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SUMMARY This paper shows that when series are fractionally integrated, but unit root
tests wrongly indicate that they are I1(1), Johansen likelihood ratio (LR) tests tend to find too
much spurious cointegration, while Engle-Granger test presents a more robust performance.
This result holds asymptotically as well as in finite samples. The different performance of
these two methods is due to the fact that they are based on different principles. Johansen
procedure is based on mazimizing correlations (canonical correlation) while Engle-Granger
minimizes variances (in the spirit of principal components).

1 Introduction

It is well established that many economic series contain dominant, smooth components,
even after removal of simple deterministic trends. A stochastic process with no deterministic
components is defined to be integrated of order d, denoted I(d), if it has a stationary and
invertible ARMA representation after applying the differencing operator (1 — B)?. The
components of the vector X, are said to be cointegrated of order (d, b), if all of components
of X; are I(d) and there exists a vector « (# 0) such that o/ X} is I(d —b), b > 0. Usually the
case with d = b = 1 is considered (for more detail see Granger 1981 and Engle and Granger
1991).

When d is not an integer, the series are said to be fractionally integrated (Granger and
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Joyeux 1980 and Hosking 1981). There is considerable evidence that the long memory prop-
erties of macroeconomic and financial time series data such as GDP, interest rate spreads,
inflation rates, forward premiums, stock returns, exchange rates, and etc., can be well cap-
tured by fractional integrated processes. This paper is concerned with the robustness of
cointegration tests when series are fractionally integrated, but based on unit root tests we
wrongly consider them as I(1) series.

We investigate two methods to test for cointegration. One method is the one suggested
by Engle and Granger (1987, EG hereafter), which looks for a linear combination of level
series that minimizes the variance of the linear combination using OLS. Another method is
Johansen’s (1995) procedure, which maximizes the canonical correlation between the first
differenced series and the level series. From the point of view of multivariate analysis,
EG procedure is similar to principal components, while Johansen’s method is a canonical
correlations technique. The main assumption of both tests is that series are exactly I(1).
When series are I(d) with d # 1 but we wrongly consider them as I(1), this paper finds that
Johansen tests tend to find spurious cointegration more often than EG test does. This result
holds asymptotically as well as in finite samples.

Consider a (2 x 1) I(1) vector X; = (y; z;)’. The variance of an I(1) series (given some
initial conditions) goes to infinity as ¢ — oo, while the variance of an I(0) series is finite.
Therefore if an I(1) vector X; is cointegrated, there must exist a vector a (s 0) such that the
variance of o’ X, is finite. Based on this, EG suggest to test for a unit root on the residuals
z; from the OLS cointegration regression y; = ag + a1x; + 2;. The EG test is based on the
augmented Dickey-Fuller (DF) statistic (see Dickey and Fuller, 1979) of order k, ADF(k),
that is the ¢-value for p in the OLS regression

Azy = pz_1 + p1Azi_q + -+ + ppAzi_y + error. (1)

Reduced rank regression methods, like the Johansen approach, exploit the fact that I(1)
and I(0) variables are asymptotically uncorrelated and look for a vector o that maximizes
the correlation between o/ X; and a linear combination of AX;. If that correlation is not
zero, o’ Xy is 1(0) and X, is cointegrated. According to Granger’s representation theorem
(Granger, 1983), a cointegrated system admits the following vector error correction model

(VECM) representation

AXt = Hthl + FlAthl +--+ FkAthk + €t, (2)



where €, = (e1; ey) is a vector white noise with finite variance. For simplicity we have
eliminated all the deterministic components and we only consider a finite £ in model (2).
If X; is cointegrated, it can be shown that the matrix IT can be decomposed into IT = v/,
where o and «y are (2 x 1) matrices. Testing for cointegration is therefore equivalent to
testing the rank of IT (denoted as r) equals to one, and this is exactly what Johansen method
does. Formally the Johansen LR statistics for testing the null hypothesis of no cointegration
Hy:r =0 are

Q1= —TIn(1 — M) (1—Xy) (3)

and
Qo= —TIn(1 —\y), (4)

where (1 > > > 0) are the eigenvalues of M = SfllSloS&)lSm, and S;; =T1 Zthl RitR;-t
(7, 7 = 0,1) are the product moment matrices of the residuals Ry; and Ry, from the regres-
sions of AX; and X;_; on the lagged differences, respectively. (); tests the null hypothesis
against the alternative hypothesis H; : r > 0, and ), tests Hy against H; : r = 1.

