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1 Introduction

During the past decade a considerable amount of research has focused on the
issue of stochastic trends in economic variables and subsequently on whether
such trends are common to some or all of the variables in question, a phenom-
enon known as cointegration (Granger, 1981; Engle and Granger, 1987).
Despite an abundant literature dealing with the development of cointegration
tests and their applications in economics {see Engle and Granger, 1991, for a
comprehensive review), an important issue that has often been overlooked is
the impact that the system dimension (number of variables} might have on
the accuracy of inferences. The issue is not merely a degrees of freedom problem
(see Abadir, Hadri and Tzavalis, 1997) and becomes relevant in a wide range
of applied fields. Indeed, the analysis of cross country or sectoral comovements
of economic variables in the new growth literature or the determination of the
number of factbrs in asset pricing theories in finance, for instance, are some
among numerous other examples that involve the handling of very large
systems.

Currently a popular approach for conducting inferences about the presence
of cointegration is the reduced rank vector autoregressive (VAR) framework
propesed by Johansen (1988, 1991) and Ahn and Reinsel {1990) following
earlier work by Anderson (1958) and leading to a likelihood ratio statistic (LR
thereafter) of the cointegration hypothesis. Although commonly used in ap-
plied work, little is known about its properties in large dimensional systems
since most of the published simulation studies rarely included higher than
bivariate or trivariate systems.
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The main objective of our paper is to introduce a set of new tools for inferring
the cointegrating rank and examine their relative robustness to the dimension-
ality problem together with that of the LR based testing strategy. The structure
of the paper is as follows. Sections 2 and 3 introduce the new criteria and
analyze their asymptotic and finite sample behavior as the system dimension
increases. Section 4 focuses on an alternative to testing, namely a model selec-
tion approach for estimating the colntegrating rank, and Section 5 concludes.

2 Estimation of the Cointegrating Rank: Test-Based Approaches

2.1 Theoretical Framework and Alternative Test Criteria

From the Granger representation theorem {Engle and Granger, 1987) a p-
dimensional vector of 1{1) variables X, with cointegrating rank 7 (0 < r < p)
admits the following vector error correction model {VECM) representation
k-1
AX, =TIX, | +> HAX, ; +¢, (1)
i=1

where we assume that ¢, is NID(0, §2) with |©2| = 0 and k finite. Under the
hypothesis of cointegration, the long run impact matrix I1 can be written as
1 = af where o and B are p x r matrices with r = rank(II). Thus a test of
the cointegration hypothesis is equivalent to a test of the rank of the IT matrix.
When r = 0, the components of X, are not cointegrated and the VECM takes
the form of a VAR in first differences. Under 0 < r < p there exist r linear
combinations of the I(1} variables that are stationary and when r = p the
vector X, is in fact a stationary process. In a series of papers Johansen (1988,
1991) and Ahn and Reinsel (1990) have developed a full information maximum
likelihood estimation of {1) subject to the constraint that renk(II} = r, leading
to a likelihood ratio (LR thereafter) test of the cointegration hypothesis. The
LR statistic is given by -T22% . Jlog(l - A) where the A;s are the ordered
cigenvalues of the quantity Sj 8,5y Sy, with S, = {1/T)%, R, R}, and the Rs
denoting the respective residuals of the regression of AX,and X, on AX, ,
ey AX, 1. Its asymptotic distribution obtained in Johansen (1988} was
shown to be free of nuisance parameters, depending solely on the number of
common stochastic trends (p — r) driving the system. It is important to note
that Johansen's framework is based on well known techniques in the multi-
variate analysis literature, namely the reduced rank regression and canonical
correlation analysis (see Izenman, 1975, among others). The LR statistic is
only one among many alternative test statistics proposed for inferring the rank
of possibly rank deficient matrices (Hotelling, 1931; Pillai, 1954). Moreover
simulation studies (see Olson, 1974) have shown that these test statistics be-
have very differently in a finite sample context despite the fact that they all
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share a common limiting distribution. Qur initial objective here is to investi-
gate their properties within the context of cointegration as well. Our interest
is in finding a properly sized test statistic for conducting meaningful inferences
in large dimensional systems. At this stage it is important to reiterate that the
dimensionality problem does not arise solely because of the resulting degrees
of freedom limitations. As shown in Abadir ef al. (1997), when a VAR contains
I(1) variables,Aincreasing its dimension will proportionately raise the asymp-
totic bias of II even when all regressors are independent of each other. In

addition to the LR, the set of alternative test statistics considered in this paper
are given by

{(a) PB=T%2 X {Pillai-Bartlett),
(b) HL=TE2 ., ,(3/(1- X)) (Hotelling-Lawley).

