remaining decisions must constitute an optimal policy with
regard to the capital resulting from the first decision.

Richard Bellman (1920-1984)

Let vn(k) be the maximum total utility when it remains n periods to the end and capital is k

In the two period problem

v1(k1) = max
0≤k2≤f(k1)

U(k1, k2) = max
0≤k2≤f(k1)

u(f(k1)− k2)

v2(k0) = max
0≤k1≤f(k0)

{U(k0, k1) + βv1(k1)}

= max
0≤k1≤f(k0)

{u(f(k0)− k1) + βv1(k1)}

Note that v2(k0) is v(k0)

In general, for a problem of T periods we get the Bellman equation

vn(k) = max
0≤k′≤f(k)

{u(f(k)− k′) + βvn−1(k′)}, n = 1, 2, . . . , T

v0(k) = 0

Let
yn(k) ∈ argmax0≤k′≤f(k){u(f(k)− k′) + βvn−1(k′)}

An optimal policy is k∗t+1(k) = yT−t(k), t = 0, 1, . . . , T − 1

The associated consumption policies are

c∗t (k) = f(k∗t (k))− k∗t+1(k)
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Example 1.1. u(c) =
√
c, f(k) = Ak, k0 > 0

v1(k) = max
0≤k′≤Ak

√
Ak − k′ =

√
Ak ⇒ k∗2(k) = 0, c∗1(k) = Ak

v2(k) = max
0≤k′≤Ak

{
√
Ak − k′ + β

√
Ak′} ⇒ k∗1(k) =

A

1 + β2
k

c∗0(k) =
Aβ2

1 + β2
k

The consumption sequence is c∗0 = Aβ2

1+β2k0, c∗1 = A2

1+β2k0

The capital sequence is k0, k∗1 = A
1+β2k0, k∗2 = 0

Example 1.2. The introduction of a bequest function may complicate the problem.

u(c) =
√
c, f(k) = Ak, k0 > 0, bequest function b(T, k) = B ln k

The problem becomes max(c0,c1) u(c0) + βu(c1) + β2b(2, k2)

Now v0(k) = B ln k. Symmetry is broken: the problem is hard to solve

v1(k) = max
0≤k′≤Ak

√
Ak − k′ + βv0(k′)

=

√
Ak − 2B2(

√
1 +Ak − 1) + βB ln (2B2

√
1 +Ak − 1)

k∗2(k) = 2B2(
√

1 +Ak − 1)

v2(k) = max
0≤k′≤Ak

{
√
Ak − k′ + βv1(k′)} =?

k∗1(k) =?

• Infinite Horizon

Recall:

vn(k) = max
0≤k′≤f(k)

{u(f(k)− k′) + βvn−1(k′)}, n = 1, 2, . . . , T

v0(k) = 0

When T =∞ there is no a last time period to start backward induction.
Intuitively, the value function satisfies (this will be proved throughout the course)

v(k) = max
0≤k′≤f(k)

{u(f(k)− k′) + βv(k′)}

How do we start computations?

Answer: Set this functional equation as a fixed point problem defined on a suitable set of
functions and suitable metric so that Banach’s contraction mapping theorem is applicable.
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1.2 General development

The general setup is as follows.

1. t denotes time and it is supposed to be discrete, t = 0, 1, 2, . . ..

2. X, the set of possible states, is a subset of the Euclidean space Rm.

3. D : X ⇒ A ⊆ Rp, a correspondence that associates with state x a nonempty set D(x) of feasible
decisions a ∈ D(x). We denote A =

⋃
x∈X D(x).

4. q : X × A −→ X, the law of motion. Given x ∈ X and a ∈ D(x) (we say that the pair (x, a)
is admissible), y = q(x, a) is the next state of the system. More generally, we could consider
q : X × A ⇒ X being a correspondence and y ∈ q(x, a). In stochastic problems q will be a
conditional probability of reaching state y from state x if the action is a.

5. U : X × A −→ R, the one-period return function. For (x, a) admissible, U(x, a) is the current
return, utility or income if the current state is x and the current action taken is a.

6. β, the discount factor, 0 < β < 1.

A Markov policy or decision rule is a sequence π = {πt, t = 0, 1, . . .} such that πt(x) ∈ D(x) for all t
and for all x ∈ X. Let Π the set of Markov policies. A policy is stationary if there exists φ such that
πt = φ for all t.

Given x0 ∈ X we can associate with any policy the value

I(x0, π) =

∞∑
t=0

βtU(xt, πt),

where xt+1 = q(xt, πt), t = 0, 1, . . .. The sequence {xt}∞t=0 such that xt+1 = q(xt, at) for some
at ∈ D(xt) will we called an admissible path from x0 associated to policy π. The set of such paths are
denoted Xπ(x0).

The problem is then to find a policy π ∈ Π such that for any x0 ∈ X, I(x0, π) ≥ I(x0, π
′) for every

π′ ∈ Π. We shall say that such π is an optimal policy. It is possible to show in this framework that
it suffices to look for stationary policies, thus we reduce our exposition to this type. However, if the
time period is finite, then usually the optimal policy depends on time.

The value function v : X −→ R is defined as

v(x0) = sup
π∈Π

I(x0, π).

We want to establish sufficient conditions such that this problem is well defined and to develop methods
of resolution.

Example 1.3 (Ramsey Growth Model). We have already seen this model. Here, X = R+ is the state
space (capital, k), A = R+ is the action space (consumption, c) and D(k) = [0, f(k)]. The law of
motion is q(k, c) = f(k)− c and the utility function is U(k, c) = u(c).

Example 1.4 (Capacity expansion). A monopolist has the following production technology. Given
current capacity, Q, he can produce any amount of output, q, up to Q units at zero cost, but he cannot
produce more than Q in the current period. Capacity can be increased over time but cannot be sold.
Any nonnegative amount a of capacity can be added in any period at cost c(a) = a2, but the new
capacity cannot be used until the next period. The monopolist faces the same demand for his product
each period given by q = 1− p, where p is the price of output. The monopolist seeks to maximize the
present value over an infinite horizon of the flow of profits.
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In this problem, the state space X = R+ is total capacity Q, the action space A = R2
+ is formed

by pairs (output, capacity), (q, a). The constraints are 0 ≤ q ≤ Q, thus D(Q) = [0, Q]× R+, and the
the law of motion is q(Q, q, a) = Q + a (not to be confused with output!), thus Qt+1 = Qt + at for
t = 0, 1, . . .. The reward function is

U(Q, q, a) = pq − a2 = q(1− q)− a2.

An example of Markov policy π is (xt, at) = (Q/2, 2−t), which is non stationary. Another one is
(xt, at) = (

√
Q,Q/2), which is stationary. Actually, the second example is not quite a policy, since it

is not feasible, as q =
√
Q � Q for 0 < Q < 1. We will find the optimal policy with the tools developed

below.

1.3 Bellman equation

The following two conditions will be in force.

• For all x ∈ X, D(x) 6= ∅.

• For all x ∈ X, v(x) is finite-valued.

Lemma 1.5. For any π ∈ Π
I(x0, π) = U(x0, π0) + βI(x1, π

1),

where x1 = q(x0, π0) and π1 = (π1, . . .) is the continuation of policy π to period 1.

Proof. The result is evident from the identities.

I(x0, π) = U(x0, π0) +

∞∑
t=1

βtU(xt, πt),

βI(x1, π
1) = β

∞∑
t=0

βtU(xt+1, πt+1) =
∞∑
t=1

βtU(xt, πt).

The following result is fundamental.

Theorem 1.6 (Bellman equation). The value function satisfies for any x ∈ X

v(x) = sup
y=q(x,a)
a∈D(x)

{U(x, a) + βv(y)}. (1)

Proof. Let x0 ∈ X arbitrary.

1. For all a ∈ D(x0), v(x0) ≥ U(x0, a) + βv(q(x0, a)).

Let a ∈ D(x0) and let x1 = q(x0, a). Since v is finite valued, given ε > 0 there exists π ∈ Π such
that

I(x1, π) ≥ v(x1)− ε.

Now consider the policy π′ = (a, π), that is, the concatenation of action a with the policy π. By
the definition of the value function we have

v(x0) ≥ I(x0, π
′) = U(x0, a) + βI(x1, π) ≥ U(x0, a) + βv(x1)− βε,

where the equality is due to Lemma 1.5. Taking the supremum in a and letting ε→ 0, we have
finished.
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2. For all ε > 0 there exists a0 ∈ D(x0) such that v(x0) < U(x0, a0) + βv(q(x0, a0)) + ε.

Since v is finite valued, given ε > 0 there exists π ∈ Π such that

v(x0) < I(x0, π) + ε = U(x0, a0) + βI(x1, π
1) + ε ≤ U(x0, a0) + βv(x1) + ε,

where the equality is by Lemma 1.5 and π1 is the continuation of policy π to period 1.

Hence, by 1 and 2 above, we have

U(x0, a0) + βv(q(x0, a0) ≤ sup
a∈D(x0)

{U(x0, a) + βv(q(x0, a))}

≤ v(x0) (by 1)

< U(x0, a0) + βv(q(x0, a0)) + ε (by 2).

Letting ε→ 0 we get the Bellman equation.

Example 1.7.
Bellman equation of the Ramsey model:

v(k) = sup
c∈[0,f(k)]

{u(c) + βv(f(k)− c)} ≡ sup
k′∈[0,f(k)]

{
u(f(k)− k′) + βv(k′)

}
. (2)

Bellman equation of the Capacity Expansion model:

v(Q) = sup
0≤q≤Q,a≥0

{q(1− q) + βv(Q+ a)} ≡ sup
0≤q≤Q,Q′≥Q

{
q(1− q) + βv(Q′)

}
. (3)

1.4 Finite horizon

Assume a finite horizon. That is, the problem ends at a fixed time T . The main change with respect
to the formulation for T = ∞ is in the definitions of function S, since now it is important to know
the periods that remain to the end, so that we define the value associated to π (of course, now π has
only T components)

In(x0, π) =
T∑

t=T−n
βt−T+nU(xt, at) + βn+1B(xT+1).

In the last summand we have considered a bequest function B that takes into account the final state
xT+1. Utilities are properly discounted to time t = T − n. Let vn(x0) be the maximal utility that
can be reached from state x0 when it remains n periods to the end. Obviously, for any x ∈ X,
v0(x) = supa∈D(x)B(q(x, a)). Thanks to the Principle of Optimality we have

Theorem 1.8 (Bellman equation, finite horizon). For any x ∈ X

v0(x) = sup
a∈D(x)

B(q(x, a)). (4)

and n = 1, 2, . . . , T the following recursion

vn(x) = sup
a∈D(x)

{U(x, a) + βvn−1(q(x, a))} , (5)

holds.

9



Example 1.9 (A Consumption-Savings problem with altruistic motives). Consider someone with
initial capital x0 and let x1, x2, . . . be the levels of capital at the times 1, 2, . . .. At time t she decide
to spends and amount ct within the range 0 ≤ ct ≤ xt (hence, she cannot borrow) and the rest of
the money is invested until time t + 1 at an interest r, so the interest factor is R = 1 + r. She
receives constant income I ≥ 0 each period. The preferences of the consumer are given by u(c0) +
· · ·+ βTu(cT ) + βT+1B(xt+1). The term B(xt+1) can be interpreted as the consumer having altruistic
sentiments with respect to her descendants.

In this problem
v0(x) = B(R(I + x− c))

and for n = 1, 2, . . . , T
vn(x) = sup

y=R(I+x−c)
c∈[0,x]

{U(c) + βvn−1(y)} , .

Example 1.10 (Gambling). In each play of a game, a gambler can bet any non-negative amount up
to his current fortune and he will either win or lose that amount with probabilities p and q = 1 − p,
respectively. He is allowed to make T bets in succession, and his objective is to maximize the expectation
of the utility B of the final fortune (no discount is involved here). Suppose that utility is increasing in
wealth.

Although the problem involves probabilities, it is not difficult to extend our framework to cover this
example. Let vn(x) the expected maximal utility when the current fortune is x and remains n periods
to the end. Denoting a the amount bet, we must have 0 ≤ a < x and the next state or fortune is either
x+ a with probability p, or x− a with probability q. Hence, the Bellman recursion takes the form

v0(x) = B(x)

and for n ≥ 1,
vn(x) = sup

0≤a<x
{pvn−1(x+ a) + qvn−1(x− a)} .

1.5 The value function and the optimal policy from the Bellman equation

Why is useful the Bellman equation? Because, under mild conditions, it characterizes the value
function (Theorem 1.12 below) and provides a method to find the optimal policy (Theorem 1.13
below).

Define an operator B defined over a suitable class of functions f : X −→ R. For the moment we
do not worry about the properties of f . The operator is defined as

(Bf)(x) = sup
y=q(x,a)
a∈D(x)

{U(x, a) + βf(y)}, (6)

and hope that the function Bf is in the same class as f . The operator B has a nice interpretation:
(Bf)(x) is the value starting from state x of choosing an optimal action today given that the process
terminates tomorrow with the receipt of f(y), as a function of tomorrow’s state, y. Observe that
“optimal” has into account the influence of a on y.

Obviously, by Theorem 1.6 the value function is a fixed point of B. What we want to explore now
is the reverse implication: Is a fixed point of B the value function of the problem?

Example 1.11 (Multiple fixed points). Let X = A = R+, D(x) = [0, 2x], q(x, a) = 2x− a, U(x, a) =
−a and 1/2 < β < 1. The Bellman equation is

v(x) = sup
a∈[0,2x]

{−a+ βv(2x− a)} .
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It is easy to check that both f1(x) = 0 and f2(x) = −2x are solutions. Which one, if any, is the value
function?

Theorem 1.12. Let f be a fixed point of B that satisfies

lim
t→∞

βtf(xt) = 0

for all paths {xt}∞t=0 with xt+1 = q(xt, at), at ∈ D(xt). Then f is the value function of the problem.

Proof. Let x0 ∈ X and let any π ∈ Π. Then

f(x0) ≥ U(x0, a0) + βf(x1)

≥ U(x0, a0) + βU(x1, a1) + β2f(x2)

...

≥
T∑
t=0

βtU(xt, at) + βT+1f(xT+1).

Taking limits as T →∞ we have f(x0) ≥
∑∞

t=0 β
tU(xt, at) = S(x0, π). Then, f(x0) ≥ v(x0).

On the other hand, for any xt and ε > 0, there exists at ∈ D(xt) such that

f(xt) < U(xt, at) + βf(xt+1) + ε2−t

thus,

f(x0) <

T∑
t=0

βtU(xt, at) + βT+1f(xT+1) + ε
T∑
t=0

2−t.

Taking limits as T →∞ we have

f(x0) <
∞∑
t=0

βtU(xt, at) + 2ε,

thus f(x0) ≤
∑∞

t=0 β
tU(xt, at) ≤ v(x0).

In Example 1.11, f1 is the value function. Observe that {xt}∞t=0 defined as xt = 2t−1x0 is an
admissible path from x0 and

lim
t→∞

βtf2(2t−1x0) = −x0 lim
t→∞

βt2t =∞ ∀x0 > 0,

since β > 1/2.

Theorem 1.13. Assume that a∗t solves supat∈D(xt) {U(xt, at) + βv(q(xt, at))} and that

lim sup
t→∞

βtv(x∗t ) ≤ 0,

where x∗t+1 = q(x∗t , a
∗
t ), x0 given. Then, π∗ = (a∗0, . . . , a

∗
t , . . .) is an optimal policy.

Proof. Note that v(x∗t ) = U(x∗t , a
∗
t ) + βv(x∗t+1) for all t = 0, 1, . . ., hence for all T ≥ 1

v(x0) =

T∑
t=0

βtU(x∗t , a
∗
t ) + βT+1v(x∗T+1).

Letting T →∞ we have

v(x0) ≤
∞∑
t=0

βtU(x∗t , a
∗
t ) = S(x0, π

∗),

hence v(x0) = S(x0, π
∗) and π∗ is optimal.
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To use the theorem we need to know the value function, which is not known in advance since it is
characterized by the functional equation at the same time that the optimal policy. This problem does
not appear in the finite horizon case, as the computation starts from the known value function v0 and
proceeds recursively. One method for solving the infinite horizon problem is to “guess” a functional
form for the value function, then substituting it into de Bellman equation forcing to be a solution,
and deriving after the optimal choice variable with Theorem 1.13. Of course, this method is of limited
applicability, although it is really nice when it works at it gives the complete solution of the problem.
Let us illustrate the method with an example.

Example 1.14 (Ramsey Growth Model). Consider in the Ramsey Model full depreciation, δ = 1,
production function f̃(k) = Akα, with A > 0 and 0 < α < 1 and utility u(c) = ln c. The Bellman
equation written in terms of capital (reduced form) is

v(k) = sup
k′∈[0,Akα]

{
ln (Akα − k′) + βv(k′)

}
.

• Guess that f(k) = a ln k + b for suitable constants a > 0 and b is a solution.

• Substitute into the Bellman equation

a ln k + b = sup
k′∈[0,Akα]

{
ln (Akα − k′) + β(a ln k′ + b)

}
• Perform the maximization operation. To this end, note that in this example the maximizer, if

exists, must be interior, thus

∂

∂k′
{·} = 0 = − 1

Akα − k′
+ β

a

k′
.