2 Fractionally Integrated Processes
Suppose X; = (y; ;) are generated from
(1= B): = e, (5)

(1= B)"zy = ey, (6)

The fractional difference operator (1 — B)? defined by its Maclaurin series is

d _ _ E _ _
1-B)y'=2 rCarg+n. &b d =T de =l "
=0

Jj=0

where T'(+) is the gamma function. An I(d) process y; generated from (5) has the following
properties: (a) y; is covariance stationary if d < 0.5. (b) y, has an invertible moving average
representation if d > —0.5. (c) y; is mean-reverting when d < 1. (d) If d > 0, y; has long
memory, the autocovariances of y; are not absolutely summable, and the power spectrum of
y; is unbounded for frequencies approaching zero. (e) y; has an infinite variance if d > 0.5. (f)
The DF-t statistic diverges to —oo if d < 1, and diverges to 400 if d > 1 as T" — oo (Sowell,
1990, Theorem 4). Thus if d > 1, the standard DF tests have no power asymptotically.



For simplicity, in the following proposition, we consider only the case with £ = 0 in the
VECM to compute the LR statistics. Any finite k£ that is not sufficiently large enough to

make the error ¢; a vector white noise will lead to the same results.

Proposition: Suppose (y; x;) are 1(d) processes generated from (5) — (6), and we estimate
a VECM with k = 0.

a. If d > 1.5, then A does not converge to zero in probability as T — oc.

b. If 1 < d < 1.5, then TG2D)\; = 0,(1).

c. Ifd=1, then TA; = O,(1).

d. If 0.5 < d <1, then T®=D )\, = O,(1). O

Proof: a. Following Gourieroux et al (1989), for d > 1.5, Sy = O,(T?*1), Sy =
0,(T?3), and Sy = O,(T?**2). Therefore M = O,(1) and the result follows. b. For
1 <d< 1.5, 8 = 0,(T% 1), Sy = O,(1), and Sy = O,(T?*2). Therefore M = O, (T?*3).
c. For d = 1,81 = O,(T), Soo = O,(1), and Syy = O,(1). Therefore M = O,(T"). d. For
0.5 <d < 1,81 = O,(T?* 1), Sp0 = O,(1), and Syg = O,(1). Therefore M = O,(T"~>?) and
the result follows. |

Ifd=1 T\ = O,(1). It d # 1,TA & 0o as T — oo, and the size of the LR tests
increases to one as T' — oo because Qo > Tj\l and Q) > T(;\l +;\2). Note thatif 1 <d < 1.5
then 0 < 3—2d < 1, and if 0.5 < d < 1 then 0 < 2d —1 < 1. Thus in these two cases, M 20
but at a slower rate than T so that T\ diverges, and therefore the size of the LR tests goes
to one asymptotically.

A sufficiently large k such that the residuals are white noise may solve the problem. But
there are many situations in macroeconomics where it is not possible in practice to try a
large k. As previously mentioned, our Proposition will hold not only for k¥ = 0 but also for

any k > 0 not sufficiently large to make the error a vector white noise.

3 Monte Carlo Results

We generate X; = (y; x;)" from (5)-(6) where ey, and ey are i.i.d. N(0, 1), and E(e;€25) =0
for every i and j. In order to avoid the initial conditions (zg = 0, yo = 0) effect, we

generate samples of sizes t = 1,...,T + ¢ and discard the first ¢ = 2000 observations. We



approximated (1 — B)? = > 20 d;B? by assuming d; = 0 for j > 1000. It is clear that both
variables are not cointegrated in any sense. In Tables 1 and 2, we report the size of the

cointegration tests for various values of d.
Table 1 about here
Table 2 about here

When d < 1, the size is large for both EG and Johansen tests. These finite sample results
match the asymptotic results. For EG test the asymptotic behavior is derived from Sowell
(1990), where it is shown that the DF t statistic diverges to —oo if d < 1 as T — oo. For
Johansen tests the theoretical result is in our Proposition.

