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Abstract

This paper proposes to estimate the effects of monetary policy shocks by

a new “agnostic” method, imposing sign restrictions on the impulse responses

of prices, nonborrowed reserves and the federal funds rate in response to a

monetary policy shock. No restrictions are imposed on the response of real

GDP to answer the key question in the title. I find that “contractionary”

monetary policy shocks have no clear effect on real GDP, even though prices

move only gradually in response to a monetary policy shock. Neutrality of

monetary policy shocks is not inconsistent with the data.



1 Introduction

What are the effects of monetary policy on output? This key question has been

the focus of a substantial body of the literature. And the answer seems easy. The

“Volcker recessions” at the beginning of the 80’s have shown just how deep a recession

a sudden tightening of monetary policy can produce. Alternatively, look at figure 1,

which juxtaposes movements in the Federal Funds Rate from 1965 to 1996 with

growth rates in real GDP, flipped upside-down for easier comparison. In particular

for the first half of that sample, it is striking, how rises in the Federal Funds Rate are

followed by falls in output (visible as rises in the dotted line, due to the upside-down

flipping). This issue is closed.

Or is it? Eyeball econometrics such as figure 1 or case studies like the Volcker

recessions can be deceptive: many things are going on simultaneously in the economy,

and one may want to be careful to consider just a single cause-and-effect story. If

the answer really is so obvious, it should emerge equally clearly from an analysis of

multiple time series, which allows for additional channels of interaction and other

explanations, at least in principle. Thus, many researchers have followed the lead of

Sims (1972,1980,1986) and proceeded to analyze the key question in the title with

the aid of vector autoregressions. Rapid progress has been made in the last ten years.

Bernanke and Blinder (1992) shifted the focus on the federal funds rate. The ‘price

puzzle’, raised by Sims (1992), and other anomalies led to the inclusions of e.g. non-

borrowed reserves, total reserves as well as a commodity price index in VAR studies,

see e.g. Eichenbaum (1992), Strongin (1992), Christiano and Eichenbaum (1992a,b),

Leeper and Gordon (1992), Gordon and Leeper (1994), Christiano, Eichenbaum and

Evans (1996a, 1996c) and Kim (1999). Recently, Bernanke and Mihov (1996, 1998)

have reconciled a number of these approaches in a unifying framework, and Leeper,

Sims and Zha (1996) have summarized the current state of the literature, while adding

new directions on their own. Additional excellent surveys are in Canova (1995), Chris-

tiano, Eichenbaum and Evans (1997b) and Bagliano and Favero (1998). There seems

to be a growing agreement, that this literature has reached a healthy state, and has

provided a list of “facts”, which now theorists ought to explain, see e.g. Christiano,

Eichenbaum and Evans (1996b,1997a,1997b) or Leeper and Sims (1994).

The key step in applying VAR methodology to the question at hand is in identi-

fying the monetary policy shock. While this is usually done by appealing to certain

informational orderings about the arrival of shocks, there also is a more informal side

to the identification search: researchers like the results to look reasonable. According

to conventional wisdom, monetary contractions should raise the federal funds rate,

lower prices and reduce real output. If a particular identification scheme does not

accomplish this, then the observed responses are called a “puzzle”, while “successful”
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identification yields results matching the conventional wisdom. The “facts” that are

obtained this way are thus necessarily influenced by a priori theorizing. There is a

danger that the literature just gets out what has been stuck in, albeit more polished

and with numbers attached. Without being explicit about this a priori theorizing, it

is hard to distinguish between assumptions and conclusions.

This circularity is well recognized in the literature, and has already been clearly

pointed out by Cochrane (1994). Leeper, Sims and Zha (1996) defend this somewhat

circular reasoning by arguing for the reasonableness of impulse responses as an “in-

formal” identification criterion. Gali (1992) directly asks, whether the “IS-LM model

fit[s] the postwar U.S. data” rather than indirectly presuming that this is the only

model worth fitting. Cochrane (1994) and Rotemberg (1994) argue that economic

theory is crucially important for identifying monetary policy shocks: a VAR analysis

of these shocks only has a chance to be convincing, if the results look “plausible” to

begin with.

What is therefore desirable as a complement to the existing literature is some way

to make the a priori theorizing explicit while at the same time leaving the question

of interest open. This paper proposes to push this idea all the way, and to identify

the effects of monetary policy shocks by directly imposing sign restrictions on the

impulse responses. More specifically, I will assume that a “contractionary” monetary

policy shock does not lead to increases in prices, increase in nonborrowed reserves,

or decreases in the federal funds rate for a certain period following a shock. While

theories with different implications can fairly easily be constructed, these assumptions

may enjoy broad support and in any case, are usually tacitly assumed in most of the

VAR literature. In the approach here, they are brought out into the open and can

therefore be subject to debate. Crucially, I impose no restrictions on the response of

real GDP. Thus, the central question in the title is left agnostically open by design

of the identification procedure: the data will decide. I call the procedure “agnostic”

for this reason.

This will not be a free lunch, nor should one expect it to be. When imposing the

sign restrictions, one needs to take a stand on for how long these restrictions ought

to hold after a shock. Furthermore, one needs to take a stand on whether a strong

response in the opposite direction is more desirable than a weak one. I will try out a

variety of choices and look at the answers.

Section 2 introduces the method with most of the technicalities postponed to the

appendices A and B. Section 3 shows some results, based on the data set provided

by Bernanke and Mihov (1996, 1998). Section 4 concludes.

My approach is asymmetric in that I am agnostic about the response of output but

not of some other variables. This is intentional: the response of output is the focus

of this investigation. Nonetheless it is interesting to also report findings about the
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other variables, keeping in mind that they are “tainted” by a priori sign restrictions.

I find the following.

1. “Contractionary” monetary policy shocks have an ambiguous effect on real

GDP. With 2/3 probability, a typical shock will move real GDP by up to ±0.2
percent, consistent with the conventional view, but also consistent with e.g.

monetary neutrality. Indeed, the usual label “contractionary” may thus be mis-

leading, if output is moved up. Monetary policy shocks account for probably

less than twentyfive percent of the k-step ahead prediction error variance of real

output, and may easily account for less than three percent.

2. The GDP price deflator falls only slowly following a contractionary monetary

policy shock. The commodity price index falls more quickly.

3. I also find, that monetary policy shocks account for only a small fraction of the

forecast error variance in the federal funds rate, except at horizons shorter than

half a year, as well as for prices.

While these observations confirm some of the results found in the empirical VAR

literature so far, there are also some potentially important differences in particular

with respect to my key question: “contractionary” monetary policy shocks do not

necessarily seem to have contractionary effects on real GDP. Our conclusion from

these results: one should feel less comfortable with the conventional view and the

current consensus of the VAR literature than has been the case so far.

The new method introduced here complements the work by Blanchard and Quah

(1989), Lippi and Reichlin (1994a,b) and in particular by Dwyer (1997), Faust (1998),

Gambetti (1999), Canova and Pina (1999) and Canova and de Nicolo (2000): these

authors also impose restrictions on the impulse responses to particular shocks. Like

Faust, Dwyer and Canova-de Nicolo, my aim is to make explicit restrictions which

are often used implicitely. But there are also important differences. I do not im-

pose a particular shape of the impulse response as in Lippi and Reichlin (1994a) or

Dwyer (1997) or impose a zero impulse response at infinity as in Blanchard and Quah

(1989). Instead, I am content with restrictions on the sign at a few periods following

the shock, making for substantial differences between their approach and ours. The

intention here is to be minimalistic and to impose not (much) more than the sign re-

strictions themselves, as they can be reasonably agreed upon across many economists.

Faust (1998) also only imposes sign restrictions to restrict monetary policy shocks.