Through a first order expansion of the functional forms it is straightforward
to observe that the PB and HL statistics will have the same asymptotic dis-
tribution as that of the LR. Indeed, given that under r= 0 the Asare O, (/1
we have LR = PB + 0,(1) and HL = LR + 0,(1), illustrating the fagt that
the asymptotic distribution of the PB statistic provides also an approximation
.to that of the LR or HL. Their finite sample distributions however will display
important discrepancies both across each test statistic and compared with the
asymptotic approximation. This can be noted by observing that the three
criteria will satisfy the inequality PB < LR < HI, suggesting that in finite
samples and when inferences are based on the asymptotic critical values the
HL statistic will reject the null more frequently than the LR or PB and with
the PB statistic rejecting it the least frequently. In order to isolate the impact
.of dimensionality this paper will mainly focus on models with & — 1. Although
in applied work the lag issue raises serious modeling questions incorporating

it here would prevent us from isolating the true impact of dimensionality on
inferences,

2.2 Finite Sample Distributions and Dimensionality

In order to highlight the influence of the system dimension p on the distribu-
tions of the test statistics we initially focused on the empirical size of each
test under the null of no cointegration. More specifically we generated p dimen-
sional independent random walks and computed the rejection frequencies of
the true null of no cointegration (r, = 0) using the common asymptotic critical
values and a 5 percent nominal level. All our experiments have been performed
‘using N = 10,000 replications and the asymptotic critical values were approx-
imated using a sample of size T = 10,000. Results for these preliminary ex-

periments are displayed in Table 1 for system dimensions ranging from p = 2
to p = 10,

Y
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Table 1. Empirical size under no cointegration (5% nominal level}
DGP: Axy = €, ¢, = MO, 1), N = 10,000 replications
P LR PB HL LCT  RALR LR PB HL LCT RALR
T=30 T=290
2 7.00 2.90 12.96 486 5.24 512 4.00 7.15  4.69 4.60
3 942 1.13 2469 463 4.588 621 3.18 945 4.58 4.77
4 13.04 0.34 4400 422 3.9 6.64 258 1282 4.54 1.62
b 2075 0.07 7206 444 359 810 171 212 427 427
6 31.66 0.00 91.62 504 2.68 1048 112 3144 426 3.9
7 4744 0.00 49.02 5.78 1.98 12.12 072 4376 412 3.8
8 67.42 0.00 100.00 7.90 2.00 14.00 020 5778 3.62 282
9 85.00 0.00 100.00 10.46 1.32 19.96 0.12 76,30 4.04 2.72
10 96.69 0.00 100.00 19.41 0.96 25.03 0.05 88.11 3.87 223
T =150 T =400
2 502 4.18 578 478 474 510 520 637 510 545
3 590 4.29 7.91 5.10 4.76 5.13 4.47 5.80 4.70 4.80
4 6.46 3.38 998 4.76 4.96 517 4.27 597 4.67 4.80
il 711 312 13.13 484 4.90 5.93 4.53 820 5.37 5.37
6 T.84 244 18.50 4.68 4.50 5.87 3.70 8.30 4.40 4.40
7 818 144 2352 410 3.90 6870  3.77 9.83 497 487
8 9.70 112 31.40 4.08 3.58 6.50 2.87 11,13 4.63 4.44
9 11.60 092 4226 4.28  3.58 827 337 1627 547 527
10 14.69 0.55 55.75 4.25 3.17 8.70 3.07 19.03 5.30 4.90

A general picture that emerges from Table 1 is the strong negative impact
of the system dimension on the size properties of the LR, PB and HL statistics.
Although it is natural to expect a reduction in the accuracy of inferences as
p increases, the magnitudes of the distortions are striking. The latter may
increase substantially even when a system is augmented by a single additional
variable. In addition the magnitudes presented in Table i also suggest that
the inclusion of additional variables necessitates an extremely important incre-
mental increase in the sample size so as to keep the distortions similar in the
original and augmented models.

The distortions of the LR and HL statistics reach unacceptable levels as we
move from a medium sized {p = 5) to larger systems. In the case of the LR
statistic under p = 8 for instance the frequency of rejection of 1y = 0 is 67.42
percent when T = 30, 14 percent when T = 90 and close to 10 percent for
T = 150. In applied work such sample sizes are not uncommon especially when
one is also interested in models with structural breaks or thresholds. The PB
statistic on the other hand suffers from the opposite problem, being unable to
move away from 7 = 0 unless a very large sample size becomes available.
Clearly alt three (LR, PB, HL) test criteria appear inappropriate for conduct-
ing inferences about the presence of cointegration in large dimensional systems,
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even when moderately large sample sizes are available: the LR and HL
statistics will wrongly point towards too many stationary components and the
PB towards too few. Although not reported here due to space considerations
(available upon request) it is also important to point out that the results pre-
sented in this section and throughout the rest of the paper were highly robust
to numerous alternative specifications that included deterministic components
(i.e. constant and trend terms) in the fitted models.