When d > 1, Johansen LR tests tend to find too much spurious cointegration while the
EG test does not. Again these finite sample results coincide with the asymptotic results.
The performance of EG test is derived from Sowell (1990), where it is shown that if d > 1,
the DF test has zero power asymptotically. The asymptotic performance of Johansen tests

is derived in our Proposition.
Table 3 about here

Table 3 shows how difficult is to distinguish in finite samples an I(d, d > .5) variable
from an I(1) using the augmented DF (ADF) test. Thus if the variables are fractionally
integrated, it is likely that we proceed assuming the series are I(1), and therefore get the
incorrect conclusion that the variables are related in the long-run (i.e., cointegrated).

In order to avoid the spurious cointegration, one could think that a possible solution is
to increase k with 7', in a similar way Berk (1974) does for stationary and ergodic processes.
We are not aware of any result in the literature on how to do this for nonstationary and
non-ergodic processes. We suspect the problem must be complicated because the sum of
absolute correlations for a fractional integrated process is not bounded, therefore any finite &
will produce inconsistent estimates. Moreover a fractionally integrated process with d > .5 is
not ergodic. We report the results computed with £ = 3 and 9, but the problem remains even
in the latter case. Based on our Monte Carlo experiment we have to agree with Brockwell
and Davis (1991, p. 520) when they say “While a long memory process can always be
approximated by an ARMA(p, q) the orders p and ¢ required to achieve a reasonably good

approximation may be so large as to make parameter estimation extremely difficult.”



How often do we have d > 1 in practice? Examples of values of estimates of d reported
in the literature are: d = 1.17 for annual disposable income (Diebold and Rudebusch 1991),
d = 1.29 for quarterly real GNP (Sowell 1992a), and d is ranged from 1.04 to 1.36 for various
nominal spot exchange rates (Cheung 1993). Also d is estimated about 0.6 for money growth
rates (Tieslau 1991) and is ranged from 0.40 to 0.57 for inflation rates in several developed
countries (Hassler and Wolters 1995), indicating money stock and price series may have d
greater than one.

Another important and related question would be to see how precisely one could estimate
d with the sample sizes used in applied studies. Several different approaches have been
suggested for estimating d: Geweke and Porter-Hudak (1983) suggest a two step estimator
from a regression of ordinates of the periodogram on a trigonometric function; Fox and
Taqqu (1986) suggest an approximate ML procedure; Sowell (1992b) derives the full ML
estimator, and Chung and Baillie (1993) consider the minimum conditional sum of squares
estimator. Some simulation evidence on the finite sample performance of these methods has
been provided by Agiakoglou, Newbold and Wohar (1992), Cheung and Diebold (1994), and
Chung and Baillie (1993). They show severe biases of these estimators. In our opinion this

difficulty on estimating d gives even more relevance to the results obtained in this paper.

4 Conclusions

In applied research once a pair of variables are considered to be I(1), the next step is to
investigate if there exists a long-run equilibrium relationship between them. Because it is
very difficult to distinguish an 1(d, d > .5) from an I(1), this paper shows that asymptotically
as well as in finite samples, Johansen LR tests tend to find spurious cointegration more often
than EG does. Therefore a recommendation in order to detect this problem is to run both
tests. If they produce different cointegration results, then proceed with a more exhaustive

univariate analysis than a simple unit root test.
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TABLE 1. Size of cointegration tests (7" = 100)

k=0 k=3 k=

EG Q1 @ EG Q1 O EG Q1 @
d=10.5 986 1.000 .997 361 .651 432 083 233 171
d=10.6 900 991 .947 223 406 .262 060 180 .141
d=0.7 636 832 .652 146 224 167 043 152 132
d=0.8 341 447 340 094 142 105 042 129 129
d=0.9 143 147 132 065  .087 .076 038 132 122
d=1.0 047 .048 .052 048 .068 .072 032 133 .130
d=1.1 016  .058 .069 037 077 .078 034 153 .149
d=12 010 152 .166 028 .090 .085 036 163 .165
d=1.3 031 337 .351 021 105 113 030 171 171
d=14 053  .H63 .H92 024 110 .128 027 188 .184
d=15 076 .73 774 019 135 .144 032 221 206
d=1.6 100 .860 .873 016  .165 .185 037 236 .230
d=1.7 A11 0 .921 931 012 185 .196 048 274 267
d=18 135 .952 957 016 191 .213 045 312 294
d=1.9 150 969 973 029 231 .243 053 357 .336
d=2.0 A76 0 .982 981 039 271 254 .054 400 .385