His focus is a different one. Faust examines the fragility of the “consensus” conclu-

sion, that monetary shocks account for only a small fraction of GDP fluctuations, see

Cochrane (1994), while this paper aims at estimating that response. Furthermore,

Faust only imposed sign restrictions on impact. In my discussion in Uhlig (1998)
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of his paper, I have shown how his approach can be extended, when one wishes to

impose the sign restrictions for several periods following the shock. The method by

Canova and de Nicolo (2000) and its application in Canova and Pina (1999) iden-

tifies monetary disturbances by imposing sign restrictions on the cross-correlations

of variables in response to shocks, adding restrictions until the maximum number of

shocks is uniquely identified. The identification here proceeds differently by using

impulse responses rather than cross correlations, by using other criteria used to select

among orthogonal decompositions satisfying the restrictions, and by not imposing

increasingly stringent restrictions to eliminate candidate orthogonalizations.

The approach here is also in the spirit of Bernanke and Mihov (1996a,b) in that

I do not aim at a complete decomposition of the one-step ahead prediction error

into all its components due to underlying structural shocks, but rather concentrate

on identifying only one such shock, namely the shock to monetary policy. I achieve

this solely by restricting the sign of the impulse responses directly. Again, the aim

is to be minimalistic, and to use as little a priori reasoning about other shocks as

possible in order to identify the effects of monetary policy shocks. The identification of

additional shocks can help in principle, as orthogonality between the shocks provides

an additional restriction for identifying the monetary policy shock, and there may be

those who argue that it is even necessary. The method can fairly easily be extended

in this direction, but the extension would come at the price of additional assumptions

about other shocks. Furthermore, the method can be extended by combining it with

other partial identification procedures. In the interest of space, these routes are not

pursued in this paper.

2 The Method

There is not much disagreement about how to estimate VARs. A VAR is given by

Yt = B(1)Yt−1 +B(2)Yt−2 + . . .+B(l)Yt−l + ut, t = 1, . . . , T (1)

where Yt is a m×1 vector of data at date t = 1− l, . . . , T , B(i) are coefficient matrices
of size m×m and ut is the one-step ahead prediction error with variance-covariance

matrix Σ. An intercept and perhaps a time trend is sometimes added to (1).

The disagreement starts when discussing, how to decompose the prediction er-

ror ut into economically meaningful or “fundamental” innovations. This is necessary

because one is typically interested in examining the impulse responses to such funda-

mental innovations, given the estimated VAR. In particular, much of the literature is

interested in examining the impulse responses to a monetary policy innovation.

Suppose that there are a total of m fundamental innovations, which are mutually

independent and normalized to be of variance 1: they can therefore be written as a
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vector v of size m×1 with E[vv0] = Im. Independence of the fundamental innovations
is an appealing assumption adopted in much of the VAR literature: if, instead, the

fundamental innovations were correlated, then this would suggest some remaining,

unexplained causal relationship between them. We therefore also adopt the indepen-

dence assumption here. What is needed is to find a matrix A such that ut = Avt.

The j-th column of A (or its negative) then represents the immediate impact on all

variables of the j-th fundamental innovation, one standard error in size. The only

restriction on A thus far emerges from the covariance structure:

Σ = E[utu
0
t] = AE[vtv

0
t]A

0 = AA0 (2)

Simple accounting shows that there arem(m−1)/2 “degrees of freedom” in specifying
A, and hence, further restrictions are needed to achieve identification. Usually, these

restrictions come from one of three procedures: from choosing A to be a Cholesky-

factor of Σ and implying a recursive ordering of the variables as in Sims (1986), from

some “structural” relationships between the fundamental innovations vt,i, i = 1, . . . ,m

and the one-step ahead prediction errors ut,i, i = 1, . . . ,m as in Bernanke (1986),

Blanchard and Watson (1986) or Sims (1986), or from separating transitory from

permanent components as in Blanchard and Quah (1989).

Here, I propose to proceed differently. First note, that I am solely interested in

the response to a monetary policy shock: there is therefore a priori no reason to also

identify the “other m− 1” fundamental innovations. Bernanke and Mihov (1996a,b)
similarly recognize this, and use a block-recursive ordering, to concentrate the iden-

tification exercise on only a limited set of variables which interact with the policy

shock.

I propose to go all the way by only concentrating on finding the innovation corre-

sponding to the monetary policy shock. This amounts to identifying a single column

a ∈ IRm of the matrix A in equation (2). It is useful to state a formal definition:

Definition 1 The vector a ∈ IRm is called an impulse vector, iff there is some

matrix A, so that AA0 = Σ and so that a is a column of A.

Proposition 1 in appendix A shows, that any impulse vector a can be characterized

as follows. Let ÃÃ0 = Σ be the Cholesky-decomposition of Σ. Then, a is an impulse

vector if and only if there is an m−dimensional vector α of unit length so that

a = Ãα (3)

Given an impulse vector a, it is easy to calculate the appropriate impulse response

as follows. Let ri(k) ∈ IRm be the vector response at horizon k to the i−th shock in a
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Cholesky-decomposition of Σ. The impulse response ra(k) for a is then simply given

by

ra(k) =
mX
i=1

αiri(k) (4)

Further, find a vector b̃ 6= 0 with

(Σ− aa0)b̃ = 0

normalized so that b0a = 1. Then, the real number

v
(a)
t = b0ut (5)

is the scale of the shock at date t in the direction of the impulse vector a, and v
(a)
t a

is the part of ut which is attributable to that impulse vector. Essentially, b is the

appropriate row of A−1. With these tools, one can perform variance decompositions

or counterfactual experiments.

To identify the impulse vector corresponding to monetary policy shocks, I im-

pose, that a contractionary policy shock does not lead to an increase in prices or

in nonborrowed reserves and does not lead to a decrease in the federal funds rate.

These assumptions seem to be the least controversial implications of a contractionary

monetary policy shock. Furthermore and crucially, these seem to be distinguishing

characteristics of monetary policy shocks compared to other shocks prominently pro-

posed in the literature. For example, money demand shocks are meant to be ruled

out as a competing explanation by the requirement that nonborrowed reserves do not

rise.

Obviously, this method of identification has its limits. For example, money de-

mand shocks cannot be ruled out, if one takes the point of view that the Federal

Reserve will not at least partially accomodate increases in money demand through an

increase in nonborrowed reserves. Furthermore, combinations of other shocks could

potentially look like monetary policy shocks. One way to avoid this problem would be

to identify the other shocks explicitely, at the price of many additional assumptions.

Furthermore, this problem is not new to this approach. For example, if the true data

generating mechanism has more shocks than variables, and if one uses a conventional

Cholesky-decomposition to identify a monetary policy shock by the Federal Funds

Rate innovation ordered last, the monetary policy shock thus identified will actually

be a linear combination of several underlying shocks, except in knife-edge cases. In

sum, identification in any econometric exercise rests on assumptions: I do not claim

that the identifying assumptions here are ironclad, but rather that they are partic-

ularly reasonable. Let me state the assumption explicitely. Choose some horizon

K ≥ 0.
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Assumption A. 1 A monetary policy impulse vector is an impulse vector a, so

that the impulse responses1 to a of prices and nonborrowed reserves are not positive

and the impulse responses for the federal funds rate is not negative, all at horizons

k = 0, . . . , K.

Given some VAR coefficient matricesB = [B01, . . . , B
0
l] some error variance-covariance

matrix Σ, and some horizon K, let A(B,Σ,K) be the set of all monetary policy im-
pulse vectors. Because it is obtained from inequality constraints, the set A(B,Σ, K)
will typically either contain many elements or be empty. Therefore, one typically

cannot obtain exact identification at this point, in contrast to more commonly used

exact identification procedures. For that reason, we will eventually supplement the

identification assumption above either by imposing a prior on A(B,Σ,K) or by min-
imizing some criterion function f(·) on the unit sphere, which penalizes violations of
the relevant sign restrictions, thus replacing assumption 1 by

Assumption A. 2 A monetary policy impulse vector is an impulse vector a

minimzing a given criterion function f(·) on the space of all impulse vectors, which
penalizes positive impulse responses of prices and nonborrowed reserves and negative

impulse responses of the federal funds rate at horizons k = 0, . . . ,K

As a first step, however, it is already informative to simply use the OLS estimate

of the VAR, B = B̂ and Σ = Σ̂, fix K or try out a few choices for K, and look at the

entire range of impulse responses, as a ∈ A(B̂, Σ̂, K) is varied, provided A(B̂, Σ̂, K)
is not empty. The set A therefore results in an interval for the impulse responses,

which we wish to calculate. One can think of this exercise as an extreme bounds

analysis in the spirit of Leamer (1983). As usual in the literature, the bounds apply

to each response entry ra,j(k) rather than to the entire function, i.e. there is probably

not a single a such that the response will be at the bound for all variables j or all

horizons k.