Solving we get k′ = φ(k) = βaA
1+βak

α. As the function inside brackets in the Bellman equation is

concave, k′ is a truly maximizer.

• Plug the maximizer into the functional equation to determine the unknown parameters.

a ln k + b = ln (Akα − φ(k)) + β(a lnφ(k) + b)

= ln

(
a

1 + βa
kα
)

+ βb+ βa ln

(
βaA

1 + βa
kα
)
.

Thus,

a =
α

1− βα
,

b = ln

(
A

1 + βa

)
+ βb+ βa ln

(
βaA

1 + βa

)
,

that represent an admissible solution since αβ < 1. Note that substituting a into k′ = φ(k) we
get

kt+1 = αβAkαt . (7)

• Check that both the solution found and the maximizer fulfill Theorem 1.12 and 1.13, respectively.

Note that the value function is increasing in capital, and that the maximal growth rate of the
capital path is α. Thus, it suffices to check that the hypothesis of the theorem holds for the path
given by kt+1 = αβAkαt , with k0 given. We have

k1 = αβAkα0 , k2 = αβAkα1 = (αβA)1+αkα
2

0 , . . .

12



and in general,

kt = (αβA)1+α+···+αt−1
kα

t

0 → (αβA)(1−α)−1
as t→∞.

Hence, for any path {kt}∞t=0

lim
t→∞

βtf(kt) = lim
t→∞

βt(a ln kt + b) = lim
t→∞

βt(a(1− α)−1 ln (αβA) + b) = 0.

Thus, f = v.

We conclude that the optimal policy function is

φ(k) = αβAkα.

Notice that φ(k) is the capital for the next period that characterizes the optimal consumption, c(k) =
Akα−φ(k). Given the initial k0, these functions generate sequences of optimal capital and consumption
k∗t+1 = φ(k∗t ), c

∗
t = c(k∗t ), respectively.

1.6 Reduced form models

When the dimension of the action space is the same as the dimension of the state space and for
any fixed x the mapping x′ = q(x, a) is a bijection, then it is possible to write the problem in an
equivalent form. This consists in eliminating the decision variable and formulating the problem in
terms of today’s and tomorrow’s states only. Let the correspondence Γ : X ⇒ X given by

Γ(x) = {q(x, a) : a ∈ D(x)},

that gives the set of possible tomorrow’s states if the today’s state is x. Suppose that from x′ = q(x, a)
it is possible to solve for a = ξ(x, x′). Then, the Bellman equation becomes

v(x) = sup
x′∈Γ(x)

{
W (x, x′) + βv(x′)

}
,

where W (x, x′) = U(x, ξ(x, x′)). Thus, now the problem reduces to find the optimal next state of the
system and the optimal action is implicit in the formulation. Reduced form models are less general
than the model we are working with, thus all the results developed so far are obviously valid for
reduced form models. The advantage of using this formulation is that cleaner results are obtained.
Moreover most interesting economic models can be written in reduced form easily.

Note that now an optimal policy means an optimal path, since the decisions variables have been
hidden in the formulation. Nevertheless, they can be found easily using a = ξ(x, x′).

1.7 Euler Equations

We say that a policy π ∈ Π is interior if it prescribes at any t an action at such that there exists δt > 0
such that both B(at, δt) ⊆ D(xt) and B(xt+1, δt) ⊆ Γ(xt) for all t.

It happens that for interior optimal policies and smooth data is is possible to give first order
conditions of optimality independent of the value function. In the result below, Ua (resp. Ux) is the
gradient of U with respect to the decision variables a (resp. state variables x), and qa (resp. qx) is
the Jacobian matrix of q with respect to a (resp. x). The symbol > means transpose.

Theorem 1.15 (Euler Equations). Suppose that both U and q. If π is an interior optimal policy then
there exists {λt}∞t=0, such that for all t = 0, 1, . . .

0 = Ua(xt, at) + q>a (xt, at)λt, (8)

λt = βUx(xt+1, at+1) + βq>x (xt+1, at+1)λt+1, (9)

where {xt}∞t=1 ∈ Xπ(x0).
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Remark 1.16. When the action space and the state space have the same dimension and det(qa) 6= 0
it is possible to eliminate λt, λt+1 from the formulation to get

0 = βUx(xt+1, at+1) + q−>a (xt, at)Ua(xt, at)− βq>x (xt+1, at+1)q−>a (xt+1, at+1)Ua(xt+1, at+1). (10)

Proof. Given xt, consider a slight variation of at, ãt, the associated x̃t+1 = q(xt, ãt) and an action
ãt+1 ∈ D(x̃t+1) such that xt+2 = q(x̃t+1, ãt+1). That is, after changing the optimal at, we return to
the original optimal path in step t + 2. This is possible since the optimal policy is interior and the
deviation is small enough.

xt -
at xt+1 -

at+1 xt+2

H
HHH

HHj

ãt

x̃t+1�
��

��
�*ãt+1

Since the remainder terms in the sum defining I(x0, π) are the same, we center on the effect of the
deviation in the summands t and t+ 1. An optimal policy must be such that it maximizes (Principle
of Optimality)

βtU(xt, at) + βt+1U(xt+1, at+1)

subject to xt+1 = q(xt, at) and xt+2 = q(xt+1, at+1). Thus, we write the necessary conditions of
optimality for this finite dimensional problem with the Lagrangian

L(at, xt+1, λt, λt+1) = U(xt, at) + βU(xt+1, at+1) + λ>t (q(xt, at)− xt+1) + βλ>t+1(q(xt+1, at+1)− xt+2).

The first order conditions give

Lat = 0 = Ua(t) + q>a (t)λt,

Lxt+1 = 0 = βUx(t+ 1)− λt + βq>x (t+ 1)λt+1,

where we have simplified notation.

Example 1.17 (Production with labor choice). Recall this model studied in the Problems, where we
found the Euler Equations using the Envelope Theorem of Benveniste and Scheinkman. Let us find
now the EE using the result above. Equation (8) is(

uc(t)
u`(t)

)
+ λt

(
−1
f`(t)

)
=

(
0
0

)
or uc(t)f`(t) = −u`(t) and (9) is

λt = βfk(t+ 1)λt+1

or uc(t) = βfk(t+ 1)uc(t+ 1), that coincide of course, with those found with the Envelope Theorem.

Recall the definition given in Section 2.6 of a problem formulated in reduced form.

Corollary 1.18 (Euler Equations. Reduced form models). Suppose a reduced form model. Assume
that W is differentiable and let {xt}∞t=0 be an optimal policy (or path) such that xt+1 is interior to
Γ(xt) for all t = 0, 1, . . .. Then

Wy(xt, xt+1) + βWx(xt+1, xt+2) = 0, t = 0, 1, . . . . (11)
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Proof. Since the model is in reduced form, there exists ξ such that at = ξ(xt, xt+1). Consider the
equality q(xt, ξ(xt, xt+1)) = xt+1 and derive with respect to xt and with respect to xt+1 to get

qaξy = I,

qx + qaξx = 0,

so that ξy = q−1
a and ξx = −q−1

a qx. Now, from the definition of W we have

Wx = Ux + ξ>x Ua = Ux − q>x q−>a Ua,

Wy = ξ>y Ua = q−>a Ua.

Adding and using our shorthand notation above we get

Wy(xt, xt+1) + βWx(xt+1, xt+2) = q−>a Ua(t) + βUx(t+ 1)− βq>x q−>a Ua(t+ 1),

which is null by (10).

Note that (11) is a second order system of difference equations. Thus, to get the full optimal path
we need two initial conditions, at t = 0 and at t = 1. However, only x0 is known in advance; x1

has to be determined in the optimization process. It happens that a boundary condition at infinite
substitute the initial unknown value x1. It is called the transversality condition, and in general it is
only a sufficient condition for optimality.

We establish the sufficient condition of optimality for interior paths only for reduced form models.
Recall that xt+1 ∈ Γ(xt) subsumes now the two conditions xt+1 = q(xt, at), at ∈ D(xt), where Γ is an
appropriated correspondence. Let us denote X(x0) the set of admissible path from x0 in a reduced
form model, and let S(x0, {xt}∞t=1) =

∑∞
t=0 β

tW (xt, xt+1).

Theorem 1.19 (Sufficient conditions for optimality. Reduced form models). Suppose that X is convex
and that Γ has a convex graph. Suppose also that W is concave and differentiable in the interior of
Ω. If for x0 ∈ X, {x∗t }∞t=1 is an interior path satisfying (11) and the transversality condition

lim
t→∞

βtWy(x
∗
t , x
∗
t+1)(xt+1 − x∗t+1) ≤ 0, (12)

for every other admissible path {xt}∞t=0 ∈ X(x0), then {x∗t }∞t=1 is optimal.

Proof. For any {xt} ∈ X(x0) consider the difference D = S(x0, {xt}) − S(x, {x∗t }), which is well
defined. Because W is concave and differentiable, we have

D = lim
T→∞

T∑
t=0

βt(W (xt, xt+1)−W (x∗t , x
∗
t+1))

≤ lim
T→∞

T∑
t=0

βt
(
Wx(x∗t , x

∗
t+1)(xt − x∗t ) +Wy(x

∗
t , x
∗
t+1)(xt+1 − x∗t+1)

)
≡ lim

T→∞
DT .

But rearranging terms, taking into account that x∗0 = x0, we note that

DT =

T−1∑
t=0

βt
(
Wy(x

∗
t , x
∗
t+1) + βWx(x∗t+1, x

∗
t+2)

)
(xt+1 − x∗t+1) + βTWy(x

∗
T , x

∗
T+1)(xT+1 − x∗T+1).

If (11) and (12) hold, then

D = lim
T→∞

DT = lim
T→∞

βTWy(x
∗
T , x

∗
T+1)(xT+1 − x∗T+1) ≤ 0,

hence {x∗t }∞t=0 is an optimal path.
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Remark 1.20. Note that (12) can be also written as

lim
t→∞

βtWx(x∗t+1, x
∗
t+2)(x∗t+1 − xt+1) ≤ 0,

for a path that satisfies (11). In many economic models, one of the cases being the Ramsey growth
model, W is increasing with respect to the variables x and the state space is X = Rm+ . Then

D = lim
t→∞

βtWx(x∗t+1, x
∗
t+2)(x∗t+1 − xt+1) ≤ lim

t→∞
βtWx(x∗t+1, x

∗
t+2)x∗t+1,

and so with these assumptions the transversality condition can be expressed as

lim
t→∞

βtWx(x∗t , x
∗
t+1)x∗t = 0, (13)

the advantage been that the limit concerns only the path {x∗t }.

Example 1.21 (Ramsey Model). Using the reduced form of the Ramsey Model in (2) we get W (k, k′) =
u(f(k)− k′), thus Wk = u′(c)f ′(k) and Wk′ = −u′(c). Hence the EE is

−u′(f(kt)− kt+1) + βu′(f(kt+1)− kt+2)f ′(kt+1) = 0, t = 0, 1, 2, . . . (14)

k0 > 0 given.
For instance, suppose that u(c) = ln c, f(k) = Akα. Then the EE is

−1

Akαt − kt+1
+ β

αAkα−1
t+1

Akαt+1 − kt+2
= 0,

which is a non-linear difference equation of second order, with only one initial condition.
It is easy to check that the solution (7) found in Example 1.14 satisfies the Euler Equation. To

show this, substitute kt+1 and kt+2 = (αβA)1+αkα
2

t into the Euler Equation above to get

−1

A��k
α
t − αβA��k

α
t

+ β
αA(αβA)α−1

��
��

kα
2−α

t

A(αβA)α
�
�kα
2

t − (αβA)1+α
�
�kα
2

t

=
−1

A(1− αβ)
+ β

αA���
��(αβA)α−1

A(αβA)�α −���
���:

(αβA)2

(αβA)1+α

=
−1

A(1− αβ)
+ ��β

��αA

��αA��βA(1− αβ)
= 0

Finally, let us check that the transversality condition (13) holds for this model. We have

βtWx(kt, kt+1)kt = βt
αAkα−1

t

Akαt − kt+1
kt = βt

αAkα−1
t

Akαt − αβAkt
kt = βt

α

1− αβ
→ 0 as t→∞.

1.8 Steady States

Suppose that in a problem we have found a policy function a = φ(x) so that we can compute the
successive optimal states

xt+1 = h(xt) ≡ q(xt, φ(xt)), x0 given.

This is a first order system of differences equations giving the optimal dynamics of the state variable, so
it is very important to study its properties, specially its long–run behavior and asymptotic properties.
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We shall say that x0 ∈ X is an optimal equilibrium point, stationary point or steady state of the
system is x0 is a fixed point of h, h(x0) = x0. Assuming h is continuous, fixed points of g are the only
possible limits of sequences {xt}∞t=0 generated with h:

x0 = lim
t→∞

xt+1 = lim
t→∞

h(xt) = h( lim
t→∞

xt) = h(x0).

This motivates the definition. One problem with this approach is that in general the function h is
not known in advance. However, we know that interior solutions to the optimization problem satisfy
Euler Equations. Center on the reduced models case, this means

0 = Wy(xt, xt+1) + βWx(xt+1, xt+2), t = 0, 1, . . . .

Hence if x0 is interior to Γ(x0), a necessary condition for x0 to be a stationary point is

0 = Wy(x
0, x0) + βWx(x0, x0).

If W is concave, this condition is also sufficient, that is, x0 ∈ Γ∗(x0), where Γ∗(x) denotes the optimal
choice correspondence at x. In general, points x0 satisfying the Euler Equations will be called steady
states, without the word “optimal”.

Example 1.22 (The Ramsey growth model). In the Ramsey model the steady states are solutions of
the equation:

0 = −u′(f(k)− k) + βu′(f(k)− k)f ′(k)

or u′(f(k)− k)(−1 + βf ′(k)) = 0. Since we are assuming u′ > 0, the interior steady states are points
k0 > 0 satisfying f ′(k0) = 1/β. Obviously this equation has only one solution if f is strictly concave.
Notice that other, noninterior steady states could exist, and in fact the optimal policy in the Ramsey
model has 0 as steady state, since Γ(0) = {0}. Thus, in principle, we could have either kt → k0,
kt → 0 or none of the above, as t→∞. We will see that under suitable conditions on the production
function, the sequence converges to k0.

1.9 Existence and uniqueness of a fixed point for the Bellman operator

We will prove here that the Bellman operator

(Bf)(x) = sup
y=q(x,a)
a∈D(x)

{U(x, a) + βf(y)},

is a contraction mapping on the metric space of bounded functions if the one step reward function
is itself bounded. Let B(X) be the space of bounded functions with the supremum norm, ‖f‖ =
supx∈X |f(x)|. We know that B(X) is a complete metric space.

Theorem 1.23 (Blackwell (1965)). Let T : B(X) −→ B(X) be an operator satisfying

1. f ≤ g ⇒ Tf ≤ Tg (T is monotonous);

2. For some 0 < β < 1, T (f + c) ≤ Tf + βc, where c is any constant function (T discounts).

Then, T is a contraction on B(X) of modulus β.

Proof. Given f, g ∈ B(X), note that

f ≤ g + ‖f − g‖, g ≤ f + ‖f − g‖.

By monotonicity and discounting

Tf ≤ T (g + ‖f − g‖) ≤ Tg + β‖f − g‖, T g ≤ T (f + ‖f − g‖) ≤ Tf + β‖f − g‖.
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Hence
Tf − Tg ≤ β‖f − g‖, −(Tf − Tg) ≤ β‖f − g‖,

that is, for any x ∈ X
|Tf(x)− Tg(x)| ≤ β‖f − g‖.

Taking the supremum in X we get

‖Tf − Tg‖ ≤ β‖f − g‖.

Let us define the function ψ : X −→ X

ψ(x) = sup
a∈D(x)

U(x, a).

Theorem 1.24. Suppose that ψ ∈ B(X). Then the Bellman operator is a contraction on B(X).

Proof. It is clear that B is monotonous because it is defined as a supremum. Discounting is also easily
checked, as in fact B(f + c) = Bf + βc.

Let us show that B : B(X) −→ B(X). Let f ∈ B(X). By monotonicity we have

B(−‖f‖) ≤ Bf ≤ B(‖f‖),

hence, using the discount property with c = ±‖f‖ we have

ψ − β‖f‖ ≤ Bf ≤ ψ + β‖f‖.

It is thus clear that
‖Bf‖ ≤ ‖ψ‖+ β‖f‖ <∞,

Thus, from the Theorem of Banach, we conclude that the Bellman equation has a unique bounded
solution, which is clearly the value function of the optimization problem, see Theorem 1.12. It can
be approached by successive iterations of B applied to any initial bounded function f . That is, Bnfv
uniformly as n → ∞. This provides a first approximation method for solving the original problem.
Note, however, that without further assumptions existence of an optimal policy is not guaranteed.

Theorem 1.25. Suppose that ψ is bounded, that both U and q are continuous functions and that
the correspondence D is continuous and compact-valued. Then an optimal stationary Markov policy
exists. If the solution of maxy=q(x,a)

a∈D(x)

{U(x, a) + βv(y)} is unique, it is continuous on X.