In finite samples the poor approximation provided by the asymptotic
distribution is not a problem novel to this nonstationary multivariate time
series framework. Indeed it is also a well documented issue in the multivariate
analysis and canonical correlation literature. Since Bartlett {1947) for instance,
numerous authors introduced correction factors to the standard LR statistic
with the motivation of having the first moment of the finite sample and asymp-
totic distributions ratch up to a certain order of magnitude (see Fujikoshi,
1977, for correction factors in the context of standard canonical correlation
analysis and Taniguchi, 1991, for similar resuits in the stationary time series
framework). Unfortunately such analytical corrections pose extremely chal
lenging problems in multivariate systems with I{1) components and to our
knowledge the issue has been tackled only partially in simple univariate AR{1)
models (see Nielsen, 1997). However, the recent derivation of the multivariate
Joint moment generating function of $,, and 85\ in Abadir and Larsson (1996)
will almost surely open the path to further exact results in the nonstationary
VAR framework for test statistics that are functions of these two moment
matrices. Given the availability of powerful computer resources an alternative
and perhaps more accurate strategy has been to use techniques such as re-
sponse surface regressions for quantile estimation (see MacKinnon, 1994, 1996,
MacKinnon, Haug, and Michelis, 1996, for an application to unit root distribu-
tions). Within our framework the specific behavior of the LR and PB test
statistics may also allow us to design an alternative criterion with good size
properties following the simulation path. Indeed a close analysis of the full
densities of the LR and PB statistics across numerous sample sizes and system
dimensions! prompts us to propose an alternative criterion based on the linear
combination of LR and PB that minimizes the following distance:

P
min,, . ¥ (g,(0) — wy LR(a, T) — w,PB(a, T)Y?
r=1
st owydwy =1,

where qp(a) denotes the o percent, asymptotic critical value in the p-dimensional
modet and LR(e, T) and PB(«, T) the finite sample counterparts. In our
estimations weused p=1, ..., 20 for T=90 and T = 150 respectively and an
equal weighting w, = w; = 0.5 between LR and PB gave the best results with
excellent diagnostics across all the experiments. This leads us to propose a
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linear combination test statistic {LCT thereafter) expressed as 0.5{( LR + PB).
Empirical size estimates corresponding to the LCT statistic under the null of
no cointegration are also displayed in Table 1 together with the Standa.rd.test
criteria. Except for the extreme case where p = 10 and 7= 30 the LCT statistic
can be seen to track the asymptotic distribution very closely, with empirical
size estimates extremely close to the nominal 5 percent level across all system
dimensions. To gain further insight on its behavior Figures la and 1b alsq
present the difference between the asymptotic and finite sample critical values
across various values of the system dimension. The plot corresponding to the
LCT criterion remains horizontal across all values of p clearly highlighting
the absence of any distortion even within very large system dimensions.
Note that this result is robust to any specification of the covariance matrix
of the errors in the VECM since the eigenvalues are invariant to any non-
singular linear transformation of the variables. An important additional ad-
vantage of the LCT statistic comes from the fact that it shares_ the same
asymptotic distribution as that of the LR or PB but this time w1t.h0u-t the
distortions plaguing both statistics. As mentioned previously the main distor-
tion characterizing the inferences based on the LR statistic arises from a drastic

(a) Finite sample (T = 30) minus asymptotic critical values

= 100
[=3 i
g 80 1 = LR
@ 60 1 —= LCT
E T o i —PB
=+
L= 20 4
28 41 - o ]
te 04
=% 20
E.,l -40 4 )
7] -
< -60 T T b T T T — T
1 2 3 4 5 6 7 8 9 10
System dimension
{b) Finite sample (T = 90) minus asymptotic critical values
U
& 20
E 154 LR
3 10 4 —a— LOCT
'E o 3 1 —— PB
g 0 i -
i
¥¥ 5y
*é = -10 4
=9 -15 4
I
<*. -25 T T —T T — T B — T —T
1 2 3 4 5 5 i 8 9 10

System dimension

Figure 1



218 Jesus Gonzalo and Jean-Yves Pitarakis

rightwards shift of the distribution as p increases for a given sample size. An
intuitive explanation of this phenomenon can be inferred by analysing the
0,(1) terms in the Taylor expansion of LR = -T>%_, log{1 - },) where A, =
0,(1/T) for ¢ = r + 1, ..., p. The latter consist of sums of powers of the
estimated eigenvalues which are in turn premultiplied by a factor proportional
to the sample size. In finite samples the iis are typically characterized by an
important upward bias (the maximum eigenvalue in particular) the cumulated
weight of which tends to increase the magnitude of the LR statistic relative
to its asymptotic value. Similarly since the PB statistic is the first term in the
expansion of LR, its lagging behavior (relative to its asymptotic distribution)
can be explained by the fact that in small samples the normalizing factor T
is not strong enough to make the statistic’s finite sample distribution shift
sufficiently rapidly towards its asymptotic counterpart. The LCT statistic
offers a compromise between the LR and PB by reducing the weight of the
0,(1) terms by half.

The size distortions characterizing the LR, statistic have also been observed
in previous studies focusing on possibly misspecified (due to residual anto-
correlation for instance) small dimensional systems. A popular ad hoc correc-
tion taking the form ({7 - p}/T} LR has been suggested in Reinsel and Ahn
(1992} within the context of cointegration testing and was subsequently used
in most empirical studies. In order to compare its size behavior with that of
the LCT criterion Table 1 also presents corresponding size estimates for this
corrected LR statistic (denoted RALR). Although the RALR statistic also
appears to track the asymptotic distribution very closely (as judged by the
empirical size estimates) even under limited sample sizes, its behavior seriously
degenerates as the system dimension increases suggesting that inferences based
on RALR might be unable to point to ranks other than zero. An empirical
size of 0.96 percent or 2.23 percent under T = 30 and T = 90 when p = 10
for instance is an obvious indication of its limitation.