Numerically, this can and will be accomplished in a straightforward manner and

brute force by generating many impulse vectors, calculating their implied impulse

response functions, and checking, whether or not the sign restrictions are satisfied. It

is wise to calculate the Cholesky-responses ri once, and then calculate the response for

some given impulse vector by calculating a weighted sum of the ri as in equation (4). I

will generate these impulse vectors randomly, because this is easier to implement than

other available alternatives: draw ã from a standard normal in IRm, flip signs of entries

which violate sign restrictions, multiply with Ã−1 to calculate the corresponding α̃ and
1I will estimate my VAR using levels of the logs of variables, rather than e.g. first differences:

therefore, the restrictions are indeed imposed on the impulse responses and not e.g. on the cumulative

impulse responses.
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divide by its length to obtain a candidate draw for a. Check whether a ∈ A(B̂, Σ̂, K)
by checking the sign restrictions on the impulse responses for all relevant horizons

k = 0, . . . , K. Generate, say, 10000 candidate draws for a, and plot the maximum and

the minimum of the impulse responses for those a, which satisfy these restrictions,

a ∈ A(B̂, Σ̂,K). This is a consistent, although slightly biased estimate of the bounds.
Results can be seen in figure 2: we will defer the description and discussion of these

and all other results to section 3.

In principle, the set A(B,Σ, K) can be characterized analytically. A sign restric-
tion for some variable j and at some horizon k amounts to a linear inequality on α via

equation (4), thereby constraining α to some half space of IRm. The set A(B,Σ, K)
is the intersection of all these half spaces. It is therefore convex, which implies that

the range for variable j at horizon k of impulse responses satisfying the sign restric-

tions are intervals. The set A(B,Σ, K) can be characterized by its extreme points,
which in turn can be calculated using linear programming techniques. In practice,

the number of inequality constraints imposed can be considerable: hence, imposing

the inequality restrictions at horizon k = 0 only (or imposing none), and relying on

random “trial-and-error” for the rest is simpler to implement, and is done here.

I wish to move beyond estimation to inference in order to deal with the issue

of non-exact identification of the impulse vector a and to deal with the sampling

uncertainty in the OLS estimate of B and Σ. I propose two related, but different

approaches, based on a Bayesian method. In the first approach, all impulse vectors

satisfying the impulse response sign restrictions are considered “equally likely”. In

the second approach, I use an additional criterion to select the “best” of all impulse

vectors. First, I state the assumptions for these two approaches. This is followed by a

more intuitive description and discussion. Further technical details are in appendix B.

Let Ã(Σ) be the lower triangular Cholesky factor of Σ. Let Pm be the space of
positive definite m ×m matrices and let Sm be the unit sphere in IRm, Sm = {α ∈
IRm : || α ||= 1}. For both approaches, a Normal-Wishart prior is used rather than
one of a variety of other recent suggestions in the literature, see appendix B and

the discussion at the end there. Using a different prior should not pose additional

difficulties, and I suspect that the conclusions drawn here are reasonably robust to

the choice of the prior. It would be interesting to check that more carefully: that,

however, is beyond the scope of this paper.

Assumption A. 3 [for the pure sign restriction approach:] The parameters

(B,Σ,α) are drawn jointly from a prior on IRl×m×m×Pm×Sm. The prior is propor-
tional to a Normal-Wishart in (B,Σ), whenever a = Ã(Σ)α satisfies a ∈ A(B,Σ, K)
and zero elsewhere, i.e. is proportional to a Normal-Wishart density multiplied with

an indicator variable on Ã(Σ)α ∈ A(B,Σ,K).
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By parameterizing the impulse vector, i.e. by formulating the prior as a product

with an indicator variable in (B,Σ,α)-space rather than (B,Σ, a)-space, an undesir-

able scaling problem is avoided, see appendix B.1. The flat prior on the unit sphere

for α is appealing for a number of reasons. In particular, the results will be indepen-

dent of the chosen decomposition of Σ. E.g. reordering the variables and choosing

a different Cholesky decomposition in order to parameterize impulse vectors will not

yield different results. Again, details are in appendix B.1.

Assumption A. 4 [for the penalty function approach:] The parameters (B,Σ)

are drawn from a Normal Wishart prior. The monetary policy impulse vector a is

identified, using assumption 2.

While it is clear that both approaches can deal with the problem of underidenti-

fication, i.e. a set A(B,Σ, K) with more than one entry, it is instructive to consider
the case of overidentification, i.e. if the set A(B,Σ, K) is empty. In that case, the
first approach will consider the particular B and Σ imposible, i.e. the posterior will

be constrained to be zero there. This is not a problem in principle, as long as there

are some B and Σ, for which A(B,Σ,K) is nonempty: the first method will only
permit these for drawing inferences. By contrast, the second approach will always

find a “best” impulse vector a for any given (B,Σ). If the set A(B,Σ, K) is empty,
the second approach will find an impulse vector a which comes as close as possible to

satisfying the sign restrictions by minimizing a penalty for sign restriction violations.

Numerically, I implement these approaches in the following way.

The pure-sign-restriction approach. Make assumption 3. The posterior is given

by the usual Normal-Wishart posterior for (B,Σ), given the assumed Normal-

Wishart prior for (B,Σ), times the indicator function on Ã(Σ)α ∈ A(B,Σ, K).
To draw from this posterior, take a joint draw from both the posterior for the

unrestricted Normal-Wishart posterior for the VAR parameters (B,Σ) as well

as a uniform distribution over the unit sphere αinSm. Construct the impulse
vector a, see equation (3) and calculate the impulse responses rk,j at horizon

k = 0, . . . ,K for the variables j, representing the GDP deflator, the commodity

price index, nonborrowed reserves and the federal funds rate. If all these impulse

responses satisfy the sign restrictions, keep the draw. Otherwise discard it.

Repeat sufficiently often. Calculate statistics, based on the draws kept.

The penalty function approach. Define the penalty function

f(x) =

(
x if x ≤ 0
100 ∗ x if x ≥ 0 , (6)
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which penalizes positive responses in linear proportion and rewards negative

responses in linear proportion, albeit at a slope 100 times smaller than the

slope for penalties on the positive side.

Make assumption 4. For the true VAR coefficients, let rj,a(k), k = 0, . . . ,K be

the impulse response of variable j and σj be the standard deviation of the first

difference of the series for variable j. Let ιj = −1, if j is the index of the Federal
Funds Rate in the data vector, and else, let ιj = 1. Define the monetary policy

impulse vector as that impulse vector a, which minimizes the total penalty Ψ(a)

for prices, nonborrowed reserves and (after flipping signs) the federal funds rate

at horizons k = 0, . . . , K,

Ψ(a) =
X

j∈


“GDP Deflator”,

“Comm. Price Index”,

“Nonborr. Reserves”

“Federal Funds Rate”



KX
k=0

f

Ã
ιj
rj,a(k)

σj

!

The rescaling by σj is necessary to make the deviations across different impulse

responses comparable to each other. Note that the sign of the penalty direction

is flipped for the Federal Funds Rate. Since the true VAR is not known, find the

monetary policy impulse vector for each draw from the posterior. This requires

numerical minimization. Keep all draws and accordingly calculated monetary

policy impulse vectors, and calculate statistics based on these.

The pure-sign-restriction approach is “cleaner” in that it literally only imposes

the sign restrictions: it does not require a somewhat arbitrary additional penalty

function. It should be kept in mind, though, that the pure-sign-restriction is, in

effect, simultaneously an estimation of the reduced-form VAR alongside the impulse

vector: VAR parameter draws, which do not permit any impulse vector to satisfy the

imposed sign restrictions, receive zero prior weight. By contrast, the penalty-function

approach leaves the reduced-form VAR untouched.