Proof. Let f ∈ B(X) be continuous. Then, by the Theorem of the Maximum, Bf is continuous.
Since Cb(X) ⊆ B(X) is closed, the fixed point of B belongs to Cb(X), that is, the value function v
is continuous. It follows that we can change sup by max in the definition of the Bellman operator
and that for any x ∈ X the optimal correspondence D∗(x) is uhc and compact-valued. Selecting
a∗(x) ∈ D∗(x) we can apply Theorem 1.13, thus an optimal policy exists. If the solution is unique, it
is continuous.

Now we establish new properties of the value function and the optimal correspondence for reduced
form models (see Section 2.6). We assume that W is continuous and bounded and that Γ is continuous
and compact-valued.
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Theorem 1.26. Assume that W is concave and that the graph of Γ is convex. Then the unique
bounded solution v of the Bellman equation is concave and the optimal correspondence is convex-
valued. Moreover, if W is strictly concave with respect to y, the unique policy function is continuous.

Proof. Observe that the set of bounded, continuous and concave functions is closed in the supremum
metric, and that under the assumptions, the Bellman operator maps this set into itself (please, consult
the notes of Math II). Then, as the fixed point is v = limn→∞ Bnf for any continuous and bounded
function f , we pick one that is concave, so that the fixed point is also concave.

Theorem 1.27. Assume that for each y, W (·, y) is strictly increasing in each of its first m arguments
and that Γ is monotone in the sense that x ≤ x̃ (componentwise) implies Γ(x) ⊆ Γ(x̃). Then the
unique bounded solution v of the Bellman equation is strictly increasing.

Proof. Observe that the set of bounded, continuous and strictly increasing functions is closed in the
supremum metric, and that under the assumptions, the Bellman operator maps this set into itself.

Example 1.28. [The Ramsey growth model] Recall the problem of optimal growth in a one-good
economy, expressed in reduced form

max
{kt+1}∞t=1

∞∑
t=0

βtW (kt, kt+1)

s.t. 0 ≤ kt+1 ≤ f(kt), t = 0, 1, . . .

given k0 ≥ 0.

, where W (k, k′) = U(f(k) − k′) for some utility function U . Corresponding to this problem we have
the Bellman equation

v(k) = sup
0≤k′≤f(k)

{W (f(k)− k′) + βv(k′)}.

Consider the following assumptions.

• U is continuous.

• f is strictly increasing, continuous and there exists k̂ > 0 such that f(k̂) = k̂, f(k) < k for all
k > k̂ and k ≤ f(k) ≤ k̂ for all 0 ≤ k ≤ k̂. This means that k̂ is the largest capital stock that
can be maintained.

Note that Theorem 1.25 does no apply since U is allowed to unbounded in R+. This is the reason
to impose a maximum sustainable capital condition. As we will prove, there exists a constant M such
that for any k0 ≤ M , the optimal path k∗t ∈ [0,M ] for all t. Thus, we restrict the state space to the
compact interval [0,M ], on which U is bounded as it is continuous.

Let us show our claim. In fact, let M = max(k0, k̂). If k0 ≤ k̂, then for any path {kt+1} we have

0 ≤ k1 ≤ f(k0) ≤ f(k̂) = k̂,

0 ≤ k2 ≤ f(k1) ≤ f(k̂) = k̂,

...

that proves kt ≤ k̂ ≤M for all t. If k0 > k̂, then k1 ≤ f(k0) < k0; if k1 > k̂0, then k2 ≤ f(k1) < k1 <
k0. If k1 ≤ k̂0, then k2 ≤ f(k1) ≤ k̂, and hence for all t ≥ 2, kt ≤ k̂. Thus we have proved that is
k0 > k̂, then kt ≤ max(k0, k̂) = M .

It is easy to check that Theorem 1.25 is now applicable, and thus the Bellman equation admits a
unique solution in X = [0,M ], which is continuous and is in fact the value function of the problem
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for initial k0 ∈ [0,M ]. The optimal policy correspondence is non empty valued, compact valued and
u.h.c. Hence an optimal policy of the sequence problem exists.

Important properties (will be proved in a problem set):

• If f is (strictly) concave, then the graph of Γ is convex, so that if U is (strictly) concave, then v is
(strictly) concave. If U is strictly concave, then the optimal policy h is unique, thus continuous.
Here, kt+1 = h(kt) is next period’s capital stock along the optimal path if this period’s stock is
kt.

• If U is strictly increasing, then v is strictly increasing.

• Assume U is twice continuously differentiable and satisfies U(0) = 0, U ′ > 0, U ′′ < 0 and
the Inada Condition U ′(0+) = ∞. Function f is twice continuously differentiable and satisfies
f(0) = 0. Its derivative satisfy f ′ > 0, f ′′ < 0, limx→∞ f

′(x) < 1.

Then the optimal policy is interior: ∀t, ct > 0, kt > 0, if k0 > 0. Hence the Euler Equation (14)
is satisfied. Moreover, the optimal policy h and the optimal consumption policy φ(k) = f(k)−h(k)
are both monotone increasing. Consequently, {k∗t } defined as k∗t+1 = h(k∗t ), t ≥ 1, k∗0 = k0 is
either a monotone increasing or decreasing sequence.

If f ′(0+) > 1/β, then the unique k0 satisfying f ′(k0) = 1/β is the unique fixed point of h on
(0,M). Moreover, the optimal path {k∗t } converges to the optimal steady state k0. If f ′(0+) ≤
1/β, then the optimal path {k∗t } converges to zero.

To show some of the properties above, it is useful to employ the Envelope Theorem of Benveniste
and Scheinkman, that we now state for a general model in reduced form. Notice that interiority of
the optimal path is a crucial assumption. We say that a point x is interior to a subset X if x ∈ X is
not at the boundary of X, that is, if there exists δ > 0 such that B(x, δ) ⊆ X.

Theorem 1.29 (Envelope Theorem). Let a reduced form model and let x0 an interior point of X.
Suppose that the optimal policy y0 = h(x0) is interior to Γ(x0) and that the one-step reward function
W is concave in Ω and differentiable at (x0, y0). Then, the value function is differentiable at x0 and
the derivative is

vx(x0) = Wx(x0, h(x0)).

1.10 Value Iteration

Theorem 1.25 provides a computational method to find the value function v: since the value function
is the unique fixed point of the Bellman operator B and for any f ∈ B(X), ‖Bnf − v‖ → 0 as n→∞,
this suggest the following value iteration algorithm:

pick any f ∈ B(X)
repeat

compute Bf
set e = ‖Bf − f‖
set f = Bf

until e <tolerance
solve for a f -greedy policy φ

Where, given f ∈ B(X), we say that the policy φ is f -greedy if for any x ∈ X

φ(x) ∈ argmaxa∈D(x){U(x, a) + βf(q(x, a))}.
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Please consult the excellent book of J. Stachurski “Economic Dynamics: Theory and Computation”
(The MIT Press, 2009), from which this section is inspired.

Note that value function iteration is given by the recursion

vn(x) = max
a∈D(x)

{U(x, a) + βvn−1(q(x, a))}, n = 1, 2, . . . , v0 ∈ B(X).

Thus, each vn is the value function of a finite-horizon problem (with bequest function v0) that ap-
proximates the infinite-horizon problem.

Contrary to the guess and verify method, the value function iteration always works, at least
theoretically.

Example 1.30. We have used the guess method in Example 1.14, where we assumed full depreciation,
δ = 1. Let us now apply the value function iteration1

• Start off with an initial v0, say v0(k) = 0.

• Set v1(k) = supk′∈[0,f(k)]{ln (Akα − k′) + β0} = lnA+ α ln k.

• Set v2(k) = supk′∈[0,f(k)]{ln (Akα − k′) + β(lnA+ α ln k′)}.

The v2-greedy policy is k′ = βα
1+βαAk

α, so

v2(k) = ln

(
Akα − βα

1 + βα
Akα

)
+ β

(
lnA+ α ln

(
βα

1 + βα
Akα

))
= ln

(
A

1 + βα

)
+ β lnA+ αβ ln

(
βαA

1 + βα

)
+ (α+ α2β) ln k.

• Repeat until one sees the pattern of the sequence. It converges to

v(k) =
1

1− β

(
ln (A(a− βα)) +

βα

1− βα
ln (Aβα)

)
+

α

1− αβ
ln k.

Usually, the value function algorithm is used to find numerical approximations of the value function.
Let us show the method over the above problem, with data: δ = 1, U(c) = ln c, f(k) = 10k0.3 and
β = 0.95. The algorithm considers a discretization of the state space and computes the value function
at the grid points. The grid should contain the steady state. Let us calculate for this model:

f ′(k0) =
1

β
⇒ 3(k0)−0.7 =

1

0.95
⇒ k0 ≈ 5.73.

We also want to find k̂, the maximal sustainable capital stock.

f(k̂) = k̂ ⇒ 3k̂0.3 = k̂ ⇒ k̂ ≈ 26.7.

The minimum grid point should be larger than 0, and the maximum grid point minimum than k̂. In
fact, let us take the grid K = {1, 2, 3, 4, 5, 6}. We compute

vn(k) = max
0≤k′≤10k0.3

k′∈K

{ln (10k0.3 − k′) + 0.95vn−1(k′)}.

1Yes, a flagrant contradiction is here. The one-step reward function is U(c) = ln c, thus ψ(k) = supc∈[0,Akα] ln c =
lnA + α ln k, that is not bounded in none interval of the form (0,M ]. Thus, we cannot apply Theorem 1.25 and we do
not know whether the value function iteration converges to the solution we have found by the guessing method. Other
approaches exists that analyze this problem.
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h0(1): k′ = 1 : ln (10− 1) = 2.1972
k′ = 2 : ln (10− 2) =
k′ = 3 : ln (10− 3) =

h0(2): k′ = 1 : ln (10 · 20.3 − 1) = 2.4258
k′ = 2 : ln (10 · 20.3 − 2) =
k′ = 3 : ln (10 · 20.3 − 3) =

...

h1(1): k′ = 1 : ln (10− 1) + 0.95 · 2.1972 = 4.2846
k′ = 2 : ln (10− 2) + 0.95 · 2.4258 = 4.3839
k′ = 3 : ln (10− 3) + 0.95 · 2.5575 = 4.3755
k′ = 4 : ln (10− 4) + 0.95 · 2.6502 = 4.3094
k′ = 5 : ln (10− 5) + 0.95 · 2.7217 = 4.1951
k′ = 6 : ln (10− 6) + 0.95 · 2.7799 = 4.0272

h1(2): k′ = 1 : ln (10 · 20.3 − 1) + 0.95 · 2.1972 = 4.5132
k′ = 2 : ln (10 · 20.3 − 2) + 0.95 · 2.4258 = 4.6377
k′ = 3 : ln (10 · 20.3 − 3) + 0.95 · 2.5575 = 4.6609
k′ = 4 : ln (10 · 20.3 − 4) + 0.95 · 2.6502 = 4.6353
k′ = 5 : ln (10 · 20.3 − 5) + 0.95 · 2.7217 = 4.5751
k′ = 6 : ln (10 · 20.3 − 6) + 0.95 · 2.7799 = 4.4833

Continuing in this way and selecting tolerance e = 0.01, one finds after 108 iterations
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Numerical Implementation
k v0(k) h0(k) v1(k) h1(k) v2(k) . . . v108(k)

1 0 1 2.1972 2 4.3839 47.4738
2 0 1 2.4258 3 4.6609 47.7591
3 0 1 2.5575 3 4.8187 47.9340
4 0 1 2.6502 4 4.9298 48.0531
5 0 1 2.7217 4 5.0197 48.1430
6 0 1 2.7799 4 5.0803 48.2211

The approximations are shown in the following graph

The greedy policy is h108(k) = (3, 3, 4, 4, 4, 5).

Consider now δ = 0.7, so that the steady state solves

3k−0.7 + (1− 0.7) =
1

0.95
⇒ k0 ≈ 7.2097.

Let the state space be K = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Now

h108(k) = (3, 4, 5, 6, 6, 7, 7, 7, 8, 8).

23



1.11 Policy Function Iteration or Howard improvement algorithm

One of the most computationally demanding part of value function iteration is the computation of
the policy function. Moreover, the convergence of vn to the value function can be very slow. The
policy improvement algorithm is an alternative that proceeds as follows. Given a policy φ, compute
the value vφ of this policy, that is

vφ(x) =
∞∑
t=0

βtU(xt, φ(xt)), xt+1 = q(xt, φ(xt)).

For practical purposes, it is usual to evaluate the right hand side with large T , working with an
approximated value of vφ. Then compute a vφ-greedy policy φ′ and continue in this fashion computing
the value vφ

′
until φ′ = φ.

pick any φ
repeat

compute vφ

compute a vφ-greedy policy φ′

set e = φ− φ′
set φ = φ′

until e = 0

Example 1.31. Consider again Example 1.14.

• Pick a feasible policy function: h0(k) = 1
2Ak

α and consider the path kt+1 = h0(kt).

• Compute

vh0(k) = S(k, {kt+1}) =
∞∑
t=0

βt ln

(
Akαt −

1

2
Akαt

)

=

∞∑
t=0

βt ln

(
1

2
Akαt

)

=
∞∑
t=0

βt
(

ln

(
1

2
A

)
+ α ln kt

)
.

Note that

kt =
1

2
Akαt−1 =

1

2
A

(
1

2
Akαt−2

)α
=

(
1

2
A

)1+α

A1+αkα
2

t−2,

hence kt = Dkα
t

0 for a given constant D. Thus plugging this into the expression for vh0 we have

vh0(k) =

∞∑
t=0

βt
(

ln

(
1

2
A

)
+ α lnD + αt+1 ln k0

)
= E +

α

1− βα
ln k0.

• Compute

max
k′

{
ln (Akα − k′) + β

(
E +

α

1− βα
ln k′

)}
.

Taking the first-order condition yields

−1

Akα − k′
+

βα

A− βα
1

k′
= 0.

thus
k′ = αβAkα.

The policy improvement algorithm converges in a single step.
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1.12 Deterministic Dynamics

Consider the Ramsey model of Example 1.28

max
{ct}

∞∑
t=0

βtU(ct)

s.t. kt+1 = f(kt)− ct

ct, kt+1 ≥ 0, k0 given.

where f(kt) = f̃(kt) + (1− δ)kt.

The Euler Equation
U ′(ct) = βf ′(kt+1)U ′(ct+1) (15)

and the constraint
kt+1 = f(kt)− ct (16)

form a system of two nonlinear difference equations that govern the dynamics of optimal consumption
and capital.

Graphic analysis. Find the steady state (c0, k0):

ct+1 = ct ⇔ f ′(k) =
1

β
,

kt+1 = kt ⇔ c = f(k)− k.

-

6

-
?

�
?

-6

�6

k0

c0 − �
�

�
�

ct+1 = ct

kt+1 = kt

k

c

The direction of the arrows in the picture is obtained as follows. Below (above) the graph of c = f(k)−k
we have, using (16)

kt+1 − kt = f(kt)− kt − ct > 0 (< 0),

thus k increases (decreases). At the right (left) of vertical line βf ′(k) = 1 we have, using (15)

U ′(ct)

U ′(ct+1)
= βf ′(kt+1) < (>)βf ′(k0) = 1,

since f ′ is strictly decreasing. Thus ct+1 < (>)ct since U ′ is strictly decreasing.
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Saddle path. The optimal accumulation path is given by the red line segments; it is called saddle
path, since the steady state (k0, c0) has this property: initial conditions on that locus generate optimal
paths c∗t , k

∗
t+1 that converge to the steady state as t → ∞. Given k0, consumption must take the

value c0 such that the system is in the saddle path and converges to the steady state. All other time
paths diverge from the steady state and they are not optimal: either kt+1 becomes negative in finite
time or the transversality condition is violated. If not, suppose suppose that c̃0 > c0. Then, the path
violate the non-negativity constraint on kt+1 in finite time since the trajectory only can move only
towards the boundary of the feasible region, as indicated by the arrows. Suppose now that c̃0 < c0.
Then, along the new path consumption tends to zero and all investment goes to replace depreciated
capital. The transversality condition is violated: to see this, note that for k0 > k0 we have kt+1 > k0,
thus 1/f ′(kt+1) > 1/f ′(k0) and α ≡ 1/f ′(k0) > 1/β > 1. By (15)

U ′(ct+1)

U ′(ct)
=

1

βf ′(kt+1)
>

1

βf ′(k0)
=
α

β
.

Then
U ′(ct+1)

U ′(ct)

U ′(ct)

U ′(ct−1)
· · · U

′(c1)

U ′(c0)
>
αt+1

βt+1
,

hence
βtU ′(ct)kt+1 ≥ αtkt+1 →∞

as t→∞ since α > 1 and kt+1 > k0 > 0 for all t.

Linearization of non-linear systems. In general, the global dynamics of non-linear systems is
difficult or impossible to analyze. The usual method is to make a local analysis, based on the behavior
of a linear system that approximates the original one around the steady state. Then, it is needed to
know what characterizes stability of linear systems (eigenvalues) and under what conditions one can
infer local properties of stability for the non-linear system from the properties of the linear system.