An extreme scenario that is worth mentioning, because it affects all the
tests, is that of a model as in (1) at the border of the estimability region. More
specifically the estimability condition in the context of model (1) under k =
1 requires T'> 2p + 1 (see Brown, 1981} and if the system dimension p is such
that p — T/2, it is straightforward to show that ;\1 — 1 even when the true
A, = 0, a phenomenon that can be qualified as spurious cointegration.

3 Performance under the Presence of Cointegration

Our next concern is to evaluate the performance and overall behavior of the
alternative test criteria when the systems are cointegrated. Given the highly
distorted nature of the PB and HL statistics our analysis will mainly concen-
trate on the relative performance of the LR, LCT and RALR statistics. Qur
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motivation here is to investigate whether distortions similar to the ones that
were observed under r, = 0 will also be present when 7 > 0 and wh'ether. the
LOT statistic will maintain its attractive features under such scenarios. Since
the sequential testing procedure (see Johansen, 1995, ch. 12) can be 'used tlo
construct an estimate of the cointegrating rank we will also naturally investi-
gate the ability of the various criteria to correctly detect the true re_mk and
more importantly the influence of the system dimension when conducting such
inferences. .

So far we have seen that under the mull of no cointegration the dlstotrted
behavior of the LR statistic manifests itself in the form of too many rejecb{all's
of the true null r; = 0. Due to the sequential nature of the t.est howe.ver it is
jmportant to note that such distortions will not necessarily remain when
testing ranks greater than zero. Specifically, if we let LR(r) denote the LR
statistic under rcointegrating relationships (i.e. LR(r) = -Te, qlog{l--A))
and assuming that the sequential test is implemented starting from the hypo—
thesis of no cointegration, we initially compare LR(0) with its corresponding
quantile ¢, say and conclude #=0if LR(0) < ¢, If LR(0} > ¢, we then proceed
with LR(1) and let # = 1 if LR(1) < ¢, ; and so on. The fact t%lat a lafge
system dimension induces frequent rejections of the 1?1111 of no cointegration
due to the occurrence of LR(®) > ¢, beyond its theoretical level does no!; mean
that the event LR(1) > ¢, ; willoceur as frequently when 7, = 1.'An equivalent
question to ask is whether in a p — 1 dimensional system w1_th. 1y = O the
discrepancies characterizing the distribution of LR(0) will be s1m11tar to those
oceurring in the distribution of LR{1) in a p dimensional systery vsnth.r'0 =17
Intuitively it is the bias in the first eigenvalue that might be causing an lnﬂatgd
value of the LR statistic. Before focusing more closely on this issue we will
initially evaliate the influence of the system dimension on the ability of- the
sequential testing procedure to detect the true rank. In f)ther-words, given
that a system is characterized by 7 > 0 cointegrating relationship we a.sk how
frequently will the three test statistics point to the tl‘l-le rank across different
system dimensions. The DGP we have considered is given by AX,=11X,_, +
¢, with €, 8 NID(0, 1) random disturbance and I1 = dmg(.p - 1,' 0, ..., 0). Thus
the system is characterized by a single cointegrating relationship, the strength
of which is determined by the magnitude of p. For this experiment we chose
to set p = 0.7 which corresponds to a magnitude of the unique nonzero popula-
tion eigenvalue of A, = (1 - p)/2 = 0.15. Table 2 displays the relevant correct
decision frequencies for values of p ranging from 2 to 10. . .

Civen our previous findings on the behavior of LR under no cou-ltegratlon
we present the LR based frequencies using both asymptotic and finite sample
critical values. The discrepancies between the two versions clearly support
our analysis of the LR under the null of no cointegration. Although it i's natu.ra]
to expect a reduction in the accuracy of inferences as the system dimension
increases, the magnitudes displayed in Table 2 are striking even when only a
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Table 2. Correct decision frequencies r, — 1 (5% nominal level)

DGP: 5, =07, | + €, Az, =€, i=2, .., p, €, = N0, 1), N = 10,000 replications

P LR(ad} LR{fsd) LCT  RALR LR{ad) LR(fsd) LCT  RALR
—_— T A R RALR
T=13 T =90
2 2002 1510 1506 16.40 87.84 8588  86.26  26.86
3 13.98 7.94 7.10 7.80 56.48 5242  49.86  51.68
4 13.84 5.32 4.48 4,60 3478 2946 2636  27.80
5 18.16 4.82 4.48 3.62 25.28 1702 1540  16.02
6 24.82 . 430 3.60 2.46 2046 1242 1052 10.84
7 33.40 410 3.82 1.60 19.00 9.52 7.08  6.70
8 42.58 3.72 5.30 1.20 19.04 7.56 5.74 4.8
9 40,64 3.44 7.90 0.88 21.32 6.26 5.06 3.84
10 24.42 340 1450 0.92 23.78 5.96 1.42 3.06
T =150 T = 400
- _ -
2 9490 9508 9500  95.08 95.52 9540 9552  95.54
3 9184 9214 9112 9152 95.14 9534 9532  95.36
4 TAT2  TLI6 6008 70.80 94.54 9456 9472  04.80
5 5902 5312 5040 52,92 94.86 9486 0552  95.58
6 4366 3604 3252 3354 9418 9472 0488 9512
7 3430 2522 2290 2246 9402 9468 9448  94.90
8 3034 1938 1660  i6.24 9216 9236 9182 9256
9 2724 1470 1298 1109 87.64 8654 8500  86.86
10 2664 1324 11.34 9.68 8430  79.88 7902  80.02