Certainly, different priors are likely to generate different results. One can read

Fausts (1998) contribution as searching for a prior that places all mass on the impulse

vectors which explain the largest share of output variation (as well as studying the

robustness with respect to the reduced-form VAR prior): he shows, that up to 86

percent of the variance of output may be explainable with monetary policy shocks

that way. Faust (1998) imposes far fewer sign restrictions than I do here, see his list

on page 230: indeed, the contribution of monetary policy shocks to the explanation of

output variance decreases considerably, when imposing the same sign restrictions as
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here, as figure 6 of my discussion in Uhlig (1998) of his paper shows. The sensitivity

of the results to the choice of the prior may therefore not be too large. In sum, Fausts

analysis provides a useful complement and robustness check to the method here.

As for the penalty function approach: the functional form of the penalty function

may seem somewhat arbitrary: a somewhat detailed defense is given in appendix B.2.

Nonetheless, as the results might be sensitive to that choice, some sensitivity analysis

is provided in figure 9, when providing the empirical results.

Perhaps the most controversial aspect of the penalty function in (6) is the reward

given to responses satisfying the restriction. Numerically, this feature is needed in

order to (generically) exactly identify a “best” impulse vector, if A(B,Σ, K) is not
empty. But does this also make economic sense? I believe it does for the following

reason. At any point in time, many shocks hit the economy. In isolation or together,

some nonmonetary shocks may trigger minor responses in interest rates, prices and

nonborrowed reserves which satisfy the sign restrictions. On the other hand, it is

plausible that a monetary policy shock moves all these variables quite substantially.

Given a choice among many candidate monetary impulse vectors in A(B,Σ, K), it
might therefore be desirable to pick the one, which generates a more decisive response

of the variables, for which sign restrictions are imposed: this is what the penalty

function approach does. The drawback of this feature should also be clear: one is, in

effect, imposing somewhat more than just the sign restrictions. While I have treated

all sign restrictions symmetrically, one could alternatively modify the penalty function

approach so that rewards are only given for those variables or at those horizons, for

which a large response in the correct direction seems a priori most plausible. For

example, one may expect monetary policy shocks to move interest rates a lot in the

first few periods, but one may be less sure about a strong reaction of prices or a strong

reaction of interest rates further out, compared to other shocks hitting the economy.

In sum, both approaches have their own advantages. Deciding, which is more

appropriate is a matter of tastes and judgement. To allow the reader to make this

judgement, I present results using both approaches.

3 Results

In this section, I present some results, using my method. I have employed the data set

used in Bernanke and Mihov (1996a,b), which contains the GDP, the GDP deflator,

a commodity price index, total reserves, nonborrowed reserves and the federal funds

rate for the U.S. at monthly frequencies from January 1965 to December 1996. To

obtain monthly observations for all these series, some interpolation was required,

see Bernanke and Mihov (1996a) and in particular their NBER 1995 working paper
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version for details. I have fitted a VAR with 12 lags in levels of the logs of the series

except for using the federal funds rate directly. I did not include a constant or a time

trend. This may result in a slight misspecification, but makes for more robust results

because of the interdependencies in the specification of the prior between these terms

and the roots in the autoregressive coefficients, see Uhlig (1994).

Before moving to results permitting inference, examine figure 2, showing the range

of impulse response functions, which satisfies the sign restrictions for k = 0, 1, . . . K

months after the shock, where K = 5. The VAR coefficients and the variance-

covariance matrix Σ have been fixed at the MLE point estimate. To generate this

figure, 10000 candidate draws for a have been generated. In addition to the bounds, 10

randomly selected impulse responses satisfying the sign restrictions have been drawn

to show how “typical” responses in these bands might look like. Figure 3 varies the

restriction horizon K. One can already see that the bounds for the response of real

GDP straddle the no-response line at zero. This turns out to be a rather typical

feature of most of the Bayesian sampling results as well: we discuss these features in

more detail in subsection 3.1.

Before turning to these results and for comparison with these, figure 4 shows

results obtained from a “traditional” Cholesky decomposition of Σ, i.e. imposing

lower triangularity on A. The Cholesky decomposition is popular in the literature

because it is easy to compute. This method requires a choice regarding the ordering

of the variables as well as the choice of the variable, whose innovations are to be

interpreted as monetary policy shocks. Here, I identify the monetary policy shock

with the innovations in the Federal Funds Rate ordered last. Put differently, with this

identification, monetary policy shocks are assumed to have an instantaneous effect

only on the Federal Funds Rate (and to be the only shock to satisfy this).

Figure 4 shows impulse responses for a horizon of up to five years after the shock.

The top rows contain the results for real GDP and total reserves, the middle row

contains the results for the GDP price deflator and for nonborrowed reserves and the

bottom row contains the results for the commodity price index and the federal funds

rate. Here as well as in all other plots, I show the median as well as the 16% and the

84% quantiles for the sample of impulse responses: if the distribution was normal,

these quantiles would correspond to a one standard deviation band. A number of

authors prefer two standard deviation bands, which would correspond to the 2.3%

and the 97.7% quantiles. But given that I want to report the same statistics in all the

figures and given that I based inference in the pure-sign-restriction approach on only

one hundred draws for computational reasons, I felt that I could not report these

quantiles precise enough. Furthermore, one standard deviation bands are popular

in this literature as well. The results are fairly “reasonable” in that they confirm

conventional undergraduate textbook intuition. The “reasonableness” of figure 4 is
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not an accident, but is to a good degree the result of the identification search alluded

to in the introduction, involving both a search over all the possibilities of ordering

variables and identifying a monetary policy shock, as well a search over the time series

to be included in the VAR in the first place.

One can also see a version of the “price puzzle” pointed out by Sims (1992):

the GDP deflator moves slightly above zero first before declining below zero after a

monetary policy shock (see also the remarks in appendix B). Eichenbaum (1992) has

shown how the price puzzle can be mitigated with the inclusion of commodity prices

in the VAR: they are included here and thus, the price puzzle here is rather mild, but

it is still there. The two “agnostic” identification approaches to be employed next

will avoid the price puzzle by construction.

3.1 Results for the pure-sign-restriction approach.

Our benchmark result are contained in figure 5, showing the impulse responses from

a pure-sign-restriction approach with K = 5. I.e., the responses of the GDP price

deflator, the commodity price index and nonborrowed reserves have been restricted

not to be positive and the federal funds rate not to be negative for the six months

k, k = 0, . . . , 5 following the shock. The results can be described as follows:

1. With a 2/3 probability, the impulse response for real GDP is within a ±0.2
percent interval around zero.

2. The GDP price deflator reacts very sluggishly, with prices dropping by about

0.2 percent within a year, and dropping by 0.5 percent within five years. The

price puzzle is avoided by construction.

3. The commodity price index reacts swiftly, reaching a plateau of a 1.5 percent

drop after about one year.

4. The Federal Funds Rate reacts large and positively immediately, typically rising

by 30 basis points, then reversing course within a year, ultimately dropping by

10 basis points.

5. Nonborrowed reserves and total reserves both drop initially, with nonborrowed

reserves dropping by more (around 0.5 percent) than total reserves (around 0.2

percent). After one to two years, a reversal sets in with reserves eventually

expanding by around 0.4 percent.

The initial 6-months response for most of these variables look rather conventional

except for real GDP. Indeed, one may conclude from this figure that the reaction of

real GDP can as easily be positive as negative following a “contractionary” shock.
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While this is consistent with the textbook view of declining output after a monetary

policy shock, the data does not seem to urge this view upon us. The answer to the

opening question is: the effects of monetary policy shocks on real output are ambigu-

ous. A one-standard deviation monetary policy shock may leave output unchanged

or may drive output up or down by up to 0.2 percent in most cases, thus possibly

triggering fairly sizeable movements of unknown sign.