Notes: The frequency of rejecting the null hypothesis in 1000 replications is
reported at the 5% level. The critical values for T' = 100 are simulated from
90000 replications using the DGP with d = 1.



TABLE 2. Size of cointegration tests (7" = 1000)

k=0 k=3 E=9

EG Q1 @ EG Q1 @ EG Q1 @
d=10.5 1.000 1.000 1.000 1.000 1.000 1.000 984 1.000 1.000
d=10.6 1.000 1.000 1.000 994 1.000 1.000 851 992 936
d=0.7 998  1.000 1.000 879 984 941 bHT72 815 648
d=0.8 872 978  .946 535 708  .565 269 370 284
d=10.9 384 455 376 193 213 186 134 140 116
d=1.0 063  .056  .056 059  .055  .055 059  .053  .062
d=1.1 020 118 124 026 .07  .066 037 .051 .058
d=12 047 439 464 026 160 175 023 .078 104
d=1.3 102 768  .805 029 304  .332 023 141 154
d=14 166 925 925 040 441 483 021 210 .248
d=1.5 211 974 977 030 522 .546 018 248 283
d=1.6 253 991 990 017 543 573 014 257 281
d=1.7 302 994 995 010 483 517 008 245 258
d=18 331999 1.000 004 380  .390 009 216 .215
d=19 345 999 999 007 245 256 015 196 .199
d=20 349 0 .999 1999 029 204 192 034 208  .196

Notes: The frequency of rejecting the null hypothesis in 1000 replications is
reported at the 5% level. The critical values for T = 1000 are simulated from
90000 replications using the DGP with d = 1.



TABLE 3. Power of ADF tests for a unit root

T =100
ADF(0) ADF(3) ADF(puic) mean(paic) sd(Paic)
d=0.5 999 553 .696 1.875 2.805
d=0.6 941 355 556 1.926 2.874
d=0.7 691 223 399 1.811 2.925
d=0.8 354 129 258 1.500 2.807
d=0.9 141 .080 117 1.258 2.805
d=1.0 047 055 .069 1.229 2.842
d=1.1 032 049 058 1.513 2.846
=12 047 038 047 2.150 3.013
d=13 087 041 .056 2.605 2.983
d=14 148 047 067 2.832 2.916
d=1.5 214 053 067 2.842 2.884
d=16 257 .056 .080 2.706 2.759
=17 317 052 079 2.563 2.674
d=18 342 049 077 2.339 2.646
d=19 366 052 062 2.207 2.706
d=20 387 050 061 2.301 2.817
T = 1000
ADF(0) ADF(3) ADF(puic) mean(pac) sd(Paic)
d=05 1.000  1.000 963 7.937 3.997
d=0.6 1.000 998 867 7.647 3.860
d=0.7 999 887 674 6.602 3.606
d=0.8 825 521 412 4.981 3.148
d=0.9 331 177 187 2.959 2.705
d=1.0 055 055 050 1.021 2.400
d=1.1 032 026 030 3.368 2.993
d=1.2 104 036 042 5.701 3.394
d=1.3 205 071 .050 7.322 3.598
d=14 285 112 064 8.124 3.651
d=15 330 133 068 8.452 3.688
d=16 368 138 .066 8.045 3.624
d=1.7 383 126 .069 7.081 3.372
d=18 388 095 062 5.698 3.068
d=19 405 065 052 3.813 2.688
d=20 398 055 061 2.017 2.359

Notes: 5% level. 1000 replications. ADF(p) denotes the DF tests augmented with
p lagged first differences. p = 0,3, or puc. Paic is chosen using the AIC among
p=0,1,...,19. When p = pg;. is used, the mean and the standard deviation of
Paic in 1000 replications are reported.