Linear systems. A linear system of difference equations is

xt+1 = Axt + b,

where xt is m × 1 and A is a m ×m matrix such that I − A is not singular. Let x0 be the unique
steady state

x0 = Ax0 + b⇔ x0 = (I −A)−1b.

Considering the new variable yt = xt − x0 (deviations from the steady state) one leads tot he homo-
geneous system yt+1 = Ayt.

yt+1 = xt+1 − x0 = Axt + b− x0 = A(xt − x0)− (I −A)x0 + b = A(xt − x0) = Ayt.

Thus, one can focus on the stability properties of the null vector for homogeneous systems. The
solution of such a system is

yt = Aty0, y0 = x0 − x0.

Hence, if we can compute At, we have an explicit solution of the linear system. However, to obtain
At can be difficult. For this reason we introduce here the Jordan canonical form of a matrix, J . It is
related with the original A by

J = P−1AP
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where P is non singular, and

J =


J1 0 . . . 0
0 J2 0 0
...

...
. . .

...
0 0 0 Jk

 ,

and each Ji is the finite union of Jordan boxes corresponding to λi, of the form

Ji,1 = (λi), Ji,2 =

(
λi 1
0 λi

)
, . . . , Ji,mi =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . .

. . .
...

0 0 0 λi 1
0 0 0 0 λi

 .

Here, λ1, . . . , λk are the distinct eigenvalues of matrix A, that is, the distinct roots of the characteristic
polynomial |A − λI| = 0. The dimension of each submatrix depends of the number of independent
generalized eigenvectors associated to each λi (a concept that is not needed in this course). If A is
diagonalizable, then mi = 1 for each i = 1, . . . ,m and Ji = (λi) for each i.

Let zt = P−1yt. Then

zt+1 = P−1yt+1 = P−1Ayt = JP−1yt ⇒ zt+1 = Jzt ⇒ zt = J tz0,

where

J t =


J t1 0 . . . 0
0 J t2 0 0
...

...
. . .

...
0 0 0 J tm

 ,

and

Ji,j =


λti tλt−1

i
t(t−1)

2! λt−2
i . . . . . .

0 λti tλt−1
i . . . . . .

...
...

. . .
. . .

...

0 0 0 λti tλt−1
i

0 0 0 0 λti

 .

The solution of the original system is thus

xt = x0 + PJ tP−1(x0 − x0). (17)

Results on stability of linear systems. Looking at the structure of the matrices Ji,j and to the
form of the solution (17) it is easy to prove the following.

• (Globally asymptotically stable steady state).

lim
t→∞

xt = x0 for any initial condition x0 ⇔ |λi| < 1 ∀i = 1, . . . , k.

• (Saddle point stability). Suppose that for 1 ≤ r < m

|λ1|, . . . , |λr| < 1, |λr+1|, . . . , |λm| ≥ 1.

(now we display all the eigenvalues, possibly with repetitions, depending of their algebraic mul-
tiplicity). Then xt cannot converge to x0 unless x0 is such that the vector P−1(x0−x0) has null
components corresponding to the Jordan boxes of eigenvalues |λr+1|, . . . , |λn|. Equivalently,

lim
t→∞

xt = x0 ⇔ x0 = x0 + Pz0, where z0 has null components z0
r+1 = · · · = z0

n = 0.

In this case, the set of initial conditions {x0 : x0 = x0 + Pz0} is called the stable manifold.
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Example 1.32. Let the system

xt+1 = xt −
1

2
yt + 1,

yt+1 = xt − 1.

The matrix of the system is

(
1 −1/2
1 0

)
, with characteristic equation λ2 − λ + 1/2 = 0. The

(complex) roots are λ1,2 = 1/2 ± i/2 of modulus ρ =
√

1/4 + 1/4 = 1/
√

2 < 1, hence the system is
g.a.s. and the limit of any trajectory is the equilibrium point,

x0 =

(
3
2

)
.

Example 1.33. Let the system

xt+1 = xt + 3yt,

yt+1 = xt/2 + yt/2.

The matrix of the system is

(
1 3

1/2 1/2

)
, with characteristic equation λ2 − (3/2)λ − 1 = 0. The

roots are λ1 = −1/2 and λ2 = 2. The system is not g.a.s. However, there are initial conditions x0

such that the trajectory converges to the fixed point x0 = (0, 0). The stable manifold is

x0 = P

(
a
0

)
, a ∈ R,

where the columns of P are the independent eigenvectors of the matrix system. The eigenspaces are
S(−1/2) =< (2,−1) > and S(2) =< (3, 1) >, thus

P =

(
2 3
−1 1

)
.

Hence the stable manifold is formed by vectors of the form x0 = (2a,−a), with a ∈ R. This is the line
x+ 2y = 0, that coincides with S(−1/2).

Example 1.34. Let he system

xt+1 = yt,

yt+1 = −xt.

The matrix system has eigenvalues ±i, with modulus | ± i| = 1. We cannot apply the above results. In
fact the solution oscillates around the steady state (0, 0). The path shows a cycle of period 4, that is,
xt+4 = xt for every t ≥ 0.

Nonlinear systems. Given a function g = (g1, . . . , gm) : Rm −→ Rm, a nonlinear system is

xt+1 = g(xt).

Let x0 a steady state of the system, i.e., g(x0) = x0. We suppose that each gi ∈ C2(N(x0)), where
N(x0) is a neighborhood of x0. Let the matrix of partial derivatives of g1, . . . , gm (Jacobian) at the
steady state

A =

(
∂gi
∂xj

(x0)

)
i,j=1,...,m

.

Replace the original nonlinear system by the linear one

xt+1 = Axt.

Let λ1, . . . , λk the distinct eigenvalues of matrix A.
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Results on stability for nonlinear systems.

• (Local asymptotically stable steady state).

|λi| < 1 ∀i = 1, . . . , k ⇒ ∃Ñ(x0) ⊆ N(x0), lim
t→∞

xt = x0 for any initial condition x0 ∈ Ñ(x0).

• (Local saddle point stability). Suppose that for 1 ≤ r < m

|λ1|, . . . , |λr| < 1, |λr+1|, . . . , |λm| ≥ 1.

Then there exists Ñ(x0) ⊆ N(x0) and a C2(Ñ(x0)) function φ : Ñ(x0) −→ Rm−r with a
Jacobian matrix of rank m− r such that for all x0 ∈ Ñ(x0) with φ(x0) = 0, limt→∞ xt = x0.

In this case, the set
{x0 ∈ Ñ(x0) : φ(x0) = 0}

is called the stable manifold.

Note that by the Implicit function Theorem, we can solve for (x0
r+1, . . . , x

0
m) given (x0

1, . . . , x
0
r)

if the submatrix 
∂φ1
∂xr+1

(x0) . . . ∂φ1
∂xm

(x0)
...

. . .
...

∂φm−r
∂xr+1

(x0) . . . ∂φm−r
∂xm

(x0)


has maximal rank.

Example 1.35. Let he system

xt+1 = x2
t − yt,

yt+1 = xt.

It has two steady states, (0, 0) and (2, 2). The Jacobian matrix at any (x, y) is(
2x −1
1 0

)
.

At point (0, 0) the matrix is (
0 −1
1 0

)
,

with eigenvalues λ1,2 = ±i, of modulus 1, hence we cannot deduce nothing for the nonlinear system.
At (2, 2) the matrix is (

4 −1
1 0

)
,

with λ1,2 = 2±
√

3. Thus the original system has a local saddle at (2, 2).

Euler equations. (We maintain here the boldface notation for vectors).
If we know the optimal policy function h, so that xt+1 = h(xt) gives the optimal path, then

assuming that it is o class C2 we could apply the above results directly on h. However, h is in general
not known and even it is not of class C2 unless it is interior and the second derivatives of the utility
functions satisfy some bounds (see the classical paper of M.S. Santos in Econometrica (1993)).

To overcome these difficulties, and assuming that the optimal policy is interior, we resort to the
Euler equations

0 = Wy(xt,xt+1) + βWx(xt+1,xt+2), t = 0, 1, . . .

As we note, the above system is not in the usual form, that is, it is not solve with respect to xt+2.
Nevertheless we can linearize the system in a straightforward way.
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• (Linearization). Assume that W ∈ C2(Ñ(x0,x0)). Consider the truncated Taylor expansion of
the Euler equations around the steady state. The notation W 0

· means that the corresponding
partial derivative of W is evaluated at the steady state.

0 = Wy(xt,xt+1) + βWx(xt+1,xt+2)

≈

=0︷ ︸︸ ︷
Wy(x

0,x0) + βWx(x0,x0)

+ (W 0
xy)
>(xt − x0) +W 0

yy(xt+1 − x0) + βW 0
xx(xt+1 − x0) + βW 0

xy(xt+2 − x0)

= (W 0
xy)
>yt + (W 0

yy + βW 0
xx)yt+1 + βW 0

xyyt+2.

In the above, note that (W 0
xy)
> = W 0

yx

• (Steady state). Uniqueness of the steady state requires that the matrix

(W 0
xy)
> + (W 0

yy + βW 0
xx) + βW 0

xy

be not singular (put yt = yt+1 = yt+2 and ask for a unique solution of the homogeneous system).

• (Normal form).

Solving for yt+2 requires W 0
xy be non singular.

yt+2 = −(βW 0
xy)
−1(W 0

xy)
>yt − (βW 0

xy)
−1(W 0

yy + βW 0
xx)yt+1.

• (Transform into a first order system). Let Y > = (y>t+1,y
>
t ). The system can be rewritten as(

yt+2

yt+1

)
= Yt+1 = AYt =

(
−(βW 0

xy)
−1W 0

yx −(βW 0
xy)
−1(W 0

yy + βW 0
xx)

(0)m Im

)(
yt+1

yt

)
,

where A is a 2m× 2m matrix.

The following result characterizes the saddle point behavior of steady states of Euler equations
satisfying that both (W 0

xy)
> + (W 0

yy + βW 0
xx) + βW 0

xy and W 0
xy are nonsingular. It says that the 2m

eigenvalues of A satisfy the following property: if λ is an eigenvalue of A, then so is (βλ)−1 (recall
that it cannot be λ = 0).

This means that if |λ| < 1, then the eigenvalue β−1|λ|−1 > β−1 > 1. Thus, no more that m
eigenvalues can be smaller that 1 in modulus, and we have that the most we can have is saddle
stability.

Ramsey model The Euler equation is

0 = −U ′(f(kt)− kt+1) + βf ′(kt+1)U ′(f(kt+1)− kt+2).

Recall that we denote W (x, y) = U(f(x)−y), and then Wx = f ′(x)U ′(f(x)−y), Wy = −U ′(f(x)−y),
so that

Wxy = Wyx = −f ′(x)U ′′(f(x)− y),

Wxx = f ′′(x)U ′(f(x)− y) + (f ′(x))2U ′′(f(x)− y),

Wyy = U ′′(f(x)− y).

Then the stacked system with k̂t = kt − k0 is(
k̂t+2

k̂t+1

)
=

(
1 + β−1 +

(
f ′′/f ′

U ′′/U ′

)0
−β−1

1 0

)(
k̂t+1

k̂t

)
.
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The matrix system has eigenvalues

λ1,2 =
1

2

(
1 + β−1 +

(
f ′′/f ′

U ′′/U ′

)0
)
± 1

2

√√√√(1 + β−1 +

(
f ′′/f ′

U ′′/U ′

)0
)2

− 4

β
.

Note that λ1λ2 = β−1. So if |λ1| < 1, then the other is greater than one, as we already now. As an
example, consider

U(c) = ln c, f(k) = Akα + (1− δ)k,
A = 10, α = 0.33, β = 0.95, δ = 0.8.

The steady state is k0 ≈ 7.5378 and the steady consumption is c0 = f(k0) − k0 ≈ 13.4454. Then
λ1 ≈ 0.0531.

Returning to the general Ramsey model, and assuming that |λ1| < 1, there exists a stable manifold
associated to λ1 that is tangent to the stable manifold of the linear system. It is given by φ(k′, k) = 0
with φ differentiable, passing through the steady state, φ(k0, k0) = 0. By the Implicit Function
Theorem, there exists a differentiable function h such that h(k0) = k0, φ(h(k), k) = 0 for all k in a
neighborhood of k0, and h′(k0) = −(φk/φk′)

0 . It happens, of course, that this function h coincides
with the optimal policy function in a neighborhood of the steady state.

Since φ is tangent to the linear stable manifold, it must be that φ0
k′u+φ0

kv = 0 for any (u, v) ∈ S(λ1),
hence

h′(k0) = −
(
φk
φk′

)0

=
u

v
.

Therefore we can find the speed of convergence of the saddle path to the steady state simply obtaining
an eigenvector (u, v) associated to λ1. We can proceed in the usual way to get (λ1, 1) ∈ S(λ1), so we
can conclude that

h′(k0) = λ1.

In the numerical example above, the derivative of the optimal policy at the steady state is thus
≈ 0.0531.

Remembering the formula of λ1, one can conclude that the speed of convergence decreases as the
ratio

f ′′/f ′

U ′′/U ′

increases. This is because the function x 7−→ (a+ x)−
√

(a+ x)2 − b is strictly decreasing.

1.13 Problems

1. Suppose that in a dynamic programming problem there are constants M,N, k, α such that ∀x ∈
X,∀a ∈ D(x) the following bounds are satisfied.

‖U(x, a)‖ ≤M(‖x‖+ ‖a‖) +N,

‖q(x, a)‖ ≤ k(‖x‖+ ‖a‖),
‖a‖ ≤ α‖x‖.

Show that v is finite-valued if βk(1 + α) < 1.
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2. Consider the following planner’s problem:

max
{Ct}

∞∑
t=0

βt ln(Ct/Nt)

s.t. Ct +Kt+1 − (1− δ)Kt = AKα
t N

1−α
t ,

Ct,Kt ≥ 0, K0 given,

Nt = ηtN0,

where Ct is consumption in period t, Kt is the capital stock in period t, Nt is the population size
in period t, δ ∈ [0, 1] is the rate of depreciation, A > 0 is total factor productivity, and η > 0 is
the growth rate of the population. Note that the total time worked equals population size Nt.

(a) In the problem it is assumed that each individual works its full time endowment. Why is
that justified?

(b) Write variables in per capita form.

(c) Write down the Bellman equation.

3. Consider the following Production Economy with Labor Choice

sup
{ct,`t}

∞∑
t=0

βtu(ct, `t),

subject to the dynamic constraints

ct + it = f̃(kt, `t), t ≥ 0,

kt+1 = (1− δ)kt + it, t ≥ 0,

kt ≥ 0, ct ≥ 0, 0 ≤ `t ≤ 1,

k0 given,

where
c consumption
` labor supply
k capital stock
i investment
u(c, `) utility function

f̃(k, `) production function
δ depreciation rate.

(a) Describe the problem. Eliminating the investment variable from the formulation, identify the
state and decision variables, the law of motion and the correspondence of feasible actions.

(b) Write down the Bellman equation.

(c) Assuming that the value function is differentiable and that an interior optimal policy exists,
find the first order conditions. Use the Envelope Theorem of Benveniste and Scheinkman
to find the Euler Equations.

(d) Suppose that u(c, `) = ln c + ln (1− `), f̃(k, `) = Akα`1−α, A > 0, 0 < α < 1 and δ = 1
(full depreciation). Assuming that consumption is proportional to output, ct = θf̃(kt, `t),
θ > 0, find a solution of the Euler Equations.
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Solution:

(a) A representative agent maximizes discounted flow of utilities over an infinite horizon. Each
period the agent gets utility from consumption ct, and disutility from labor supply `t.
The production technology is f̃(kt, `t), where kt is the capital available in period t and `t
represents labor input. Capital available at period t + 1 is composed of the investment
decision taken in t and on the non-depreciated capital inherited from period t, kt+1 =
(1− δ)kt+ it. Investment made in period t is output minus consumption, it = f̃(kt, `t)− ct.
The state variable is capital, k, and the decision variables are consumption, c and labor
supply, `. Eliminating investment, the transition dynamics is kt+1 = f̃(kt, `t)+(1−δ)kt−ct
thus, in our notation, q(k, c, `) = f̃(k, `) + (1− δ)k− c. The feasible action correspondence
is D(k) = {(c, `) : c ∈ [0, f(k, `)], ` ∈ [0, 1]}, where we have normalized maximum labor
supply to 1, and denoted f = f̃ + (1− δ)k.

(b) Denoting tomorrow’s capital with k′ we have

v(k) = sup
k′=f(k,`)−c

c∈[0,f(k,`)], `∈[0,1]

{
u(c, `) + βv(k′)

}
.