Note: LR{ad) and LR{fsd) refer to the correct decision frequencies based on the asymptotic and
finite sample critical values respectively.

single additional variable is added to the system. Under T = 90 for instance
the correct decision frequencies decrease by an amount close to 50 percent as
we move from a bivariate to a trivariate system. A more extreme scenarioc is
areduction of the correct decision frequency by an amount close to 300 percent
as we move from a bivariate to a ten dimensional system. Although these gaps
tend to fade as we increase the sample size they remain highly significant.
Overall these findings suggest that even the inclusion of a single additional
variable might reduce the quality of inferences by an unexpectedly high
proportion, an observation valid for all three test statistics, Comparing the
magnitudes corresponding to LR(fsd), LCT and RALR it is also clear that for
T > 90 the three statistics display a very similar ability to point to the true
rank of ry = 1 across all system dimensions thus the advantageous size behavior
of the LCT criterion observed in Table 1 is not coupled with any sort of dis-
tortion in its ability to point to the true rank relative to the other test statistics.
It is also interesting to note the close agreement between the frequencies of
the LCT statistic and those obtained using the “size corrected” LR statistic.
This confirms our point about the ability of the LCT statistic to remain close

Dimensionality Effect in Cointegration Analysis 2

to the asymptotic distribution across a wide range of sample size/system
i o1 pas.
duﬁ??}ider rt.)cu gain further insight on the bebavior Of. th_.e LCT Sta.ti_stic when
cointegration is present we next investigated the proximity of the finite §ample
distributions to their asymptotic counterparts under ‘7'0 = 1‘ by computing t'he
5 percent critical values of the LR(1) statistic in.p-dlmensmnal systermns with
7, = 1 and comparing them with their asymptofﬂc counterpart?, fromap-1
dimensional system with r, = 0. In a p-dimensional system with r, = 1 onr
instance it is clear that the kmiting distribution of LR(1) =.7TZ{.—’=Qlog{1 -A)
will be equivaleni to that of the LR statisticina p- 1 dlfnens1ona1.5ystem
with no cointegration. This will obviously be true asymptotically but import-
ant distortions might arise when dealing with small samples and /or large sys-
tem dimensions. Using the same DGP as above Table 3 presents the relevant
critical values for different sample sizes. For clarification purposes the first
row in the LR column for instance refers to a DGP with p = 2 and r; =1
while the column labeled LR(p, v, = 0) represents the c%‘itical va..lue. computed
using a DGP with p =1 and r; = 0. The two should obviously coincide asymp-

totically.

Table 3. 5% critical values of LR, LCT, and RALR under r; = 1
DGP: z,, = 0.75,, + €p Ax, =€, 1= 2, .., p, €, = N0, 1}, N = 10,000 replications

p-1, LR LR* LCT RALR LR LR* LCT RALR Asymptotic
T=230 T=90

4.59 416 4.02 4.06 4.26 4.02 3.97 4.16
; 1;33 1322 1216 11.98 12.59 12,77 1221 1217 k227
3 2592 26.73" 2334  22.53 2470 2504 2385 2360 24.29
4 43.21 4523 38.17 36.18 4091  41.82 3864 38.64 40.40
5 66.21 69.30 56.87 52.84 62.23 6269 5887 5808 59.78
6 95.28 9966 8041 73.36 87.61 B3.24 8225 8080 83.68
7 13085 137.97 10759 95.66 118,19 118,08 10992 107.69 111.65
8 17463 184.05 13995 12138 152.55 152.69 140.80 137.2% 143.12
9 22792 23895 17831 151.17 191.19 192.82 17546 169.95 178,29

.15 4.07 4.05 412 4.10 410 4.09 416

léig 13.61 12.19 1217 1231 1235 1230 12.18 12.27
24.56 2450 24.03 23.90 24.31 2450 2415 24.00 24.29
4138  41.25 40.15 40.00 4095 4042 4035 40,10 4040
61.31 6146 59.28 58.86 61.10 6146 59.09 5800 59.78
86.13 86.30 82.86 82.11 84.95 8481 8324 83.00 83.6?
115.72 115.56 110.74 109.85 113.12 11556 11090 110.00 111.65
148.81 148.86 141.72 139.88 14585 148.86 14214 140.08 143.12
186.83 186.79 177.20 174,37 180.25 182.24 178.00 175.24 178.29