The further course of all the responses looks perhaps less conventional, although

not hard to explain. Here are some suggestions. Commodity prices react more quickly

than the GDP deflator, since commodities are traded on markets with very flexible

prices. As for reserves and interest rates, note that these impulse responses contain

the endogenous reaction of monetary policy to its own shocks. The Federal Funds

Rate reverses course and turns negative for perhaps one of the following two reason.

First, this may reflect that monetary policy shocks really arise as errors of assessment

of the economic situation by the Federal Reserve Bank. The Fed may typically

try to keep the steering wheel steady: should they accidentally make an error and

“shock” the economy, they will try to reverse course soon afterwards. Second, this

may reflect a reversal from a liquidity effect to a Fisherian effect: with inflation

declining, a decline in the nominal rate may nonetheless indicate a rise in the real

rate. Looking at the responses of reserves, I favor the first view. Obviously, other

reasonable interpretations can be found.

This identification of the monetary policy shock seems appealingly clean to me

as it only makes use of a priori appealing and consensual views about the effects of

monetary policy shocks on prices, reserves and interest rates. There is one degree of

choice here, though: the horizon K for the sign restrictions. How precise does this

horizon need to be specified, i.e. how sensitive are the results to changes in K? The

answer is provided in figure 6, showing the impulse response functions for real GDP,

when imposing a variety of choices for K. The left column shows the results for a

3-months (K=2) and a 6-months (K=5) horizon, while the right column shows the

results for a 12-months (K=11) and a 24-months (K=23) horizon. The variation is

remarkably moderate: essentially, all of these figures show again that the error band

for the real GDP impulse response is a ±0.2 range around zero. As one moves from
shorter to longer horizons K, that band seems to move up somewhat, however. A

short-lived liquidity effect is better for the conventional view.

The results are not quite as sharp at the short end as for the Cholesky decom-

position. This is to be expected: the Cholesky decomposition provides an exact

identification, while the pure sign restriction approach does not. As the horizon in-

creases, however, the degree of uncertainty about the response appears to be about

the same. Apparently, the sign restrictions are about as restrictive as or even more

restrictive than the Cholesky identification at horizons exceeding, say, three years
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after the shock. It is also interesting to note that the error bands in figure 5 are

typically remarkably symmetric around the median.

3.2 Results from the penalty-function approach.

Figures 7 and 8 provide the same results, now using the penalty-function approach

rather than the pure-sign-restriction approach. First, compare the results for the

6-months horizon, K = 5, when using the penalty function approach in figure 7 to

those of the pure-sign-restriction approach in figure 5. The results look qualitatively

largely the same. The magnitudes are slightly larger, and the error bands somewhat

sharper, in particular immediately after the shock, compared to the pure-sign re-

striction approach. The greatest difference obtains for the impulse response for real

GDP, i.e. for my central question. Here, one can perhaps see some evidence for the

conventional view: real output, after a short initial and puzzling increase by around

0.05 percent, then declines by a tenth of a percent or more within a year, on average

gradually recovering after that.

The differences between these two approaches in figures 5 and 7 are easy to explain.

While the pure-sign-restriction approach is agnostic about the size of the impulse re-

sponse away from the sign restriction, larger responses are “rewarded” by the penalty-

function approach at least as long as this does not generate sign-violations elsewhere.

Instead of a range of impulse vectors consistent with the sign restriction, the penalty

function approach seeks a unique monetary policy impulse vector by searching e.g.

for a large initial reaction of the Federal Funds Rate. Indeed, this reaction is now

fairly sharply estimated to be about 30 basis points, quickly rising by another 10 ba-

sis points. One obtains similarly sharp error bands elsewhere. The monetary policy

impulse vector uniquely identified by the penalty function is an element in the set of

the vectors admitted by the pure-sign-restriction approach, given a draw for the VAR

coefficients, provided that set is not empty. One would therefore expect the range

of impulse responses of the penalty function approach to be contained in the range

of impulse responses of the pure-sign-restriction approach. Indeed, this seems to be

the case: with 64% posterior probability, the response for the real GDP response,

for example, never seems to venture outside the ±0.2 percent interval around zero
calculated similarly for the pure-sign-restriction approach.

One can thus either view the results in figure 7 as a sharpening of the results in

figure 5, due to additionally desirable properties imposed on the restricted impulse

responses, or as a distortion of the results in figure 5 due to additional ad-hoc restric-

tions. Since the aim is to impose the sign restrictions and nothing else, I find the

pure-sign-restriction approach to be more appealing. The results of the second ap-

proach are nonetheless informative in that they show the additional mileage obtained
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from additional, potentially desirable restrictions, opening the door to more detailed

investigations.

The results of the penalty function approach are also more sensitive to the choice

of the restriction horizon K, as a comparison of figure 8 with figure 6 shows. This is

not surprising: as the restriction horizon increases, it is increasingly harder to keep

the sign restrictions satisfied. With increasing k, the search for the monetary policy

impulse vector increasingly seeks to avoid penalties for sign violations rather than

rewards for movements in the opposite direction. The 64% percent error band for the

penalty-function approach keeps staying in the ±0.2 percent band, and again moves
up into positive ranges with larger K: in fact, the results for a 24-month horizon

(K=23) practically rules out the conventional view. This reinforces the conclusion

drawn in the previous subsection, that the conventional view requires a short-lived

liquidity effect or, alternatively, monetary policy shocks as policy errors which are

quickly reversed.

The results are not affected much by the specific functional form of the penalty

function, however, as figure 9 reveals.

3.3 How much variation do monetary policy shocks explain?

Having identified the monetary policy shock, it is then interesting to find out, how

much of the variation these shocks explain. What fraction of the unexpected k-

step ahead variance in, say, real GDP, prices and interest rates, are accounted for by

monetary policy shocks? These questions are answered by figure 10 for the benchmark

experiment, i.e. using a pure sign restriction approach with a 6-months restriction

(K=5). Results for the other experiments look fairly similar. The figure shows the

fraction of the k−step ahead variance in the six variables explained by monetary
policy shocks, with the variables ordered as in figure 5.

According to the median estimates, shown as the middle lines in this figure, mone-

tary policy shocks account for 10 percent of the variations in real GDP at all horizons,

for up to 30 percent of the long-horizon variations in prices and 25 percent of the vari-

ation in interest rates at the short horizon, falling off after that. Explaining just three

or so percent of the real GDP variations at any horizon is within the 64% error band:

it thus seems fairly likely, that monetary policy has very little effect on real GDP.

This may either be due to monetary policy shocks having little real effect, or due to

a Federal Reserve Bank keeping a steady hand on the wheel, as argued by Cochrane

(1994), Woodford (1994) or Bernanke (1996).

Among the six series, the largest fraction at the long end is explained for prices,

which is somewhat supportive of the conventional view that in the long run, monetary

policy only has effects on inflation and not on much else. For interest rates, the largest
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fraction of variation explained by monetary policy is at the short horizon, providing

further support to the view, that monetary policy shocks are accidental errors by the

Federal Reserve Bank, which are quickly reversed. The remaining variations in prices

and interest rates may still be due to monetary policy, but then it needs to be due

to the endogenous part of monetary policy: by systematically responding to shocks

elsewhere, monetary policy may end up being responsible for 100% of the movements

in prices. Only 30% percent of these movements can directly be ascribed to shocks

generated by monetary policy itself. These results are rather similar to the results

found in the empirical VAR literature so far, see the surveys cited in the introduction.

Indeed, a similar plot for the variance decomposition from a Cholesky decomposition

(not shown) looks fairly similar to figure 10 except at horizons of less than one year.