(c) The first order conditions (FOC) for an interior maximum are:

uc(c, `)− βv′(k′) = 0, (18)

u`(c, `) + βv′(k′)f`(k, `) = 0, (19)

where a subindex means partial derivative, v′ is the derivative of the value function, that
we assume exists, and k′ = f(k, `)− c.
Note that they are not very useful, as they depend on the (unknown) value function.
However, in concave problems, it is known that the value function is differentiable when
the optimal policy is interior, and that the envelope formula of static optimization holds (the
derivative of the value function is equal to the partial derivative of the objective function
with respect to the parameter, evaluated at the optimal solution). This is the famous
Theorem of Benveniste and Scheinkman (Econometrica, 1979). In this case

v′(k) = βv′(k′)fk(k, `). (20)

This equality holds also one step ahead, hence denoting k′′ the capital for next period
following k′ we have

v′(k′) = βv′(k′′)fk(k
′, `′), (21)

where `′ is labor supply one period ahead; in the same way, c′ denotes one period ahead
consumption. It is possible to manage the four identities obtained to eliminate the value
function. This is done as follows: substituting βv′(k′) = uc(c, `) from (18) into (19) we get

uc(c, `)f`(k, `) = −u`(c, `). (22)

Now, consider (18) one period ahead

uc(c
′, `′)− βv′(k′′) = 0,

which substituted into (21) gives v′(k′) = uc(c
′, `′)fk(k

′, `′). But βv′(k′) = uc(c, `), thus
finally

uc(c, `) = βuc(c
′, `′)fk(k

′, `′). (23)
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Rewriting these equations in terms of t, t+ 1, we have

uc(ct, `t)f`(kt, `t) = −u`(ct, `t), (24)

that says that marginal utility from increasing labor supply must be equal to marginal
disutility to increasing labor supply, and

uc(ct, `t) = βuc(ct+1, `t+1)fk(kt+1, `t+1), (25)

which means that marginal decrease in utility from increasing investment equals discounted
future marginal increase in utility from increasing investment.

Equations (24) and (25) are called the Euler Equations of the problem. Along with the law
of motion they constitute optimality conditions of optimality.

uc(ct, `t)f`(kt, `t) = −u`(ct, `t),
uc(ct, `t) = βuc(ct+1, `t+1)fk(kt+1, `t+1),

kt+1 = f(kt, `t)− ct.

These three equations form a system of difference equations for the paths {kt}, {ct} and
{`t}, but note that we only have one initial condition, k0. We need two more conditions to
fix the optimal paths. These conditions are given by a transversality condition as t→∞.

(d) In this particular case the Euler Equations become (note that f = f̃ , since δ = 1)

1

ct
Akαt `

−α
t =

1

1− `t
, (26)

1

ct
=

1

ct+1
βAαkα−1

t+1 `
1−α
t+1 , (27)

kt+1 = Akαt `
1−α
t − ct. (28)

Plugging ct = θAkαt `
1−α
t into (26) we have

`t
1− `t

=
1− α
θ

,

so that `t is constant, equal to ` = 1−α
1−α+θ . Now, from (27) we have

ct+1

ct
=
kαt+1

kαt
= βAαkα−1

t+1 `
1−α

,

hence
kt+1 = βAα`

1−α
kαt . (29)

On the other hand, from the law of motion of capital (28),

kt+1 = (1− θ)Akαt `
1−α

,

and both expressions coincide if
θ = 1− βα.

Iterating in (29) we get

kt+1 = (βAα`
1−α

)1+αkα
2

t−1 = · · · = (βAα`
1−α

)
∑t
s=0 α

s
kα

t+1

0 .

From this it is easy to obtain ct.
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4. Consider the following model of Capacity Expansion. A monopolist has the following production
technology. Given current capacity, Q, he can produce any amount of output, q, up to Q units
at zero cost, but he cannot produce more than Q in the current period. Capacity can be increased
over time but cannot be sold. Any nonnegative amount a of capacity can be added in any period
at cost c(a) = a2, but the new capacity cannot be used until the next period. The monopolist
faces the same demand for his product each period given by q = 1 − p, where p is the price of
output. The monopolist seeks to maximize the present value over an infinite horizon of the flow
of profits.

(a) Formulate the problem as a dynamic programming problem, identifying the state an decision
variables, the feasible choice correspondence, the law of motion and the one-period return
function.

(b) Write down the Bellman equation.

(c) Justify why once Q ≥ 1/2 it does not pay to build more capacity in the future. Consequently,
identify a candidate for optimal capacity investment and optimal output when Q ≥ 1/2.
Which should be the value function for Q ≥ 1/2?

(d) For Q < 1/2 guess that the value function is quadratic, v(Q) = γQ(1 −Q) + δ, and check
that it satisfies the Bellman equation for suitable constants γ and δ.

(e) Find the optimal policies.

Solution:

(a) Decision variables are output q and investment in capacity a. The state variable is total
capacity Q. The state space is X = R+ and the decision space is formed by pairs (q, a) in
R+×R+. The feasible correspondence is D(Q) = {(q, a) : 0 ≤ q ≤ Q, a ≥ 0}, the transition
law is given by q(Q, a) = Q+ a and the reward function is U(Q, q, a) = q(1− q)− a2.

(b) The Bellman equation is

v(Q) = sup
Q′=Q+a

0≤q≤Q,a≥0

{
q(1− q)− a2 + βv(Q′)

}
.

(c) Output q does not influence the value of Q′, hence the monopolist choose q to maximize
one-shot profits, thus q∗ = 1/2 if Q ≥ 1/2 and q∗ = Q if Q < 1/2 is the optimal output.
When Q ≥ 1/2 the monopolist do not want to build more capacity, so a∗ = 0 and Q′ = Q
Plugging this information into the Bellman equation we find

v(Q) =
1

4
+ βv(Q)⇒ v(Q) =

1

4(1− β)
.

(d) When Q < 1/2, we have q∗ = Q and the Bellman equations reads

v(Q) = Q(1−Q) + sup
a≥0

{
−a2 + βv(Q+ a)

}
.

We guess that in this region the value function is quadratic, v(Q) = γQ(1 − Q) + δ, with
γ > 0. Plugging this expression into the Bellman equation we get

γQ(1−Q) + δ = Q(1−Q) + sup
a≥0

{
−a2 + βγ(Q+ a)(1−Q− a) + βδ

}
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Maximizing with respect to a we have the FOC −2a + βγ(1 − 2Q − 2a) = 0 or a(Q) =
βγ(1/2−Q)/(1 + βγ) > 0, which is a maximizer since the function is concave. Moreover,
note that Q′ = Q+ a(Q) < 1/2, since a(Q) < 1/2−Q because βγ/(1 + βγ) < 1.

Substituting again into the Bellman equations and rearranging terms, we check the identity

γQ(1−Q) + δ = Q(1−Q)− (βγ)2

(1 + βγ)2
(1/2−Q)2 +

βγ

(1 + βγ)2
(Q(1−Q) + βγ/2) + βδ.

Equating coefficients we find

γ =
2β − 1 +

√
1 + 4β2

2β
> 0,

and an expression for δ can be also found. So the guess is correct.

(e) We have guessed

v(Q) =

{
γQ(1−Q) + δ, if Q < 1

2 ;
1

4(1−β) , otherwise

and

q(Q) =

{
Q, if Q < 1

2 ;
1
2 , otherwise

, a(Q) =

{
βγ

1+βγ (1
2 −Q), if Q < 1

2 ;

0, otherwise.

Note that we can restrict the state space to [0, 1]. Since v is bounded in [0, 1], βtv(Qt) tends
to 0 for any admissible path, thus v is the value function and (q(Q), a(Q)) is the optimal
policy.

5. A model of Gambling. In each play of a game, a gambler can bet any non-negative amount up to
his current fortune and he will either win or lose that amount with probabilities p and q = 1− p,
respectively. He is allowed to make T bets in succession, and her/his objective is to maximize
the expectation of the utility B of the final fortune (no discount is involved here). Suppose that
utility is increasing in wealth.

(a) Formulate the problem as a dynamic programming problem, identifying the state an decision
variables, the feasible choice correspondence, the law of motion and the one-period return
function.

(b) Write down the Bellman equation.

(c) Solve the problem assuming that the gambler has logarithm utility over final wealth, distin-
guishing the cases p ≤ q and p > q.

Solution:

(a) Let x be wealth and a be the amount bet. The law of motion is as follows: x′ = x+ a with
probability p and x′ = x− a with probability q. Hence in fact now q(x, a) is a conditional
probability. Feasible choices satisfy 0 ≤ a ≤ x. There is only a final payoff, U(x).

(b) Let vn(x) the optimal value of the game when the gambler has wealth x and last n bets.
The Bellman equation is

v0(x) = U(x),

vn(x) = sup
0≤a≤x

{pvn−1(x+ a) + qvn−1(x− a)} , n = 1, . . . , T.
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(c) The gambler is risk averse, thus when p ≤ q (the game is unfavorable to the gambler)
the optimal strategy is never gamble. Check this. Suppose now that p > q. We have
v0(x) = lnx and

v1(x) = sup
0≤a≤x

{p ln (x+ a) + q ln (x− a)} . (30)

We find the FOC
p

x+ a
=

q

x− a
⇒ a = (p− q)x.

When this is substituted into (30), it leads to

v1(x) = lnx+ p ln p+ q ln q + ln 2.

In general, it can be shown that

vn(x) = lnx+ nα,

where α = p ln p + q ln q + ln 2. Note that the optimal stake does not depend on n and it
prescribes bets which are proportional to the wealth.

6. A decision agent has capital k0 > 0 which can be consumed or invested over T years. At the
beginning of each year the agent must decide how much of the current capital k to consume. The
utility of consuming c, 0 < c ≤ k, is given by ln c. The value of the capital at the beginning of
the following year is R(k− c) where R = 1 + r, r > 0. Future utilities are discounted at the rate
β per year, 0 < β < 1. Let vn(k) be the maximum total discounted utility when it remains n
years to the end of the planned horizon, starting with capital k.

(a) Obtain the optimality equation for vn(k).

(b) Show that vn(k) = bn ln k + an, where bn and an are constants, n ≥ 1.

(c) Evaluate bn for each n, but not an, and deduce that the optimal policy is to consume a
proportion (1− β)/(1− βn) of the remaining capital when there are n years left.

Solution:

(a) vn(k) = max0≤c≤k{ln c+ βvn−1(R(k − c))}, n ≥ 1, v0(k) = 0.

(b) Plugging vn−1 = bn−1k + an−1 in the functional equation one finds

cn(k) =
k

1 + βbn−1
, vn(k) = bn ln k + an,

where
bn = 1 + βbn−1, n ≥ 1, b0 = 0.

(c) Obviously bn = (1− βn)/(1− β), and cn(k) = k/bn.

7. Check that the value function of the problem

sup
xt+1=xt+at

at∈R

∞∑
t=0

βt(−2

3
x2
t − a2

t ), x0 given,
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is v(x) = −αx2. Find a quadratic equation for α and find the optimal policy function, a = φ(x).

Solution:
The Bellman equation is

v(x) = max
a∈R
{−2

3
x2 − a2 + βv(x+ a)}.

Plugging v(x) = −αx2 into the r.h.s. we get

max
a∈R
{−2

3
x2 − a2 − αβ(x+ a)2} = −2

3
x2 − αβ

1 + αβ
x2,

since a = −αβx/(1 + αβ). Returning to the functional equation we get

−αx2 = −2

3
x2 − αβ

1 + αβ
x2,

which gives the quadratic equation for α

α =
2

3
+

αβ

1 + αβ
.

We consider only the positive solution.

To confirm that v is the value function we check the condition

lim
t→∞

βtv(xt) = 0.

From the law of motion we have xt+1 = xt + at = xt/(1 + αβ), so

xt =

(
1

1 + αβ

)t
x0, t ≥ 1.

Then

βtv(xt) = −αβt
(

1

1 + αβ

)2t

x2
0 → 0

as t→∞, since β < 1 < (1 + αβ)2.

8. Consider the following planner’s problem:

max
{ct}

∞∑
t=0

βt ln(ct)

s.t. ct + ηkt+1 − (1− δ)kt = Akαt ,

ct, kt ≥ 0, k0 given, 0 < α < 1,

which is a Ramsey model in per-capita variables when the growth rate of the population is η > 0.

(a) Find the Euler equation.

(b) Find the transversality condition.

(c) Find the steady state of the problem, kt = k, ct = c, using the Euler equation and the
dynamics constraint.
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9. (Exogenous growth). Consider the following planner’s problem:

sup
{Ct,Lt,Kt+1}∞t=0

∞∑
t=0

βt
C1−σ
t − 1

1− σ

s.t. Ct +Kt+1 − (1− δ)Kt = AKα
t L

1−α
t ,

Lt+1 = (1 + g)Lt,

Ct,Kt+1 ≥ 0, K0, L0 given; σ, g > 0.

The notation is as usual. Suppose that β(1 + g)1−σ < 1.

(a) Explain the model in words.

(b) Rewrite the model in terms of new variables ct = Ct/(1 + g)t, kt = Kt/(1 + g)t and new
discount factor β̃. Write down the Bellman equation.

(c) Derive the Euler Equation and the transversality condition and show that they are necessary
and sufficient for optimality.

(d) Find the unique steady state and deduce that the original model has a unique balanced growth
path, deriving the growth rates of the different variables.

Solution:

(a)

(b) Let β̃ = β(1 + g)1−σ.

sup
{ct,kt+1}∞t=0

∞∑
t=0

β̃t
c1−σ
t − 1

1− σ

s.t. ct + (1 + g)kt+1 − (1− δ)kt = Akαt ,

ct, kt+1 ≥ 0, k0 given; σ, g > 0.

The Bellman equation is straightforward to obtain.

(c) We can proceed as follows: substitute the constraint into the utility function to get

W (k, k′) =
(Akα + (1− δ)k − (1 + g)k′)1−σ

1− σ
.

The Euler equation is 0 = Wy(kt, kt+1) + β̃Wx(kt+1, kt+2), so that

0 = −(1+g)(Akαt +(1−δ)kt−(1+g)kt+1)−σ+β̃(Aαkα−1
t +1−δ)(Akαt+1+(1−δ)kt+1−(1+g)kt+2)−σ),

or
0 = −(1 + g)c−σt + β̃(Aαkα−1

t + 1− δ)c−σt+1,

that is, (
ct+1

ct

)σ
= β(1 + g)−σ(Aαkα−1

t + 1− δ).

The model is concave and the solution interior, thus the Euler equation is necessary and suf-
ficient if the transversality condition holds. It is straightforward to write the transversality
condition.
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(d) Let again the Euler equation(
ct+1

ct

)σ
= β(1 + g)−σ(Aαkα−1

t + 1− δ).

In a balanced growth path ct+1

ct
is constant, so kt is also constant. But the accumulation

equation implies that ct is also constant over time. Thus Kt and Ct grow at rate g > 0.

10. Consider the following cake–eating problem

sup
{ct,kt+1}∞t=0

∞∑
t=0

βt
c1−σ
t − 1

1− σ

s.t. ct + kt+1 = kt,

ct, kt+1 ≥ 0, k0 given,

where σ > 0. The notation is as usual.

(a) Show that the period utility function converges to the log as σ → 1.

(b) Discuss whether the problem satisfies the assumptions in Blackwell’s Theorem.

(c) Starting with v0(k) = 0, carry out analytically two iterations of the value function iteration
algorithm.

(d) Deduce a guess from (c) for the value function and compute it analytically.

(e) Derive the Euler equation and find that ct = βt/σc0.

(f) Derive the transversality condition and suppose that it is a necessary condition for opti-
mality. Find limt→∞ kt. From this find c0 and give the optimal consumption rule.

Solution:

(a) Simply use the L’hospital rule get

lim
σ→1

c1−σ − 1

1− σ
= lim

σ→1

−c1−σ ln c

−1
= ln c.

(b) Note that if the size of the cake is k0 > 0, the state space is [0, k0] when σ < 1 and (0, k0]
if σ ≥ 1. In the first case the utility function is bounded, but in the second case is not, as
the utility is −∞ at zero. Thus, Blackwell’s Theorem is not applicable in the second case.

(c) The Bellman equation is

v(k) = max
k′∈Γ(k)

{
(k − k′)1−σ − 1

1− σ
+ βv(k′)

}
,

where Γ(k) = [0, k] if σ < 1 and = (0, k) if σ ≥ 1. In both cases we have, starting with
v0 = 0

v1(k) = max
k′∈Γ(k)

(k − k′)1−σ − 1

1− σ
=
k1−σ − 1

1− σ
,

v2(k) = v(k) = max
k′∈Γ(k)

{
(k − k′)1−σ − 1

1− σ
+ β

(k′)1−σ − 1

1− σ

}
.
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Applying the FOC we get
−(k − k′)−σ + β(k′)−σ = 0,

hence

k′ =
1

1 + β−1/σ
k.

Plugging this into the Bellman equation for v2 we find

v2(k) =

(
1− 1

1+β−1/σ

)1−σ
k1−σ + β

(
1

1+β−1/σ

)1−σ
k1−σ − (1 + β)

1− σ
.

(d) Guess that

v(k) =
Ak1−σ −B

1− σ
with A > 0 (so that v is concave) and substitute into the Bellman equation for v. We get

Ak1−σ −B
1− σ

= max
k′∈Γ(k)

{
(k − k′)1−σ − 1

1− σ
+ β

A(k′)1−σ −B
1− σ

}
.

The FOC gives

k′ =
1

1 + (βA)−1/σ
k.