O o =T OGN kLo B e

*{p. =10}
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It is again clear that the finite sample distribution of the LR statistic lieg
to the right of its asymptotic counterpart while that of the LCT tracks the
latter very closely (although our Judgement here is based solely on the 5 percent,
critical values similar discrepancies occur throughout the whole quantiles). It
is however important to also note the discrepancies between the magnitudes
appearing in the LR and LR(p, r, = 0) columns respectively. Although both
suggest that the finite sample distributions of the LR statistic lie to the right
of their asymptotic counterpart it is also clear that for the same value of p- r
the critical values corresponding to LR(p, 7, = 0) are much larger. This sug-
gests that the inflated empirical sizes we have observed under the null of no
cointegration {i.e. Table 1) will be less pronounced when considering testing
scquences involving ranks greater than zero. This is indeed what we observed
when we evaluated the probability of pointing to ranks greater than one (i.e.
PLLR(D) = ¢, and LR(1) > ¢, ]) for a DGP with ry = 1. It is important to
note however that in this case the choice of the “strength” of the cointegrating
relationship will play an important role in the sense that the discrepancies
between the LR and LR(p, 7y = 0) columns appearing in Table 3 will not be
robust to the chosen magnitude for p- Typically when we repeated the same
experiment with smaller values of p (i.e. stronger cointegration) the discrep-
ancies between LR and LR(p, 1y = 0) also appeared much stronger. Regarding
the LCT statistic under the presence of cointegration it is again clear from
Table 3 that its behavior under the presence of cointegration (judged by the
closeness of its finite sample distributions to their asymptotic counterpart)
does not present any significant diference to that observed under v, = 0in the
previous section.

4 Estimation of the Cointegrating Rank:
Madel Selection Procedure

In the previous section we saw that most standard tools for inferring the co-
integrating rank were often ineffective when the ratio of the system dimension
to the sample size was too large. Although the new criterion we introduced
was able to significantly reduce the degree of size distortions plaguing the
standard test statistics, by construction and regardless of the quality of the
statistic being used the sequential testing strategy cannot lead to consistent
estimates of the cointegrating rank becanse of the constraint imposed by the
size of the test. This problem could become particularly intensified in large
dimensional systems where the testing sequences are long. When consistency
is a desired feature an alternative way of approaching the problem is to view
the estimation of the cointegrating rank as a model selection problem where
one chooses a model among a portfolio {assumed to contain the true model)
of p + 1 competing models. The idea of using a model selection procedure for
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estimating the rank of a matrix was also recently inve.‘.stigz%ted in Denald and
Cragg (1995) within the context of a stationary multivariate normal frame-
work. A general class of model selection criteria is given by I C(E)I: —-2log Ly +
ey, where my denotes the number of free pa.ram(?ters Fo be estimated 1;nder
the hypothesis that there are £ cointegrating relationships (m, = 2pf - ¢%), I,
is the likelihood function and cy is a deterministic penalty term. Ma.ny. well
known information theoretic criteria are encompassed in the aboye specnﬁca—
tion. Indeed, when ¢y = 2, IC(£) corresponds to the Akaike clriti?rlon (Akaike,
1969, 1976), ¢q = log(T') corresponds to Schwarz’s BIC criterion (Schwarz,
1978) and when ¢, = 2¢ log(log(T)) with ¢ > 1 we'ha.ve the Ha.nna.n anf:l
Quinn {1979) criterion. According to the model Select.lon procedure, ris esti-
mated by 7 where 7is chosen such that IC(#) = arg min {{C(f), _E :‘0, - P}
More commonly, the general expression for the various criteria is given by

10(¢) = log [S(6)| + % My, @)

where ¢, and m;, are defined as before and (¢) corresponds Po the estimated
error covariance matrix from model (1) under the hypothesis that Rafnk(.ﬂ)
= {. For computational convenience we can focus on a transformed objective
function that involves directly the eigenvalues of S S, 5] S,, since those are
readily available. Noting that the eigenvalues of f5'0015013'{1] 5_10 are the same as
the eigenvalues of [, - §30¢, where (1 is the covariance matrix of the re‘51duals
in the unrestricted VECM, it is straightforward to show that one can instead
focus on the minimization of

v .
10(8) = 10(6) ~ 10(p) = =T 3" Tog(1 - )~ ex(p — £ (3
=+

where IC(p) = 0, thus rendering the approach trivial to implement once

estimates of the eigenvalues have been obtained. Typically, as p the.system

dimension increases the LR portion of the criterion will increase and this latter

increase will be balanced by the decrease due to the presence of the penalty

term. The fotllowing proposition establishes the asymptotic propertics of the
resulting estimates.

Proposition 4.1. Letting r, denote the true rank of 11 m (1) aend ¥ = arg
ming . {1C(0)}, then # Ly iff (i) limp_ ep = 00 and (ii) limp_(ep/T) =
0.

Proof, See Appendix.