3.4 Inflation and real interest rates

One can analyze the results shown further. For example, one can calculate the impulse

response for inflation rates by calculating rπ,a(k) = rp,a(k)−rp,a(k−12), where rp,a(k)
is the horizon of the GDP deflator at horizon k, given the impulse vector a, and where

we define rp,a(k) = 0 for k < 0. This in turn allows the calculation of a response of

the real interest rate by subtracting the predictable change in inflation rates from the

response of a one-year T-bill rate, matching maturities:

rr,a(k) = rT-bill,a(k)− rπ,a(k + 12)
To calculate this, I added a time series for the T-bill rate at constant maturity to the

VAR specification above, increasing the number of variables from six to seven: the

one-year T-bill rate rather than the Federal Funds Rate is the appropriate nominal

interest rate from which to calculate annual real rates by subtracting the annual

inflation rate. The data was obtained from the web site of the Federal Reserve Bank

of St. Louis. I used the pure sign restriction approach with K = 5 (and no restriction

on the response of the 1-year T-bill rate) to identify the monetary policy shock. I

calculated the implied response for inflation and the real rate. The results are in

figure 11. What is perhaps somewhat striking is the fact that real rates are positive

for up to two years, and then return to zero. The overshooting to the negative

side, which is visible for both the response of the Federal Funds Rate and the 1-year

nominal T-Bill rate, is not present in the response of the real rate.

4 Conclusions

This paper proposed a new “agnostic” method to estimate the effects of monetary

policy, imposing sign restrictions on the impulse responses of prices, nonborrowed
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reserves and the federal funds rate in response to a monetary policy shock. No

restrictions are imposed on the response of real GDP. It turned out that

1. “Contractionary” monetary policy shocks have an ambiguous effect on real

GDP, moving it up or down by up to ±0.2 percent with a probability of 2/3.
Monetary policy shocks accounts for probably less than twentyfive percent of

the k-step ahead prediction error variance of real output, and may easily account

for less than three percent.

2. The GDP price deflator falls only slowly following a contractionary monetary

policy shock. The commodity price index falls more quickly.

3. Monetary policy shocks account for only a small fraction of the forecast error

variance in the federal funds rate, except at horizons shorter than half a year.

They account for about one third of the variation in prices at longer horizons.

In sum, even though the general price level moves very gradually for a period of

about a year, monetary policy shocks have ambiguous real effects and may actually

be neutral. These observations largely confirm the results found in the empirical

VAR literature so far, except for the ambiguity regarding the effect on output. This

exception is, of course, a rather important difference. “Contractionary” monetary

policy shocks do not necessarily seem to have contractionary effects on real GDP.

One should therefore feel less comfortable with the conventional view and the current

consensus of the VAR literature than has been the case so far.

The paper agrees with a number of other publications in the literature, that

variations in monetary policy account only for a small fraction of the variation in any

of these variables. Good monetary policy should be predictable policy, and should

not rock the boat. From that perspective, monetary policy in the US during this time

span has been successful indeed.
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Appendix

A Characterizing Impulse Vectors

Let u be the one-step ahead prediction error in a VAR of n variables and let v be the

vector of fundamental innovations, related to u via some matrix A,

u = Av

Let Σ be the variance-covariance matrix of u, assumed to be nonsingular, while the

identity matrix is assumed to be the variance-covariance matrix of v. If v = e1,

i.e. the vector with zeros everywhere except for its first entry, equal to unity, then

u = Ae1 equals a1, the first column of A. Hence, the j-th column of A describes the

j-th “impulse vector”, i.e. the representation of an innovation in the j-th structural

variable as a one-step ahead prediction error. Put differently, the j-th column of A

describes the immediate impact on all variables of an innovation in the j-th structural

variable. Our aim is to characterize all possible impulse vectors. One can do so, using

the observation that any two decompositions Σ = AA0 and Σ = ÃÃ0 have to satisfy
that

Ã = AQ (7)

for some orthogonal matrix Q, i.e. QQ0 = I, see also Faust (1999) and Uhlig (1999). I
find the following proposition useful, which I shall prove directly. I follow the general

convention that all vectors are to be interpreted as columns.

Proposition 1 Let Σ be a positive definite matrix. Let xi, i = 1, . . . ,m be the eigen-

vectors of Σ, normalized to form an orthonormal basis of IRm. Let λi, i = 1, . . . ,m

be the corresponding eigenvalues. Let a ∈ IRm be a vector. Then, the following four

statements are equivalent:

1. There are coefficients αi, i = 1, . . . ,m with
Pm
i=1 α

2
i = 1, so that

a =
mX
i=1

µ
αi
q
λi

¶
xi

2. Σ̃ = Σ− aa0 is positive semidefinite and singular.
3. The vector a is an impulse vector, i.e., there is some matrix A, so that AA0 = Σ

and so that a is a column of A.
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4. Let ÃÃ0 = Σ for some matrix Ã = [ã1, . . . , ãm]. Then there are coefficients

αi, i = 1, . . . ,m with
Pm
i=1 α

2
i = 1, so that

a =
mX
i=1

αiãi

Note that there are m − 1 “degrees of freedom” in picking an impulse vector,
and that impulse vectors cannot be arbitrarily long: the Cauchy-Schwarz inequality

implies that

|| a ||≤
vuut mX
i=1

| λi | || xi ||2,

for example.

Proof:

First, I show that the third statement implies the second statement. To that end,

write A = [a1 . . . am] in form of its columns, and note that

Σ = AA0 =
mX
i=1

aia
0
i

Assume w.l.o.g., that a is the first column, a = a1. Then, Σ̃ =
Pm
i=2 aia

0
i, which is

positive semidefinite and singular, since each of the matrices aia
0
i are of rank 1.

Next, I show that the second statement implies the third. Find the nonzero

eigenvalues λ̃i, i = 2, . . . ,m and its corresponding eigenvectors x̃i, i = 2, . . . ,m for the

positive semidefinite matrix Σ̃ = Σ− aa0, noting that Σ̃ must be of rank m− 1, since
Σ is of rank m. Let

A =
h
a,

q
λ̃2x̃2,

q
λ̃3, x̃3 . . .

q
λ̃mx̃m

i
A simple calculation shows that indeed Σ = AA0.
To see that the third statement implies the last, note that A = ÃQ for some

matrix Q with QQ0 = I, see equation 7. The coefficients α can now be found in the
first column of Q. Conversely, given any such vector α of unit length, complement it

to an orthogonal basis to form the matrix Q. Then, let A = ÃQ.

To see the equivalence between the third and the first statement, follow the same

argument, noting that

Ã =
h
x1 . . . xm

i


√
λ1 0 . . . 0

0
√
λ2 . . . 0

...
...

...
...

0 0 . . .
√
λm


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is simply a particular decomposition ÃÃ0 = Σ.

This finishes the proof. •

Given an impulse vector a, one would like to calculate the part of the one-step

ahead prediction error ut which is attributable to shocks proportional to that vector.

If the entire matrix A was available and a was the, say, first column, one would

simply calculate vt = A
−1ut and use vt,1 as the scale of the shock attributable to a.

Motivated by this reasoning, define:

Definition 2 Given an impulse vector a and a one-step ahead prediction error u ∈
IRm, v(a) ∈ IR is called the scale of a shock attributable to a, if there exists a matrix A

with A0A = Σ, of which a is the j-th column for some j, so that v(a) = (A−1u)j.

It turns out that this ties down the scale uniquely, provided Σ is not singular.

Proposition 2 Given an impulse vector a and a one-step ahead prediction error u,

the scale of the shock v(a) attributable to a is unique and can be calculated as follows.

Let b ∈ IRm solve the two equations

0 = (Σ− aa0) b
1 = b0a

The solution b exists and is unique. Then,

v(a) = b0u

Proof: Suppose, A was available and assume w.l.o.g., that a is its first column.

Thus, A can be partitioned as A = [a|A2]. Likewise, partition B = A−1 into

B =

"
b0

B2

#

as well as v = A−1u into

v =

"
v(a)

V2

#

Clearly, v(a) = b0u: thus, the task is to characterize b. Note first that

Σ = AA0 = aa0 +A2A02 (8)

Next, note that

Im = BA =

"
b0a b0A2
B2a B2A2

#
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Hence, b0a = 1 and b0A2 = 0. The latter equality implies together with equation (8)

0 = b0A2A02b = b
0(Σ− aa0)b

Since Σ − aa0 is symmetric, this is equivalent to (Σ − aa0)b = 0. Note, that there

is unique one-dimensional subspace of vectors b satisfying (Σ − aa0)b = 0, since Σ

is assumed to be regular. Also, because Σ is regular, a0b 6= 0 for any b 6= 0 which

satisfies this equation. Thus, there is a unique b, which also satisfies b0a = 1. •

With v(a) it is now furthermore clear, that the part of u which is attributable to

the shock proportional to the impulse vector a is given by v(a)a.