Back into Bellman equation obtains

Ak1−σ −B
1− σ

=

(
1− 1

1+(βA)−1/σ

)1−σ
k1−σ − 1 + βA

(
1

1+(βA)−1/σ

)1−σ
k1−σ − βB

1− σ
.

Comparison of coefficients gives

−B = −1− βB ⇒ B =
1

1− β
;

A =
(βA)−(1−σ)/σ + βA(
1 + (βA)−1/σ

)1−σ ⇒ A =

(
1

1− β1/σ

)σ
.

(e) The Euler equation is ct+1 = β1/σct, hence one can solve for ct = βt/σc0. The transversality
condition is

lim
t→∞

βtWx(kt, kt+1)kt+1 = lim
t→∞

βt(βt/σ)−σkt+1 = lim
t→∞

kt+1 = 0. (31)

To find kt, substitute ct into the resource constraint to get kt = k0 − c0
∑t

s=0 β
s/σ. Hence

(31) holds if and only if

lim
t→∞

kt = k0 −
c0

1− β1/σ
= 0.

Hence it must be c0 = (1 − β1/σ)k0 and, in general, the optimal consumption policy is
c(k) = (1− β1/σ)k.
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11. Consider the following Ramsey model with quadratic preferences and linear production function:

sup
{Ct,Kt+1}∞t=0

∞∑
t=0

βt(−0.5C2
t +BCt)

s.t. Ct +Kt+1 = (A+ 1− δ)Kt,

Ct,Kt+1 ≥ 0, K0 given,

where A, B are positive constants. The rest of notation is as usual. Assume that A+1−δ > 1/β.
Note that the one period utility function has a maximum at C = B, which for this reason is
called the bliss point.

(a) Show that there is a unique steady state (K∗, C∗). What is the behavior of the utility
function to the right of C∗?

(b) Characterize the solution to the planner problem in the following steps:

i. Rewrite the Euler Equation into a first-order system and compute the corresponding
eigenvalues.

ii. Guess that when interior, the policy function Kt+1 = h(Kt) is affine, i.e. h(K) = aK+b
for suitable constants a, b and use the fact that the derivative of the policy function
equals the stable eigenvalue to determine a and b. Deduce that there is an interval
of capital stocks [0, K̃] such that it is optimal to consume nothing, C∗ = 0 and so
h(K) = (A+ 1− δ)K for K ∈ [0, K̃] (you do not need to prove this rigorously). Find
K̃.

Solution:

(a) Let α = A+ 1− δ. The Euler equation is

0 = aβKt+2 − (1 + α2β)Kt+1 + αKt +B(αβ − 1),

thus the steady state K0 satisfies

0 = αβK0 − (1 + α2β)K0 + αK0 +B(αβ − 1)

= K0(1− α)(αβ − 1) +B(αβ − 1),

and given that αβ − 1 6= 0, we have

K0 =
B

α− 1
> 0.

From this we find
C0 = αK0 −K0 = B,

that is, the bliss point is the steady state. The utility function is decreasing at the right of
C0, since C0 is the maximum.

(b) i. We construct the stacked system as follows (note the that the system is linear in this
model. This is always the case in linear-quadratic problems).(

k̂t+2

k̂t+1

)
=

(
1+α2β
αβ − 1

β

1 0

)(
k̂t+1

k̂t

)

The eigenvalues solve f(λ) ≡ λ2 − 1+α2β
αβ λ + 1

β = 0. We want to identify whether one
of them is smaller than one in absolute value. The function f is a convex parabola,
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with f(0) = 1/β ¿0 and f(1) = 1 − 1+α2β
aβ

1
β = (αβ−1)(1−α)

αβ < 0. Hence f has a zero
in the interval (0, 1), which is the stable eigenvalue, λ1. The other eigenvalue must be
λ2 = 1

λ1β
> 1, as we now.

ii. Suppose that the policy function is h(K) = aK + b when it is interior. We know
that the slope of h at the steady state is λ1, thus a = λ1. To find b, note that
K0 = h(K0) = λ1K

0 + b, thus
b = (1− λ1)K0.

thus, K ′ = h(K) = λ1K + (1− λ1)K0 and

C∗(K) = αK − h(K) = (α− λ1)K − (1− λ1)K0 > 0

only if K ≥ K̃ = 1−λ1
α−λ1K

0. Notice that K̃ < K0 since α > 1. Obviously, C∗(K) = 0 in

the interval [0, K̃]. For these values of capital, the optimal policy is h′(K) = αK: all
capital is devoted to production and nothing is consumed.
The figures below show the value function and the optimal policy. They have been
found with the value function iteration algorithm, following the numerical routines
shown in the book of J. Stachurski “Economic Dynamics: Theory and Computation”
(The MIT Press, 2009). The parameters values are: B = 0.5, A = 1, δ = 0.5 and
β = 0.9.
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2 Stochastic Stationary Discounted Dynamic Programming

2.1 Motivation

Consider the Ramsey model with technology shocks

ct + kt+1 = f(kt, zt) + (1− δ)kt,

where zt is a stochastic technological shock. Suppose that z ∈ {z1, . . . , zn, . . .} and z = zi with
probability πi where

∑∞
i=1 πi = 1. The Bellman equation is

v(k, z) = sup
0≤k′≤f(k,z)+(1−δ)k

{U(f(k, z) + (1− δ)k − k′) + β
∞∑
i=1

πiv(k′, zi)},

since the value starting from capital k and shock z is the result of choosing an optimal action today
given that the process terminates tomorrow with the receipt of the expected optimal value as a function
of tomorrow’s capital k′.

Basically, this case can be handled with the techniques developed for deterministic models. How-
ever, more interesting cases need other tools, as when the state space for z is continuous and/or if the
shocks z are not iid. For these cases the Bellman equation should be

v(k, z) = sup
0≤k′≤f(k,z)+(1−δ)k

{U(f(k, z) + (1− δ)k − k′) + βEk,zv(k′, z′)},

where Ek,z denotes conditional expectation. We briefly develop here the tools needed to give a meaning
to the above functional equation and to to understand the methods of stochastic dynamic program-
ming.

2.2 Events and probability

Let S be a non-empty set. We interpret s ∈ S as a elementary event or state of the world, and a
subset of S as an event.

Measurable sets. A σ-field S on S is a family of subsets of S such that

1. ∅ ∈ S;

2. A ∈ S ⇒ Ac ∈ S;

3. A1, A2, . . . ∈ S ⇒
⋃∞
i=1Ai ∈ S.

A σ-field S represents what we know about the state of the world. Given a collection A of events, the
σ-field generated by A, σ(A), is the smallest σ-field that contains A.

Example 2.1. Let (S, d) be a metric space, and let U the collection of all open subsets of S. Then
B(S) = σ(U) is called the family of Borel sets, and includes all open sets, closed sets, and countable
union and intersections of theses sets.

Example 2.2. Let S = {1, 2, 3} and let A1 = {{1}, {2}, {3}} be a partition of Ω (the sets forming A1

are pairwise disjoint and their union is S). Note that S ∈ σ(A1). If the information is represented
by σ(A1), then we know exactly which state of the world occurred. Note that σ-field generated by
A2 = {{1, 2}, {3}} also contains S.

We say that the pair (S,S) is a measurable space, and any A ∈ S a measurable set.
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Measurable functions Let R = R ∪ {±∞}. An extended real valued function f : S −→ R is
measurable (or S-measurable) if for every Borel set B ∈ B(R)

f−1(B) = {s ∈ S : f(s) ∈ B} ∈ S.

For instance, let S = {1, 2} and let the σ-fields S1 = {∅, S, {1}, {2}}, S2 = {∅, S}. All functions on S
are S1-measurable, but only constant functions are S2-measurable.

We will denote f−1(B) as {f ∈ B}.

The σ-field generated by a measurable function f : S −→ R consists of all sets of the form f−1(B),
where B ia a Borel set in R. The σ-field generated by a family of measurable functions fi : S −→ R,
i ∈ I, is the smallest σ-field containing all events of the form f−1

i (B), where B is a Borel set in R and
i ∈ I.

Let {Ai}ni=1 a finite family of measurable sets and {ai}ni=1 a finite family of real numbers. Let χAi
be the indicator function of set Ai. The function ϕ(s) =

∑n
i=1 aiχAi(s) is called a simple function. If

{Ai}ni=1 is a partition of S and if all ai’s are distinct, then it is a standard representation.

Theorem 2.3. Let (S,S) be a measurable space and let f : S −→ R. then f is measurable if and only
if it is the pointwise limit of simple functions.

Probability measure. A probability measure is a set function P : S −→ [0, 1] such that

• P (S) = 1;

• If A1, A2, . . . are pairwise disjoint sets belonging to S, then

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai).

The triplet (S,S, P ) is a probability space. An event A occurs almost surely (a.s.) if P (A) = 1.

Example 2.4. Let the unit interval S = [0, 1] with the Borel σ-field, and let the Lebesgue measure
P = λ on [0, 1]. Then (S,B(S), P ) is a probability space. Lebesgue measure is the unique measure
defined on Borel sets such that λ[a, b] = b− a for any interval [a, b].

Conditional probability. For any events A,B ∈ S such that P (B) 6= 0 the conditional probability
of A given B is defined by

P (A|B) =
P (A ∩B)

P (B)
.

The total probability formula says that for any event A ∈ S

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + · · · ,

for any sequence of pairwise disjoint events B1, B2, . . . ∈ S such that B1 ∪B2 ∪ · · · = S and P (Bi) 6= 0
for any i.
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Random variable. A random variable is a function ξ : S −→ R, where (S,S, P ) is a probability
space (in fact P plays no role here). Every random variable ξ : S −→ R defines a probability measure

Pξ(B) = P ({f ∈ B})

on R, where B ∈ B(R). We call Pξ the distribution of ξ and the function Fξ : R −→ [0, 1] defined by

Fξ(x) = P{s ∈ S : ξ(s) ≤ x}.

is called the distribution function of the random variable ξ. Note that Fξ is non-decreasing, right-
continuous, and

lim
x→−∞

Fξ(x) = 0, lim
x→∞

Fξ(x) = 1.

Given the random variable ξ, the σ-field generated by ξ is denoted σ(ξ).

Lebesgue integral. Given (S,S, P ) a probability space let M(S,S) be the space of measurable,
extended real-valued functions and M+(S,S) the non-negative cone of M(S,S).

1. ϕ ∈M+(S,S). The integral of ϕ with respect to P is∫
S
ϕ(s)P (ds) =

n∑
i=1

aiP (Ai).

2. ξ ∈M+(S,S). The integral of ξ with respect to P is∫
S
ξ(s)P (ds) = sup

{∫
S
ϕ(s)P (ds) : 0 ≤ ϕ ≤ ξ, ϕ ∈M+(S,S) simple function

}
3. ξ ∈M(S,S). The integral of ξ with respect to P is∫

S
ξ(s)P (ds) =

∫
S
ξ+(s)P (ds)−

∫
S
ξ−(s)P (ds)

if both
∫
S ξ

+(s)P (ds) <∞ and
∫
S ξ
−(s)P (ds) <∞, where

ξ+(s) =

{
ξ(s), if ξ(s) ≥ 0;

0, otherwise.
ξ−(s) =

{
−ξ(s), if ξ(s) ≤ 0;

0, otherwise.

If either ξ+ or ξ− have an infinite integral, then integral of ξ is not defined and we say that ξ is
not integrable.

Let L1(S,S, P ) be the set of integrable random variables, i.e., ξ ∈ L1 = L1(S,S, P ) if∫
S
|ξ(s)|P (ds) <∞.

Expectation. The expectation of ξ ∈ L1 is

E(ξ) =

∫
S
ξ(s)P (ds).

Expectation is linear: E(aξ1 + bξ2) = aE(ξ1) + bE(ξ2), a, b ∈ R.
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Theorem 2.5. For any Borel function g : R −→ R such that f ◦ ξ ∈ L1

E(g(ξ)) =

∫
R
g(x)Pξ(dx).

If there is a Borel function fξ : R −→ R such that for any Borel set B in R

P ({ξ ∈ B}) =

∫
B
fξ(x)λ(dx),

then ξ is a random variable with an absolutely continuous distribution and fξ is the density of ξ. The
expectation of ξ is, according to Theorem 2.5

E(ξ) =

∫
S
xfξ(x)λ(dx).

More generally,

E(g(ξ)) =

∫
S
g(x)fξ(x)λ(dx).

If x1, x2, . . . is a finite or infinite sequence of pairwise distinct real numbers such that for all
B ∈ B(R)

P ({ξ ∈ B}) =
∑
xi∈B

P{ξ = xi},

then ξ has a discrete distribution with mass P{ξ = xi} at xi.

Conditional expectation

• Conditioning on an event. For any random variable ξ ∈ L1 and any event A ∈ S such that
P (A) 6= 0, the conditional expectation of ξ given A is defined by

E(ξ|A) =
1

P (A)

∫
A
ξdP.

Note that E(ξ|S) = E(ξ).

• Conditioning on a random variable. Let ξ ∈ L1 and let η be an arbitrary random variable. The
conditional expectation of ξ given η is defined as the random variable denoted E(ξ|η) such that

– E(ξ|η) is σ(η)-measurable (σ(η) is the σ-field generated by η);

– For any A ∈ σ(η) ∫
A
E(ξ|η)dP =

∫
A
ξdP.

• Conditioning on a σ-field. Let ξ ∈ L1(S,S, P ) and let G be a σ-field contained in S. The
conditional expectation of ξ given G is defined to be the random variable E(ξ|G) such that

– E(ξ|G) is G-measurable;

– For any A ∈ G ∫
A
E(ξ|G)dP =

∫
A
ξdP.

Conditional expectation with respect to a σ-field extends conditioning on a random variable η
in the sense that

E(ξ|σ(η)) = E(ξ|η).

The conditional probability of an event A ∈ S given a σ-field G is defined as

P (A|G) = E(1A|G),

where 1A is the indicator function of A.

48



Variance. A random variable ξ : S −→ R is called square integrable if∫
S
|ξ(s)|2P (ds) <∞.

The family of square integrable random variables will be denoted L2 = L2(S,S, P ). It holds that
L2 ⊆ L1. The variance of ξ is

var(ξ) =

∫
S

(ξ − E(ξ))2dP.

Note that var(a+ bξ) = b2var(ξ) for any a, b ∈ R and that var(ξ) = E(ξ2)− E2(ξ).

Covariance. Given two random variables ξ, χ ∈ L2 the covariance of ξ and χ is

cov(ξ, χ) = E
(
(ξ − Eξ)(χ− Eχ)

)
.

If cov(ξ, χ) = 0, then var(ξ + χ) = var(ξ) + var(χ).

Information. The evolution of information over time can be modeled using σ-fields. As time in-
creases, our knowledge of what happened on the past also increases.

A sequence of σ-fields S1,S2, . . . on S such that

S1 ⊆ S2 ⊆ · · · ⊆ St ⊆ · · ·

is called a filtration of S. Each St contains all events A such that at time t one can tell whether
A has occurred or not. If ξ = {ξt} is a sequence of random variables ξt : S −→ R such that ξt is
St-measurable for every t, then we say that ξ is adapted to the filtration F = {St : t = 1, 2, . . .}.

Example 2.6. Let ξ1, ξ2, . . . be a sequence of coin tosses and let Sn be the σ-field generated by
ξ1, ξ2, . . . , ξn. For the events
A = {the first occurrence of tails is preceded by no more than 5 heads},
B = {there is at least 1 head},
C = {the first 100 tosses produce the same outcome},
D = {the first 5 tosses produces at least 3 heads},
find the smallest n such that the event belongs to Sn.

A belongs to S6 but not to S5.
B does not belong to Sn for any n.
C belongs to S100 but not to S99.
D belongs to S5 but not to S4.

2.3 General Development

The setting of the stochastic dynamic programming is quite similar to the deterministic one, but
incorporating events, random variables, probabilities and expectations.

The general setup is as follows.

1. t denotes time and it is supposed to be discrete, t = 0, 1, 2, . . ..

2. S, the set of possible states, is a subset of a Euclidean space. Most often S = X × Z, where
X ⊆ Rm is the endogenous state space and Z ⊆ Rl is the space of stochastic shocks, so that in
this case s = (x, z) ∈ S.

3. D : S ⇒ A ⊆ Rp, a correspondence that associates with state s a nonempty set D(s) of feasible
decisions a ∈ D(s). We denote A =

⋃
s∈S D(s).
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4. q : S × A −→ S, the law of motion. Given s ∈ S and a ∈ D(s) (we say that the pair (s, a) is
admissible), q(·|s, a) is the conditional probability on S given (s, a), that is, for any Borel set
B ∈ S, q(B|s, a) is the probability that next state of the system s′ ∈ B if the current state is s
and the action taken is a. Note that we assume that the law of motion is a first-order Markov
process, and that q could be degenerated (covering deterministic models).

5. U : S × A −→ R, the one-period return function. For (s, a) admissible, U(s, a) is the current
return, utility or income if the current state is s and the current action taken is a.

6. β, the discount factor, 0 < β < 1.