Thus provided that the chosen penalty in (2) or {3) satisf?les hoth of thf: above
requirements weak consistency of the rank estimate will foilov.v. It is true,
however, that the above two conditions allow for an extremely wide SpeCtI‘}lm
of possibilities beyond the conventional AIC, BIC or HQ type of penalties,
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constant - . . resulti
T benalty criteria (violation of condition (i) in proposition 14 III;g frdom
1} is due

to ,he faCt that the I'0 abl lts‘ oi be]e t
l o) b l C lllg so0me Ia-]]k é gleatel that 7 dOCS
(]

criteria in i ;

o p dimens;;r]i? :;;‘I;Erlflﬁnél systems. To illustrate this feature let us consider
selection critesion, wn p:i:ltni:ﬂa:r :n f ; i;i:) 1;2(3 pr(())bability that the model
written as P[JI¢ — 7 ‘er than 0, say equal to |

a constant pgi(]i) :e]C({?] - -P[iTl.og(l - ’\1) > C(Qp - 1)] w}?ere [# repr(:easznlzf
b0 coincide aitr tie rxﬁ.kn this :.settl.ng the quantity ~Tlog{1 - 5'1) turns ou;
testing r= 0 against ‘:‘i ] nown hkelllhood ratio statistic (also called A™E) for
distribution of shich ha__s bproposed i Johansen (1991) and the fy)] numerical

. een recently calculated in MacKinnon et af (1996)

persistently
This is in sharp con-

testi .
tﬁzti{nglprocedtcllrei. Thus our initial goal is to examine the “;
arious model selection criteria ag th i
for this oxpocts € system dimension j
are presented i i
00, 150 woperim m Table 45 usmg samples of size 7 = 30,
The figu

e E geSGEig;eﬁfnt the number of times the criterion selected the true

rank vgry ra. o 118 s'tron.g benalty the BIC clearly converges to the tru

o very pl Y, selecting it close to 100 percent most of the times fo Ts

e theyszrre; It:et?]f pf .Note that this characteristic of the BIC may be ;oleli

v o tho stre HgQ of 1ts_ penalty. and not to its genuine ability to detect thz

achione a come c::ltierlon requires samples greater than T — 90 in order ¢
Ct decision frequency greater than 90 percent regardless of thg
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Table 4da. Model selection criteria—correct decision frequencies ry = 0
DGP: Az, =€, ¢,= N0, 1}, i =1, ..., p, N = 10,000 replications

P AIC BIC HQ AIC BIC HQ
T=30 T =90
2 5G.32 89.32 72.38 61.88 97.96 87.90
3 36.96 89.06 61.90 47.48 98.98 85.80
4 24.14 87.08 49,24 34.08 99.56 85.40
5 12.82 84.62 38.14 23.02 99.54 82.40
6 4.48 80.28 24.22 14.88 99.78 81.64
7 1.38 73.86 13.86 9.06 09.88 80.64
8 0.24 63.36 6.08 4.46 99.90 79.66
g 0.00 49.68 1.94 2.14 99.90 76.06
10 0.00 33.40 (.34 0.86 99.96 74.74
T = 150 T = 400
2 63.34 98.82 B89.86 63.64 99.64 93.64
3 49.52 90.66  90.14 50.14 99.98 95.08
4 34.84 99.88 490.32 36.98 100.00 95.98
a 24.18 99.98 90.36 27.44 100.00 96.88
6 17.62 99.96  91.66 19.52 100.00 97.50
7 11.22 99.98  91.34 13.32 100.00 98.04
8 6.42 10000 9154 .90 100.00 98.44
4 3.72 100.00 81.42 5.44 100.00 98.50
10 1.92 100.00 92.04 3.30 100.00 98.72

magnitude of the system dimension. Although its penalty term is such that
the resulting estimates of the cointegrating rank are consistent the quantity
2 log(log(T)) converges to infinity very slowly explaining why the criterion
has a rather strong tendency to overrank under smaller sample sizes. For T
> 150 however its ability to point to the true rank improves drastically. At
this stage it is also worth pointing out that the frequencies corresponding to
the AIC criterion fully support our previous discussion about its behavior as p
increases. Although not presented here, under T'= 400 it pointed to r=r, +
1 = 1, 50 percent, 70 percent and 95 percent of the times under p = 3, 5, and
10 respectively, thus confirming the accuracy of our previous computations.
Bearing in mind their “size” behavior we now turn to the performance of
the model selection criteria under cointegrated systems using models identical
to the ones considered when evaluating the features of the test statistics (Table
4b).
The first point worth mentioning is the clear unreliability of the BIC eri-
terion which has very little ability to point to the true rank r, = 1 even for
moderately large sample sizes. For T = 90 or T = 150 for instance and when
p > 5 its frequency of correct decision lies below 10 percent which is inferior
to both the HQ) and the LCT or RALR statistics. These frequencies confirm
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Table 4b. Model sclection criteria—correct decision frequencies 7, = 1

DGP: z,, = 0.7z, + €, Az, =€, i =2, .., p. e, = N0, 1),
N = 10,000 replications

P AIC BIC HQ AIC BIC HQ
T=30 =90

2 60.90 26.43 56.17 80.27 77.80 88.03
3 44.17 15.40 37.70 62.50 30.97 73.57
4 40.27 13.00 37.13 47.57 9.40 56.93
5 33.60 15.63 41.83 37.20 3.30 43.00
& 24.40 17.70 42.10 28.23 1.20 33.60
7 13.23 23.03 37.60 23.40 0.57 28.73
8 4.40 30.90 27.97 16.77 0.13 26.27
9 1.13 39.17 17.60 12.10 0.23 26.70