B Estimation and Inference

For convenience, I collect here the main tools for estimation and inference, see also

Uhlig (1998). I use a Bayesian approach since it is computationally simple and since

it allows for a conceptually clean way of drawing error bands for statistics of interest

such as impulse responses, see Sims and Zha (1999) for a clear discussion on this

point. Note that draws from the posterior are “candidate truths”. Thus, if e.g. the

true impulse response for prices should not violate the imposed sign restriction, then

this should also literally be true for any draw from the posterior. Thus e.g. the “price

puzzle” in figure 4 is a violation by “candidate truths”, and worrisome. With a clas-

sical approach, by contrast, considerations of significance would enter: a violation

may be considered as consistent with the sign restriction if it is insignificant, requir-

ing further judgement. Put differently, a Bayesian approach is more convenient to

implement and cleaner to justify. The reader who rather wishes to pursue a classical

approach and inference regarding impulse response functions in vector autoregres-

sions is referred to the work by Mittnik and Zadrozny (1993), Kilian (1998a,b) and

Berkowitz and Kilian (2000).

Using monthly data, I fixed the number of lags at l = 12 as in Bernanke and

Mihov (1996a,1996b). Stack the system (1) as

Y = XB+ u (9)

whereXt = [Y
0
t−1, Y

0
t−2, . . . , Y

0
t−l]

0,Y = [Y1, . . . , YT ]
0,X = [X1, . . . , XT ]

0, u = [u1, . . . , uT ]0

and B = [B(1), . . . , B(l)]
0. To compute the impulse response to an impulse vector a,

let a = [a0, 01,m(l−1)]0 as well as

Γ =

"
B0

Im(l−1) 0m(l−1),m

#
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and compute rk,j = (Γ
ka)j, k = 0, 1, 2, . . . to get the response of variable j at horizon

k. The variance of the k-step ahead forecast error due to an impulse vector a is

obtained by simply squaring its impulse responses. Summing again over all aj, where

aj is the j-th column of some matrix A with AA
0 = Σ delivers the total variance of

the k-step ahead forecast error.

I assume that the ut’s are independent and normally distributed. The MLE for

(B,Σ) is given by

B̂ = (X0X)−1X0Y, Σ̂ =
1

T
(Y −XB̂)0(Y −XB̂) (10)

Our prior and posterior for (B,Σ) belongs to the Normal-Wishart family, whose

properties are further discussed in Uhlig (1994), extending the standard treatment in

Zellner (1971). A proper Normal-Wishart distribution is parameterized by a “mean

coefficient” matrix B̄ of size ml × m, a positive definite “mean covariance” matrix
S of size m ×m as well as a positive definite matrix N of size ml ×ml and a “de-
grees of freedom” real number ν ≥ 0 to describe the uncertainty about (B,Σ) around
(B̄, S). The Normal-Wishart distribution specifies, that Σ−1 follows a Wishart dis-
tribution Wm(S

−1/ν, ν) with E[Σ−1] = S−1, and that, conditionally on Σ, the coeffi-

cient matrix in its columnwise vectorized form, vec(B) follows a Normal distribution

N (vec(B̄),Σ⊗N−1). To draw from the Wishart distributionWm(S
−1/ν, ν), an easily

implementable method is to calculate Σ = (R ∗ R0)−1, where R is a m × ν matrix

with each column an independent draw from a Normal distribution N (0, S−1/ν) with
mean zero and variance-covariance matrix S−1.
Proposition 1 on p. 670 in Uhlig (1994) states, that if the prior is described by

B̄0, N0, S0 and ν0, then the posterior is desribed by B̄T , NT , ST and νT , where

νT = T + ν0

NT = N0 +X
0X

B̄T = N−1
T (N0B̄0 +X

0XB̂)

ST =
ν0
νT
S0 +

T

νT
Σ̂+

1

νT
(B̂ − B̄0)0N0N−1

T X
0X(B̂ − B̄0)

I use a “weak” prior, and use N0 = 0, ν0 = 0, S0 and B̄0 arbitrary. Then, B̄T = B̂,

ST = Σ̂, νT = T , NT = X0X, which is also the form of the posterior used in the

RATS manual for drawing error bands, see example 10.1 in Doan (1992).

No attempt has been made to impose more specific prior knowledge such as the

“no change forecast” of the Minnesota prior, see Doan, Litterman and Sims (1984),

special treatments of roots near unity, see the discussion in Sims and Uhlig (1991) as

well as Uhlig (1994), or to impose the more sophisticated priors of Leeper, Sims and

Zha (1996) or Sims and Zha (1998) or Kadiyala and Karlsson (1997). Also, I have
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not experimented with regime-switching as in Bernanke and Mihov (1996a,b) or with

stochastic volatility as in Uhlig (1997).

B.1 The pure-sign-restriction approach

Two rather technical remarks are in order. First, by parameterizing the impulse vec-

tor, i.e. by formulating the prior as a product with an indicator variable in (B,Σ,α)-

space rather than (B,Σ, a)-space, an undesirable scaling problem is avoided. Con-

sider some (B,Σ) as well as (B,λΣ) for some λ > 0. Rescaling Σ induces rescaling of

A(B,Σ,K). As a result, a prior with an indicator variable in (B,Σ, a)-space would
assign λ(m−1)/2 as much weight to the ²-ball around (B,λΣ) as to the ²-ball around
(B,Σ) beyond the weights given by the Normal-Wishart prior. With the formulation

in (B,Σ,α)-space, the weight of these two balls is given by the Normal-Wishart prior

alone.

Second, it should be noted that all decompositions Σ = ÃÃ0 together with a
uniform prior for α result in the same prior on the impulse vectors a and thus the

same inference, because two different decompositions differ by an orthogonal rotation

Q, see equation (7). Therefore, changing to a different decomposition is equivalent to

rotating the distribution for α with the appropriate Q. Since an orthogonal rotation

of a uniform distribution on the unit sphere will leave that distribution unchanged,

there is no change in the implied prior on impulse vectors. In particular, reordering

and choosing a different Cholesky decomposition in order to parameterize impulse

vectors will not yield different results. In sum, any smooth, matrix-valued function

of Σ, satisfying Ã(Σ)
³
Ã(Σ)

´0
= Σ will lead to the same inference, because two such

functions differ only in an orthonormal transformation and thus by a Jacobian equal

to unity.

Finally, the flat prior is appealing, as the likelihood function is uninformative

about the appropriate choice of α, i.e., using Jeffreys prior would also result in the

choice of a flat prior in α. This is not true in (B,Σ, a)-space due to the rescaling issue

described above. By change of variable, the prior chosen in (B,Σ,α)-space can be

transformed in a prior in (B,Σ, a)-space, obviously. Alternatively, one could calculate

the implied prior in the space of impulse responses, which provide another means of

parameterization. Dwyer (1997) pursues that route.

To draw inferences from the posterior for the pure-sign-restriction approach, I

take n1 draws from the VAR posterior and, for each of these draws n2 draws α from

the m-dimensional unit sphere. A draw α from the m-dimensional unit sphere is

easily obtained by drawing α̃ from the m-dimensional standard normal distribution,

and then normalizing its length to unity, α = α̃/ || α̃ ||. From Σ and α, I con-

struct the impulse vector, using the characterization (3) or, alternatively, some other
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characterization in proposition 1.

For each draw, I calculate the impulse responses, and check, whether the sign

restrictions are satisfied. If they are, I keep the draw. If not, I proceed to the next.

Finally, error bands etc. are calculated, using all the draws which have been kept. For

the calculations, I have chosen n1 = n2 and high enough, so that a couple of hundred

joint draws satisfied the sign restriction. E.g. for the sixth months restriction (K = 5),

I used n1 = n2 = 200.