A Markov policy or decision rule is a sequence π = {πt, t = 0, 1, . . .} such that πt(s) ∈ D(s) for
all t and for all s ∈ S. Let Π the set of Markov policies. A policy is stationary if there exists φ
such that πt = φ for all t. Any policy π, along with the law of motion q defines a distribution on all
possible evolutions of the system, (a0, s1, a1, . . .), conditional on a given s0. Let Eπ be the associated
conditional expectation. Define the value

I(s, π) = Eπ

{ ∞∑
t=0

βtU(st, at)|s0 = s

}
,

that is, the expected total discounted return from policy π starting from s.
The problem is then to find a policy π ∈ Π such that for any s0 ∈ S, I(s, π) ≥ I(s, π′) for every

π′ ∈ Π. We shall say that such π is an optimal policy. It is possible to show in this framework that
it suffices to look for stationary policies, thus we reduce our exposition to this type. However, if the
time period is finite, then usually the optimal policy depends on time.

The value function v : S −→ R is defined as

v(s) = sup
π∈Π

I(s, π).

2.4 The Bellman Equation

The value function satisfies a Bellman Equation, analogous to the deterministic case. The proof is
more delicate now and require more hypotheses. See Assumptions 9.1, 9.2 and 9.3 in Stokey, Lucas
and Prescott (1989). We take for granted that those assumptions hold in what follows.

Lemma 2.7. For any s0 ∈ S and π ∈ Π(s0)

I(s0, π) = U(s0, π0) + β

Es0,π0I(s1,π
1)︷ ︸︸ ︷∫

S
I(s1, π

1)dq(s1|s0, π0),

where π1 is the continuation policy of π at period 1, contingent to next period state, s1.

Theorem 2.8. The value function satisfies the Bellman equation: for any s ∈ S

v(s) = sup
a∈D(s)

{
U(s, a) + β

∫
S
v(s′)dq(s′|s, a)

}
. (32)

Particular cases.

• q is degenerated: The notation
∫
S v(s′)dq(s′|s, a) means v(s′), where s′ = q(s, a) is a deterministic

transition law. Hence we recover the deterministic Bellman Equation.
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• The shock sequence {zt} is i.i.d. with common distribution function q: then (32) is

v(s) = sup
a∈D(s)

{
U(s, a) + β

∫
S
v(s′)dq(s′|a)

}
.

If q is also independent of action,

v(s) = sup
a∈D(s)

{
U(s, a) + β

∫
S
v(s′)dq(s′)

}
and if q has a density function f then

v(s) = sup
a∈D(s)

{
U(s, a) + β

∫
S
v(s′)f(s′)ds′

}
.

• q is discrete:
∫
S v(s′)dq(s′|s, a) =

∑
j P (s′ = sj |s = si, a)v(sj) so that (32) is

v(s) = sup
a∈D(s)

U(s, a) + β
∑
j

P (s′ = sj |s = si, a)v(sj)

 .

• Assume S = X ×Z, where X is the endogenous state space and Z is the space of shocks. Then
(32) is

v(x, z) = sup
a∈D(x,z)

{
U(x, z, a) + β

∫
S
v(x′, z′)dq(x′, z′|x, z, a)

}
.

Example 2.9. (Harris, 1987) Consider the following problem.
An agent possesses a share stock and a put option on this share (the right to sell the share at any

time for an exercise price of X). The stock pays a dividend d̃t in period t = 1, 2, . . ., where {d̃t} is a
Markov process with transition function F (d′|d) = P (d̃t+1 ≤ d′|d̃t = d). The stock market is efficient,
so that there is no difference between selling the share of the stock and keeping it. The agent is risk
neutral and discounts the future using discount factor β.

Obviously, the objective is to find the optimal exercise date. Actions variable is a ∈ {0, 1}, so
that a = 0 if the agent do not exercise, and a = 1 if agent do. State variable is s = (m, d), where
m ∈ {0, 1}, m = 0 if the option is not exercised, whereas m = 1 if it is. The other component
d is simply the dividend. The return function reflects that once the option is exercised, the agent
receives X but not the current dividend d. The law of motion is: q((0, d′)|(0, d), a = 0) = F (d′, d),
q((0, d)|(0, d), a = 1) = 0, q((1, d)|(0, d), a = 1) = 1. There is no transition from m = 1.

The return function is

U(0, d, a) =

{
d, if a = 0;
X, if a = 1.

Moreover, U(1, d, a) = 0, so that v(1, d) = 0 for any d. The Bellman equation is

v(0, d) = max

{
U(0, d, 0) + β

∫
R+

v(0, d′)dF (d′, d), U(0, d, 1) + βv(1, d′)

}
= max

{
d+ β

∫
R+

v(0, d′)dF (d′, d), X

}
We will write v(0, d) = v(d).

To solve the problem, let us assume that F is monotone decreasing in d for all d′, meaning that if
today’s dividend increases, then tomorrow’s dividend increases in the first order stochastic dominance
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sense. Then it is easy to show that v is increasing. Using this fact we will prove that the optimal
policy involves a reservation value d∗, such that it is optimal to exercise if and only if d ≤ d∗. To see
this, note that it is optimal to exercise if

d+ β

∫
R+

v(d′)dF (d′, d) ≤ X.

Since that β
∫
R+
v(d′)dF (d′, d) increases with d, it is optimal to exercise for all d ≤ d∗ where

d∗ + β

∫
R+

v(d′)dF (d′, d∗) = X. (33)

To get further insights into the solution, suppose that {d̃t} is i.i.d., that is, F is independent of d.
Then, let ξ =

∫∞
0 v(d′)dF (d′). Using the Bellman equation we get

ξ =

∫ ∞
0

max
{
d′ + βξ,X

}
dF (d′)

Now, d∗ above satisfies X = d∗ + βξ, so that

ξ =

∫ d∗

0
XdF (d′) +

∫ ∞
d∗

(d′ + βξ)dF (d′)

= XF (d∗) + E(d|d ≥ d∗)(1− F (d∗)) + βξ(1− F (d∗)),

where we have used the definition of conditional expectation

E(d|d ≥ d∗) =
1

P (d ≥ d∗)

∫
[d∗,∞)

d′dF (d′).

Solving for ξ we find

ξ =
XF (d∗) + E(d|d ≥ d∗)(1− F (d∗))

1− β(1− F (d∗))
.

To find an equation for d∗, we substitute this value of ξ into (33), to get

X = d∗ +
β(XF (d∗) + E(d|d ≥ d∗)(1− F (d∗))

1− β(1− F (d∗))
.

Letting x = X(1− β) the flow equivalent of the exercise price the equation can be rewritten

x = d∗
(
1− β(1− F (d∗))

)
+ βE(d|d ≥ d∗)(1− F (d∗)).

Assuming a specific distribution of dividends one can get explicit expressions. For instance, assume
that the {d̃t} is i.i.d. and d̃t is uniform in [0, 1]. Then F (d∗) = d∗ and

E(d|d ≥ d∗)(1− F (d∗)) =

∫
[d∗,∞)

d′dF (d′) =
1

2
(1− (d∗)2).

Hence the quadratic equation

0 = −x+ d∗
(
1− β(1− d∗)) +

β

2
(1− (d∗)2)

gives the threshold d∗. Let f(d) be the r.h.s. of the above equation (a convex parabola). The vertex
is obtained from f ′(·) = 0, and it is β − 1 < 0. Since f(0) = β/2 − x, we have that the roots of the
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equation are both negative (if any) when β/2−x > 0, thus in this case we shall take d∗ = 0. A positive
root exists if β/2− x < 0, that is

d∗ =
1

β

(
− (1− β) +

√
1− 2β(1− x)

)
Thus we conclude that the threshold level of dividends is

d∗ =

{
1
β

(
− (1− β) +

√
1− 2β(1− x)

)
, if x > β

2 ;

0, otherwise.

Hence, for x ≤ β/2 one never exercises the put.
Markov chain. Suppose now that dividends takes on finite values d1, . . . , dn and that {d̃t} is not

i.i.d. anymore, so that the transition from di to dj has probability πji = P (d′ = dj |d = di). The matrix
π = (πji) is called the transition matrix of the chain d̃t. In this case the Bellman equation is

v(di) = max

di + β
n∑
j=1

πjiv(dj), X

 , i = 1, . . . , n.

As shown above, the solution involves a threshold d∗, but this case is harder to solve. In the case
n = 2 let H denotes a high dividend and L a low one, with probabilities π1 = P (d̃t+1 = H|d̃t = H),
π2 = P (d̃t+1 = L|d̃t = L). The Bellman equation is the system of non-linear equations

v(H) = max
{
H + β

(
π1v(H) + (1− π1)v(L)

)
, X
}
,

v(L) = max
{
L+ β

(
(1− π2)v(H) + π2v(L)

)
, X
}
,

that can be explicitly solved. For n > 2 it is better to use a numerical approach based in iteration of
the Bellman operator until ‖vn+1 − vn‖ is smaller than a fixed tolerance. For instance, when n = 3
and dividends are Low (d = 0), Medium (d = 1) or High, (d = 2), transition matrix

P (H|H) = 0.3 P (H|M) = 0.2 P (H|L) = 0.1
P (M |H) = 0.4 P (M |M) = 0.4 P (M |L) = 0.3
P (L|H) = 0.3 P (L|M) = 0.4 P (L|H) = 0.6

,

discount factor β = 0.9 and exercise price X = 10, one gets v(L) = 10, v(M) = 10.4473 and
v(H) = 11.5905. Hence the optimal policy is to exercise if the dividend has been low, but not exercise
if it has been medium or high.

The algorithm has been implemented in Excel c©, which provides a very convenient framework for
working with iterative techniques in simple problems. The following table is self explanatory. The
iteration begins with v(L) = v(M) = v(H) = 0, computes the value of not exercising the option and
then takes the maximum between this value and X. The drop and drag mechanism of Excel allows to
obtain the successive iterations immediately.
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29/03/2012 [Put Option]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A B C D E F G H I J K L M N
N V(H) V(M) V(L) a=0, d=H a=0, d=M a=0, d=L BETA 0,9 H 2

0 0,0000 0,0000 0,0000 2,0000 1,0000 0,0000 X 10 M 1
1 10,0000 10,0000 10,0000 11,0000 10,0000 9,0000 L 0
2 11,0000 10,0000 10,0000 11,2700 10,1800 9,0900
3 11,2700 10,1800 10,0000 11,4077 10,2934 9,1629 PHH 0,3 PHM 0,2 PHL 0,1
4 11,4077 10,2934 10,0000 11,4857 10,3590 9,2059 PMH 0,4 PMM 0,4 PML 0,3
5 11,4857 10,3590 10,0000 11,5304 10,3967 9,2306 PLH 0,3 PLM 0,4 PLH 0,6
6 11,5304 10,3967 10,0000 11,5560 10,4183 9,2448
7 11,5560 10,4183 10,0000 11,5707 10,4307 9,2530
8 11,5707 10,4307 10,0000 11,5791 10,4378 9,2576
9 11,5791 10,4378 10,0000 11,5840 10,4418 9,2603

10 11,5840 10,4418 10,0000 11,5867 10,4442 9,2619
11 11,5867 10,4442 10,0000 11,5883 10,4455 9,2627
12 11,5883 10,4455 10,0000 11,5892 10,4463 9,2632
13 11,5892 10,4463 10,0000 11,5898 10,4467 9,2635
14 11,5898 10,4467 10,0000 11,5901 10,4470 9,2637
15 11,5901 10,4470 10,0000 11,5902 10,4471 9,2638
16 11,5902 10,4471 10,0000 11,5903 10,4472 9,2638
17 11,5903 10,4472 10,0000 11,5904 10,4473 9,2639
18 11,5904 10,4473 10,0000 11,5904 10,4473 9,2639
19 11,5904 10,4473 10,0000 11,5904 10,4473 9,2639
20 11,5904 10,4473 10,0000 11,5904 10,4473 9,2639
21 11,5904 10,4473 10,0000 11,5904 10,4473 9,2639
22 11,5904 10,4473 10,0000 11,5905 10,4473 9,2639
23 11,5905 10,4473 10,0000 11,5905 10,4473 9,2639

Cell C3: MAX($J$2;F2)
Cell D3: MAX($J$2;G2)

Cell E2: $L$1+$J$1*($J$5*B2+$J$6*C2+$J$7*D2)
Cell F2: $L$2+$J$1*($L$5*B2+$L$6*C2+$L$7*D2)
Cell G2: $L$3+$J$1*($N$5*B2+$N$6*C2+$N$7*D2)
Cell B3: MAX($J$2;E2)

2.5 Finite horizon

Suppose that the problem ends at a fixed time T . Following the same notation as for the deterministic
case, vn(s) will denote the value function when current state is s and it remains n periods to the end.
The Bellman equation is

vn(s) = sup
a∈D(s)

{
U(s, a) + β

∫
S
vn−1(s′)dq(s′|s, a)

}
, n = 1, 2, . . .

and v0(s) = 0 if there is no bequest function, or v0(s) = b(s) if b is the non-null bequest function.

Example 2.10. Find the optimal policy in the problem of control a sequence {x0, x1, . . . , xT } near to
zero minimizing the expected sum of all control costs, where the cost of exerting effort a is U(a) = (ca2),
c > 0. The transitions are driven by the stochastic process

xt+1 = xt + at + zt,
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where {zt} is a i.i.d. sequence of random shocks with mean µ and variance σ2.

We can model the problem assuming that the penalization of deviating form 0 ant t = T is quadratic,
given by the function b(x) = mx2, m > 0. We have

vn(x) = inf
a∈R
{ca2 + Evn−1(y)|x, a)}, n ≥ 1, v0(x) = mx2.

Let us find the conditional expectation

E(v0(y)|x, a) = E(my2|x, a)

= mE(x+ a+ z)2

= mE2(x+ a+ z) +mvar(x+ a+ z))

= m((x+ a+ µ)2 + σ2).

Hence
v1(x) = inf

a∈R
{ca2 +m((x+ a+ µ)2 + σ2)}.

The FOC gives

a1 = − m

c+m
(x+ µ).

Thus
v1(x) =

cm

c+m
(µ+ x)2 +mσ2.

It is possible to show by an induction argument that for general n the optimal control is an = −m(c+
nm)−1(x + mµ), independent of the variance. It is the same policy as the one for the deterministic
problem obtained with the dynamics xt+1 = xt + at + µ. This is the certainty equivalence principle,
that holds in linear-quadratic models of this kind.
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2.6 Reduced form models

Assuming that S = X × Z, where X ⊆ Rm, Z ⊆ Rr and that the law of motion q is of the form
q(z′|z), eliminating the action variable from the formulation as in the deterministic case the Bellman
equation is

v(x, z) = sup
x′∈Γ(x,z)

{
W (x, x′, z) + β

∫
Z
v(x′, z′)dq(z′|z)

}
.

The policy function x′ = h(x, z) gives tomorrow’s state as a function of today’s state and shock.
Obviously

h(x, z) ∈ argmaxx′∈Γ(x,z){W (x, x′, z) + β

∫
Z
v(x′, z′)dq(z′|z)}.

2.7 Euler Equations. Reduced form

Suppose that an optimal policy function exists and is interior, that is, for any (x, z) ∈ X × Z there
exists δ > 0 such that B(h(x, z), δ) ⊆ Γ(x, z)). Then, under suitable assumptions on W (concavity,
continuous differentiability and integrability of F and of Fx), the sequence xt+1 = h(xt, zt) with x0,
z0 given satisfies the following Euler equation

0 = Wy(xt, xt+1, zt) + β

∫
Z
Wx(xt+1, xt+2, zt+1)dq(zt+1|zt), t ≥ 1. (34)

The proof is similar to the deterministic case. Under the assumptions stated, if X = Rm+ and Wx is
non decreasing in each variable and the Euler equation and the transversality condition

lim
t→∞

βt
∫
Z
Wx(xt+1, xt+2, zt+1)xt+1dq(zt+1|zt) = 0

hold, then the sequence {xt} generated from x0 and z0 by means of h is optimal. Note that {xt} is a
sequence of random variables.

Stochastic Euler equations are not so useful as the deterministic Euler equations are. In fact
the steady state of a stochastic system is a probability measure, not a fixed point, thus a linear
approximation of the stochastic system around the steady state lose its meaning. Thus it is difficult
to study the stability properties of the system using this method.

2.8 Envelope Theorem. Reduced form

Suppose that X is convex and that U is concave and differentiable. Let x0 an interior point of X such
that for z ∈ Z the optimal policy h(x0, z) is interior to the set Γ(x0, z). Then v(·, z) is differentiable
at x0 and the partial derivatives are

∂v

∂xi
(x0, z) =

∂U

∂xi
(x0, h(x0, z), z).

2.9 The stochastic Bellman equation

Consider the law of motion q. We say that q has the Feller property if the function

Mf(s, a) =

∫
S
f(s′)dq(s′|s, a) = E(f |s, a)

is continuous and bounded for any continuous and bounded function f .
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As an example, suppose that S = X × Z and the transition law is given by xt+1 = F (xt, at, zt),
where {zt} is i.i.d., with common distribution G, and F : X ×A×Z −→ X is a measurable function.
The law of motion is given by

q(B|x, a) = P (xt+1 ∈ B|xt = x, at = a)

=

∫
Z
χB(F (x, a, z))dG(z),

for every Borel set B, where χB is the indicator function of set B: χB(x) = 1 if x ∈ B and χB(x) = 0
otherwise. Then the operator M is

Mf(x, a) =

∫
Z
f(x′)χB(F (x, a, z))dG(z) =

∫
Z
f(F (x, a, z))dG(z).