1¢ 0.07 46.90 6.80 7.43 0.03 27.00

T =150 T = 400

2 81.57 96.47 91.23 80.37 97.87 93.03
3 62.93 76.07 90.47 63.33 99.80 94.23
4 48.97 30.40 86.83 49.17 99.93 95.00
5 37.83 9.00 75.90 37.50 99.33 96.40
6 28.70 1.83 58.80 27.53 88.70 96.03
7 20.03 0.33 44.80 19.50 5347 97.76
8 14.03 0.17 32.00 14.93 21.33 98.17
9 9.33 0.00 27.47 9.13 6.73 98.00

10 6.43 0.03 21.90 5.87 1.60 96.40

that in large dimensional systems the BIC will be unable to move away from
7 = 0 most of the time even il a sufficiently*large sample size is available.
Turning to the performance of the HQ criterion under values of T for which
it displayed good size behavior (L.e. T > 150) its ability to point to the true
rank is impressive when compared with either the standard test based infer-
ences or the other model selection criteria. More importantly the HQ criterion
turns out to be the only criterion able to achieve reasonable results even under
a large dimensional system. Under p = 5 for instance it showed a tendency to
outperform the test criteria by magnitudes as high as 25 percent. Similarly
under p = 10 its performance was at least twice as good as the test based
inferences across a wide range of system dimensions.

5 Conclusion
In this paper we studied various approaches for inferring the cointegrating

rank by focusing on their robustness to the system dimensionality. We showed
that standard {uncorrected) tools such as the LR statistic will lead to highly

~—
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distorted inferences as the dimension of the system under study increases. We
introduced a new test criterion (LCT) with the same limiting distribution as
the LR, similar power properties and more importantly with no size distortions
across a wide range of system dimensions. This of course is not meant to suggest
that large dimensional systems can be dealt with as accurately as bivariate or
trivariate systems since the improvements characterizing the LCT statistic
do not make it more powerful (in absolute terms) for detecting the presence
of cointegration in large systems.

As an alternative to testing we also examined the asymptotic and finite
sample properties of 2 model selection based approach applied to the estima-
tion of the cointegrating rank. Although commonly used information theoretic
criteria such as the AIC or BIC were shown to perform poorly within our
framework {with their performance deteriorating as the system dimension was
allowed to increase), for moderately large sample sizes we found that the HQ
criterion displayed excellent properties, particularly in large dimensional sys-
tems under which it consistently outperformed the test statistics. It is perhaps
true that our results are based on a simple VAR model with no short run
dynamics or any form of artificially induced misspecification but in this latter
case it i3 well known for instance that the asymptotic eritical values of the
LR statistic become invalid and this would naturally have prevented us from
isolating and evaluating the relative robustness of the various techniques to
the dimensionality problem. More specifically any distortions characterizing
the LR statistic under nonstandard conditions {such as MA or AR errors for
instance) wili also arise for the LCT or the model selection criteria an issue
we leave for further research.

Appendix

Proof of Proposition 4.1. The proof follows by showing that under the chosen
penalties the probabilities of “over” and “under” ranking vanish asymptotic-
ally.

o Case £ > ry From {3) we have PIC(¢) < IC(r)] = P[-TTL, | log(1-})
> ef2pf - € — 2pry + 12)]. Since —TZf=r0+llog(l ~A) s 0,(1) and the
right hand side diverges towards infinity by condition (i} it follows that
limy_,  PIC{f) < IC(r,)] = O implying that overranking does not occur
asymptotically.

e Casef < 1 We have PIC(¢) < IC(ry)] = Pl-E0,, Jog(1- &) < (e4/T) (201,
- 12 + £2 - 2p{)]. Since plim{-X.%,, log(1 - A)) > 0, from condition (ii) the
right hand side converges to zero thus leading to limq_  PLIC(€) < IC(ry)]
= 0 and implying that underranking does not occur asymptotically. Taken
together these two results imply that # % rpas T — oo,
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In order to show that the requirements (i) and (ii} are necessary let us sup-
pose that ¢; is bounded by some constant §. Condition (ii) still holds and
limy, PIICE) < 1C(ry)] = 0¥ < 1. For £ > 7y we have P[IC(€) < IC(r,)]
= P[—TZLWH log(1 - A) > ¢p(2pf - £ - 2pry + 13)] which will be nonzero
since the right hand side does not tend to infinity when ¢y is bounded. There
is therefore a positive probability of overranking. In order to show that (ii) is
necessary suppose that it fails, (cz/T) — ¢ > 0. Clearly (i) is satisfied and for
¢ > 1y we have imy_ PIC(€) < IC(ry)] = 0. When € < 1y, lim,,_ PJC(£)
< 0} = P-20, 0 log(1 - A) < o2pry — 2 + £2 - 2pf)] and since ¢ > 0
the result follows, m

Note

1. Full density plots for all test criteria and T € [30, 5000] are available upon request
from the authors.
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