B.2 The penalty-function approach

First, a few remarks should be made in defense of the particular functional form used

for the penalty function in (6). First, because I wish to impose sign restrictions,

the penalty function should be asymmetric, punishing violations a lot more strongly

than rewarding large and correct responses. Second, a continuous penalty function

is needed in order to make standard minimization procedures work properly. Some

minimization procedures even require differentiability: this can be accomodated fairly

easily by smoothing out the kink at zero, modifying the function in a small neigh-

bourhood around zero. Third, I do want to punish even small violations - which is

why e.g. a quadratic functional form is a less appealing choice than a linear one -

but at the same time, I do want to punish larger deviations more than small ones

and not treat them as equally bad - which is why e.g. a square root function form is

also less appealing. A square root specification would also generate infinite slopes at

zero, which may create numerical problems. Nonetheless, to check the robustness of

my results, I have also experimented with a “square-root” specification, replacing x

by
q
| x | in the calculation of the penalty on the right hand side of equation (6) as

well as with a “square” specification, similarly replacing x with x2.

To draw inference from the posterior for the penalty function approach, I take n

draws from it, employing a Monte-Carlo method: because optimizing over the shape

of the impulse responses is time-consuming, I usually took n = 100. For each of these

draws, I calculate the impulse responses and the variance decomposition and collect

them. Thus, after 100 draws, I have 100 draws for each point on an impulse response

function I may wish to estimate: it is now easy to calculate their median and their

68% error band.

To do the numerical minimization of the criterion function Ψ for each draw from

the posterior, I needed to parameterize the space of vectors (αj)
6
j=1 of unit length: I
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found the parameterization

α =



cos(γ1) cos(γ2) cos(γ3)

cos(γ1) cos(γ2) sin(γ3)

cos(γ1) sin(γ2)

sin(γ1) cos(γ4) cos(γ5)

sin(γ1) cos(γ4) sin(γ5)

sin(γ1) sin(γ4)


, (γj)

5
j=1 ∈ IR5

particularly convenient. I have coded all my routines in MATLAB, and used its gen-

eral purpose minimizer fmins.m to perform the minimization task numerically. It

turned out that fmins sometimes stopped the search before converging to the optimal

solution: I thus performed fmins.m three times in a row, starting it first at a ran-

domly selected (γj)
5
j=1 ∈ IR5 and then starting it successively at the previously found

optimum. Now, the minimization seemed to miss the minimum in safely less than 5

percent of all cases. To achieve near-certain convergence, I did this procedure twice,

starting it from two different initial random vectors (γj)
5
j=1 ∈ IR5, and selecting the

best of the two minimas found. That way, the chance of missing the optimum was

safely below 0.3 percent. To calculate this for a single draw from the posterior took

around four minutes on a Pentium-based machine. I used a sample of 100 draws from

the posterior for inference.
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Figure 1: This figure contrasts movments in the Federal Funds Rate, shown as a

thick, solid line with the scale on the left, with real GDP growth rates, shown as a

thinner, dotted line with the scale on the right. To aid the visual comparison, the

real GDP growth rates have been put “upside down”, i.e., peaks in the figure are

actually particularly low values for the growth rate. “Eyeball econometrics” suggests

a strong cause-and-effect from Federal Funds Rate movements to real GDP: whenever

interest rates rise, growth rates fall (i.e. the dotted line rises) shortly afterwards.

This is particularly visible for 1968 through 1983. It seems easy to conclude from this

picture, that the question about the effects of monetary policy on output is answered

clearly: contractionary monetary policy leads to contractions in real GDP.
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Figure 2: This figure shows the possible range of impulse response functions when

imposing the sign restrictions for K = 5 at the OLSE point estimate for the VAR.
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Figure 3: Ranges for the impulse response of real GDP to a contractionary monetary

policy shock one standard deviation in size. At the OLSE of the VAR, the collection

of impulse responses consistent with the sign restriction cover the range shown. For

the left column, K = 2 and K = 5 have been used, whereas K = 11 and K = 23 have

been used in the right column.
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Figure 4: Impulse responses to a contractionary monetary policy shock one standard

deviation in size, identified as the innovation in the Federal Funds Rate ordered last in

a Cholesky decomposition. This “conventional” identification exercise is provided for

comparison. The three lines are the 16% quantile, the median and the 16% quantile of

the posterior distribution. The first column shows the responses of real GDP, the GDP

deflator and the commodity price index. The second column shows the responses of

total reserves, nonborrowed reserves, and the Federal Funds Rate. This identification

mostly generates “reasonable” results, but also the price puzzle: the GDP deflator

rises first before falling.
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Figure 5: Impulse responses to a contractionary monetary policy shock one standard

deviation in size, using the pure-sign-restriction approach with K = 5. I.e., the

responses of the GDP price deflator, the commodity price index and nonborrowed

reserves have been restricted not to be positive and the federal funds rate not to be

negative for months k, k = 0, . . . , 5 after the shock. The error band for the real GDP

impulse response is a ±0.2 interval around zero: while consistent with the textbook
view of declining output after a monetary policy shock, it is also consistent with e.g.

monetary neutrality.
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Figure 6: Impulse responses of real GDP to a contractionary monetary policy shock

one standard deviation in size, using the pure-sign-restriction approach. For the left

column, K = 2 and K = 5 were used, whereas K = 11 and K = 23 have been used in

the right column. Essentially, all of these figures show again the error band for the

real GDP impulse response to be a ±0.2 interval around zero. As one moves from
shorter to longer horizons K, that band seems to move up. Overall, the evidence in

favor of the conventional view of a fall in output after a “contractionary” monetary

policy shock seems to weak at best.
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Figure 7: Impulse responses to a contractionary monetary policy shock one standard

deviation in size, using the penalty-function approach with K = 5. I.e., the responses

of the GDP price deflator, the commodity price index, nonborrowed reserves and the

negative of the Federal Funds Rate have been penalized for positive values and slightly

rewarded for negative values in the months k, k = 0, . . . , 5 following the shock: the

shock was identified by minimizing total penalties. The error bands are now much

sharper . While the real GDP response is still within the ±0.2 interval around zero
estimated before, there now seems to be a piece between one and 12 month, showing

a conventional response.
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Figure 8: Impulse responses of real GDP to a contractionary monetary policy shock

one standard deviation in size, using the penalty-function approach, imposing sign

restriction for the months k = 0, . . . , K after the shock. For the left column, K = 2

and K = 5 were used, whereas K = 11 and K = 23 have been used in the right

column. The results are now sharper, but also more sensitive to variations in K.

Only low values of K are fairly consistent with the conventional view of a decline in

real GDP following a “contractionary” monetary policy shock.
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Figure 9: Comparison of impulse responses for the penalty function approach with

K = 5. The left column shows the response of real GDP, whereas the right column

shows the response of the Federal Funds Rate. For the top row, a square root penalty

function was used. For the second row, a linear penalty was used, corresponding to

the choice used elsewhere in the paper. The last row employs a quadratic penalty

function. All figures have been generated, using the same random number generator

seed. Apparently, the differences are not big.
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Figure 10: These plots show the fraction of the k-step ahead forecast error variance

explained by a monetary shock, using a pure-sign restriction approach with K = 5.

The three lines are the 16% quantile, the median and the 16% quantile of the posterior

distribution. According to the median estimates, monetary policy shocks account for

10 percent of the variations in real GDP at all horizons, for up to 30 percent of the

long-horizon variations in prices and for 25 percent of the variation in interest rates

at the short horizon, falling off after that.
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Figure 11: Additional impulse responses for the 1-year treasury bill rate at constant

maturity (added to the VAR), the inflation rate, calculated from the GDP deflator

response, and the implied real rate. The system has been estimated using a pure sign

restriction approach with K = 5. The first column shows the responses of real GDP,

total reserves and nonborrowed reserves. The second column shows the responses of

the GDP deflator, the commodity price index and inflation. The third column shows

the responses of the Federal Funds Rate, the 1 year T-Bill rate and the real rate.
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Figure 12: Impulse responses to a contractionary monetary policy shock one standard

deviation in size, using the pure-sign-restriction approach with K = 5, additionally

imposing a zero response on impact for the two price indices.
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