For a continuous function f , continuity of the function Mf is assured if Z is compact and F is
continuous.

Consider the stochastic Bellman operator associated to the Bellman equation (32)

Tf(s) = sup
a∈D(s)

{
U(s, a) + β

∫
S
f(s′)dq(s′|s, a)

}
.

We assume that U is continuous and bounded, D is continuous and compact-valued and the
transition law q has the Feller property.

Lemma 2.11. For any function f ∈ Cb(S), Tf ∈ Cb(S).

Proof. Let f ∈ Cb(S). By assumption, Mf(s, a) =
∫
S f(s′)dq(s′|s, a) is continuous, thus by the

Theorem of the Maximum, Tf is continuous because f is continuous. Moreover, Tf is bounded, since
|f | ≤ K implies that |Mf(s, a)| ≤ C is bounded, again by the Feller property of q. It is easy then to
show that |Tf(s)| ≤ D + β

∫
S Ddq(s

′|s, a) = D + βD, because q is a probability measure and hence∫
S dq(s

′|s, a) = 1 for any s, a, and where |U(s, a)| ≤ D.

Theorem 2.12. T has a unique fixed point f ∈ Cb(S) and Tn(f0)→ f as n→∞ from any f0 ∈ Cb(S).
Moreover, f is the value function.

Proof. The proof is the same as for the deterministic case.

2.10 Application. Asset pricing in an exchange economy or Lucas’ tree model

• The economy is populated by a large number of identical consumers, identified with the interval
[0, 1] (measure 1 of consumers).

• An asset produces stochastic dividend stream {zt}. In each period, after zt is realized, the agents
trade on consumption good, ct, and asset, in a competitive spot market.

• Dividends z ∈ Z, Z ⊆ R+ compact, and they are Markov, that is, {zt} is follows the transition
law q(·|zt). This means that P (zt+1 ≤ z|zt) = q(z|zt). Moreover, it is assumed that q is Feller
continuous.

• Preferences over consumption streams given by

E

( ∞∑
t=0

βtU(ct)|x0, z0

)
.
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• The consumer’s problem at time t = 0 is

max
{ct,xt+1}∞t=0

E

( ∞∑
t=0

βtU(ct)|x0, z0

)
s.t. ct + ptxt+1 ≤ (zt + pt)xt,

ct ≥ 0, xt ≥ 0, x0 = 1 given.

where xt is the asset demand at date t and pt is asset’s date t price.

• Asset price is given by a function p : Z −→ R++, pt = p(zt).

• Equilibrium. The aim is to find an equilibrium for this model. An equilibrium is a sequence of
prices {p∗t } such that: (i) given prices {p∗t }, all agents optimize; (ii) markets clear.

Since the agents are identical, (ii) means that prices are such that the representative agent wishes
to neither buy nor sell the asset, xt = 1 for all t: For, suppose that one agent wishes to buy one
unit of the asset at price pt; then, by the clearing market condition there must be another agent
who is willing to sell him that unit of the asset at pt. But given that all the agents are identical,
all agents want to buy the asset.

Condition (i) means that given a price function p, the agent solves the Bellman equation

v(x, z) = max
0≤p(z)x′≤(z+p(z))x

{
U((z + p(z))x− p(z)x′) + β

∫
Z
v(x′, z′)dq(z′, z)

}
.

• Existence of equilibrium. Assume that U is bounded, concave and differentiable. Also, taking
as state space for asset holdings [0, x̄] with x̄ > 1, we see that the equilibrium asset holdings
x′ = 1 is interior to the state space, since that at x = 1 the constraint is x′ = (z + p)/p > 1 is
never binding. Thus the solution is characterized by the stochastic Euler equation

p(zt)U
′(ct) = β

∫
Z

(zt+1 + p(zt+1))U ′(ct+1)dq(zt+1, zt), t = 0, 1, . . .

If (p, x′) = (p∗, 1) is an equilibrium, then

p∗(zt)U
′(zt) = β

∫
Z

(zt+1 + p(zt+1))U ′(zt+1)dq(zt+1, zt), t = 0, 1, . . .

Let us rewrite this equality dropping out time dependence

φ(z)︷ ︸︸ ︷
p∗(z)U ′(z) = β

∫
Z

(z′ + p(z))U ′(z′)dq(z′, z),

=

h(z)︷ ︸︸ ︷
β

∫
Z
z′U ′(z′)dq(z′, z) +

∫
Z
p(z)U ′(z′)dq(z′, z), t = 0, 1, . . .

The issue is to prove that this functional equation admits a solution. The equation can be
rewritten

φ(z) = h(z) + β

∫
Z
φ(z′)dq(z′, z),

and needs to be solved for φ uniquely. This is a fixed point problem for which Banach’s Theorem
applies in the space of continuous bounded functions (if we are looking for bounded prices!).
Hence a unique price function exists, that is given by p∗(z) = φ(z)/U ′(z).
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• Interpreting the Euler equation. Rewrite the Euler equation as

p∗tU
′(zt) = βEt(U ′(zt+1)(p∗t+1 + dt+1)).

The left hand side is the marginal utility to giving up a small amount of consumption (recall
that in equilibrium ct = zt), using it to buy some amount of the asset at price p∗t . The right hand
side is the discounted expected marginal utility at date t + 1 from increasing a small amount
of the asset: part of the utility gain comes from the expected resale value of the asset and the
other from the dividends.

Let again the Euler equation with current price isolated on the l.h.s

p∗t = βEt
(
U ′(zt+1)

U ′(zt)
(p∗t+1 + dt+1)

)
.

Observe:

– Assets’ current price depends positively on future expected prices and dividends.

– The more impatience the agent is (the lower the discount factor β), the less the agent is
willing to pay to get any given expected resale value or dividend.

– Current prices also depends on the ratio of marginal utilities U ′(zt+1)
U ′(zt)

. Since U is concave
we have

Et
(
U ′(zt+1)

U ′(zt)

)
is higher ⇔ Et

(
zt+1

zt

)
is lower.

Thus, if future consumption is expected to be lower than current consumption, then the
price of the asset increases. This is known a the consumption smoothing effect, and it is due
to the concavity of the utility function. If expected future consumption ct+1 is expected to
be very low with respect to current consumption ct, agents transfer consumption into the
future, by buying more of the asset; the increasing demand drives the price up.

• Returns and asset pricing. Rewrite the Euler equation

1 = Et
(
β
U ′(zt+1)

U ′(zt)

(p∗t+1 + dt+1)

p∗t

)
It is common to denote

MRS(t+ 1, t) = β
U ′(zt+1)

U ′(zt)

the marginal rate of substitution (the rate at which agents are willing to trade consumption
tomorrow from consumption today) and

Rt+1 =
(p∗t+1 + dt+1)

p∗t

the asset’s return. Thus
1 = Et(MRS(t+ 1, t)Rt+1).

– One-period real discount bond. A bond is an asset that pays no interest, it is a promise
to pay out a certain amount in the future. At date t the agent pays mt units of the
consumption good for one unit of the bond. At day t+ 1, the bond-issuer promises to give
you one unit of the consumption good. The expected return is

Rt+1 =
1

mt
,

hence the price of the bond is

mt = Et(MRS(t+ 1, t)).
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– One-period nominal discount bond. At date t the agent pays mt units of currency for one
unit of the bond. At time t+ 1 a corporation or the government give the agent one unit of
currency. The expected return is

• Linear utility, U(c) = c. In this case, at any t the price is

p(zt) =
∞∑
s=1

βsE(zt+s|zt),

that is, the price of the share is simply the discounted sum of the expected future dividends.
This can also be rewritten

p(z) = βE(zt+1 + p(zt+1)|z).
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3 Sample Final Exam

1. (40 points.) Consider the problem of choosing a consumption sequence {ct} to maximize

∞∑
t=0

βt(ln ct + γ ln ct−1), 0 < β < 1, γ > 0, βγ < 1,

subject to
ct + kt+1 = Akαt , A > 0, 0 < α < 1, (k0, c−1) > (0, 0) given.

Here ct is consumption at t and kt is capital stock at the beginning of period t. The current
utility function, ln ct + γ ln ct−1, represents habit formation in consumption.

(a) Considering as state variables the stock of capital k and lagged consumption c−1, write
down the dynamic programming equation, identifying the action variable, the choice cor-
respondence and the law of motion.

(b) Write down the reduced form version of the dynamic programming equation.

(c) Prove that the value function is of the form v(k, c−1) = E + F ln k +G ln c−1, where E, F
and G are constants.

(d) Prove that the optimal policy function is of the form h(k, c−1) = Hkα (thus, independent
of lagged consumption), where H is a constant. Give explicit formulas for E, F , G and H.

Solution:

(a) Let xt = ct−1 be lagged consumption. State variables are k, x, decision variable is c. State
space is X = R+ × R+, action space is A = R+ and law of motion is kt+1 = q(kt, ct) =
Akαt − ct. The choice correspondence is

D(k) = {c ∈ R+ : 0 ≤ c ≤ Akαt }.

(b) Let v be the value function and let (k′, x′) denote tomorrow’s capital stock and lagged
consumption (thus, x′ = c). The Bellman equation is

v(k, x) = max
c∈D(k),k′=q(k,c)

{ln c+γ lnx+βv(k′, x′)} = max
0≤k′≤Akα

{ln (Akα − k′)+γ lnx+βv(k′, Akα−k′)}.

(c) Substitute the suggested form for v into the Bellman equation and look for an interior
policy. Let V (k, x, k′, x′) denotes the r.h.s. in the Bellman equation. The FOC gives

0 =
∂V

∂k′
= − 1

Akα − k′
+ β

(
F

k′
− G

Akα − k′

)
,

thereby, solving for k′

k′ =
βF

1 + β(F +G)
Akα.

Observe that k′ ∈ (0, Akα) since we assume that both F,G > 0. To prove that k′ is
indeed a maximum,observe that V (k, x, 0, x′) = V (k, x,Akα, x′) = −∞. Since the function
k′ 7→ V (k, x, k′, x′) is continuous and differentiable in the interior of the technological
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correspondence and there is only one interior critical point, it is the global maximum.
Plugging this candidate for optimal policy into the Bellman equation we get

E + F ln k +G lnx = ln

(
A(1 + βG)

1 + β(F +G)
kα
)

+ γ lnx

+ βE + β ln

(
βAF

1 + β(F +G)
kα
)

+ βG ln

(
A(1 + βG)

1 + β(F +G)
kα
)

Equating coefficients we get

E = (1 + βG) ln

(
A(1 + βG)

1 + β(F +G)

)
+ βE + β ln

(
βAF

1 + β(F +G)

)
.

F =
α(1 + βG)

1− αβ
,

G = γ.

The important thing is that β < 1 and αβ < 1 imply that the above equations are solvable
for unique E,F,G, with both F > 0 and G > 0.

(d) The policy function is

k′ = h(k) =
βF

1 + β(F + γ)
Akα = αβAkα,

independent of lagged consumption. To show it is optimal, let’s prove that for the optimal
path {(kt, xt)}∞t=0

lim
t→∞

βtv(kt, xt) = lim
t→∞

βtv(kt, ct−1) = 0. (35)

Note that kt+1 = αβAkαt . Recursively one finds

kt = (αβA)1+α+···+αtkα
t

0 ⇒ lim
t→∞

kt = (αβA)1/(1−α) > 0,

and ct = Akαt − kt+1, hence

lim
t→∞

ct = A(αβA)α/(1−α) − (αβA)1/(1−α) > 0,

the inequality because αβ < 1. In consequence, (35) holds, and h(k, x) is the optimal policy
function.

2. (40 points.) Consider the following stochastic one-sector growth model. An infinitely-lived
representative agent has preferences

E0

∞∑
t=0

βt(ct − θc2
t ),

where θ > 0. The production function is linear, so that the output is

yt = Akt + zt, A > 0

where zt is a stochastic shock satisfying

zt = ρzt−1 + εt, 0 < ρ < 1

and {εt} is i.i.d. with zero mean. The resource constraint is

kt+1 + ct = yt + kt

(no capital depreciation). Along the exercise, assume that the optimal policy function is interior.
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(a) Write down the dynamic programming equation of the representative consumer.

(b) Find the Euler equation associated to the problem in terms of the optimal consumption.

(c) Iterating forward in the Euler equation, express current consumption ct as the sum of
two summands: a fundamental part and a bubble component. State conditions over the
parameters such that a solution for ct exists with no bubble component, and find ct.

(d) Let A = 1
β − 1. Using the guess for the consumption function

c(k, z) = a+ bk + dz, a, b, d ≥ 0,

find a, b, d that solves the Euler equation. Check out that the consumption function is
feasible.

Solution:

(a) For a general utility function U , the DP equation is

v(kt, zt) = max
0≤ct≤(1+A)kt+zt,
kt+1=(1+A)kt+zt−ct

{U(ct) + βEtv(kt+1, zt+1}.

(b) FOC

0 = U ′(ct) + βEt

(
v′k(kt+1, zt+1)

∂kt+1

ct

)
= U ′(ct)− βEtv′k(kt+1, zt+1).

and envelope

v′k(kt, zt) = βEt

(
v′k(kt+1, zt+1)

∂kt+1

kt

)
= β(1 +A)Etv

′
k(kt+1, zt+1)

give v′k(kt, zt) = (1 +A)U ′(ct), and plugging this identity into the envelope formula yield

U ′(ct) = β(1 +A)Et(U
′(ct+1)).

In the particular case we are considering, it becomes

1− 2θct = β(1 +A)Et(1− 2θct+1).

(c) Solving for ct in the Euler equation above one gets

ct =
1− β(1 +A)

2θ
+ β(1 +A)Et(ct+1).

Iterating T periods we have

ct =

(
1− β(1 +A)

2θ

) T−1∑
t=0

βt(1 +A)t + βT (1 +A)TEt(ct+T ).

Taking limits (assuming that β(1 + A) < 1) we find ct expressed as the sum of the funda-
mental part and the bubble

ct =
2

θ
+ lim
T→∞

βT (1 +A)TEt(ct+T ).

Assuming that the bubble component vanishes, ct = 2
θ . Note that we are using the Euler

equation here, so this equality hold only when the consumption is interior.
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(d) In this case the Euler equation is
ct = Et(ct+1),

thus consumption is a martingale. Let us rewrite in terms of the policy consumption rule

c(k, z) = E(c(k′, z′)|k, z)⇒ a+ bk + dz = E(a+ bk′ + dz′)|k, z).

Let us compute E(a+ bk′ + dz′)|k, z) using the transition law and the properties of condi-
tional expectation. We have

E(a+ bk′ + dz′)|k, z) = a+ bE(k′|k, z) + dE(z′|k, z),
= a+ b(1 +A)k − bc(k, z) + bz + dρz + dE(ε),

= a+ b(1 +A)k − b(a+ bk + dz) + bz

= a− ab+ b((1 +A)− b)k + (b(1− d) + dρ)z.

Equating coefficients we find

a = a− ab,
b = b((1 +A)− b),
d = (b(1− d) + dρ).

Take a = 0, b = 1 +A = 1
β and d = 1−β

1−βρ , which provides a feasible consumption function,
as one can check easily. Other selections (a > 0) lead to infeasible consumption functions.

3. (10 points.) Let (C(X), ‖ · ‖∞) be the space of continuous functions over the compact set X,
f : X ⊆ Rm −→ R. Let B be the Borel σ-field of X and let F : B × Rm −→ [0, 1] be such that
for any x ∈ X, F (·, x) is a probability measure. Let the operator

Tf(x) = α(x) + β(x)

∫
X
f(x′) dF (x′, x).

(a) Under what conditions on F , α and β, T : C(X) −→ C(X)?

(b) Find conditions Show that T is a contraction mapping.

Solution:

(a) Assuming that both α and β are continuous, if F is Feller continuous then Tf is also
continuous, since any f ∈ C(X) is bounded because X is compact.

(b) Note that for f, g ∈ C(X)

|β(x)|
∫
X
|f(x′)− g(x′)|dF (x′, x) ≤ |β(x)|

∫
X
‖f − g‖∞dF (x′, x)

= ‖f − h‖∞|β(x)|
∫
X
dF (x′, x)

≤ ‖β‖∞‖f − h‖∞,

since dF (x′, x) is a probability measure for all x ∈ X, so that
∫
X dF (x′, x) = 1 for all

x ∈ X. Hence, for any x ∈ X

|Tf(x)−Tg(x)| = β(x)|
∫
X
f(x′)−g(x′)dF (x′, x)| ≤ ‖β‖∞

∫
X
|f(x′)−g(x′)|dF (x′, x) ≤ ‖β‖∞‖f−h‖∞.
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Taking the supremum we have

‖Tf − Th‖∞ ≤ ‖β‖∞‖f − h)‖∞.

For T to be a contraction ‖β‖∞ < 1 is required.
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