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SUMMARY
This paper estimates a dynamic ordered probit model of self-assessed health with two fixed effects: one in the
linear index equation and one in the cut-points. This robustly controls for heterogeneity in unobserved health status
and in reporting behavior, although we cannot separate both sources of heterogeneity. We find important state
dependence effects, and small but significant effects of income and other socioeconomic variables. Having
dynamics and flexibly accounting for unobserved heterogeneity matters for those estimates. We also contribute
to the bias correction literature in nonlinear panel models by comparing and applying two of the existing proposals
to our model. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We use data from the British Household Panel Survey (BHPS) to study the determinants of
self-assessed health status (SAH), and we estimate a dynamic ordered probit model, controlling for
state dependence and two sources of heterogeneity: heterogeneity in unobserved factors affecting
health and heterogeneity in reporting behavior. Our model and estimation strategy allow us to answer
two important questions in this literature: (i) What are the relative contributions of state dependence
and heterogeneity in explaining the observed persistence in SAH? (ii) What are the effects of some
socioeconomic variables, such as income and marital status, on SAH?
Many socioeconomic studies use self-assessed health status as a proxy for true overall individual

health status. Moreover, self-assessed health status has been shown to be a good predictor of mortality
and demand for medical care (see, for example, van Doorslaer et al., 2004). Self-assessed health status,
like other health outcome variables, exhibits a high degree of persistence. Knowing the true magnitude
of the state dependence effect as a source of that persistence is important because state dependence
determines the long-run effect of a policy that affects current health status. Moreover, only a flexible
account of permanent unobserved heterogeneous factors that determine the self-assessed health level
reported by each individual will allow us to obtain good estimates of the state dependence effect.
Additionally, a proper modeling of the relationship between unobserved factors and socioeconomic
variables is required to make correct inferences about the effect of those variables on self-assessed
health status.
Contoyannis et al. (2004) have estimated a random-effects dynamic ordered probit, controlling for

unobserved heterogeneity only in the level equation. Halliday (2008) has studied the relative contribution
of state dependence and unobserved heterogeneity in SAH, reducing the model to a binary outcomemodel
and taking a different random-effects approach. Halliday’s approach is potentially more flexible and less
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parametric than that of Contoyannis and co-authors. Halliday included only age as a covariate because
he focused on studying the evolution of SAH over the life cycle, finding evidence of a substantial
amount of unobserved heterogeneity in health. Furthermore, as Halliday has commented, a larger
amount of heterogeneity than he allows for might exist.1 In addition, both of these papers have had to
deal with the ‘initial conditions problem’ that arises when taking a random-effects approach in
dynamic models.

In a situation like this, we would prefer to take a fixed-effects approach to avoid imposing arbitrary
restrictions on the distribution of the unobserved heterogeneity and its correlation with the observable
variables, and to avoid the initial conditions problem. Despite these advantages, there have been few
applications of nonlinear panel models with fixed effects in health economics, as noted in Jones
(2009). A notable recent exception is Jones and Schurer (2011), which uses Chamberlain’s conditional
fixed-effects logit to study the gradient in health satisfaction with respect to income. Jones and
Schurer (2011) conclude that the underlying assumptions of the statistical model of the unobserved
heterogeneity matter for assessing the link between income and health. Therefore, this conclusion
confirms the importance of estimating a model that makes no assumptions about the distribution of
the heterogeneity. The main shortcomings of Chamberlain’s conditional logit estimator are its loss
of information, its difficulties in calculating marginal effects, and the fact that it does not include state
dependence. In contrast, state dependence is an important policy parameter of interest in our paper.
Also, ignoring state dependence may affect estimation of the effect of the observable socioeconomic
variables, such as income.

Contoyannis et al. (2004) and Halliday (2008) used random effects, and Jones and Schurer (2011)
used a special fixed-effects estimator (rather than, for example, an ordered probit model with fixed
effects) because of the known problems in estimating general nonlinear panel data models with fixed
effects using the panel datasets available. This estimation problem is known as the incidental
parameters problem, and it results in large finite-sample biases of the maximum likelihood estimation
(MLE) when using panel data where T is not very large. This problem is more severe in a model like
ours that is dynamic and contains more than one fixed effect. Implementing a solution to this problem
in the estimation of dynamic ordered-choice models with fixed effects is one of the main contributions
of our paper.

An important area of research in microeconometrics has been concerned with solving the
incidental parameters problem by developing bias reduction methods. Some examples are Hahn
and Newey (2004), Hahn and Kuersteiner (2011), Arellano and Hahn (2006), Carro (2007),
Fernandez-Val (2009) and Bester and Hansen (2009).2 This fast-growing literature offers several
bias correction methods that are potentially useful in estimating our model. Bester and Hansen
(2009) included an application of their penalty function approach to a dynamic ordered probit
model with two fixed effects. Thus the penalty function approach is directly applicable to our
problem, whereas other estimators require some transformation to adapt them to our model.
However, previous studies in this literature, including some of those mentioned in this paragraph,
show simulation results for other models, such as a dynamic logit, which indicate that the penalty
function approach proposed by Bester and Hansen (2009) is not the best estimator in terms of
finite-sample performance. Our own simulations show that for our sample size the remaining bias
is still significant when using Bester and Hansen’s penalty function to estimate our model. Thus
we must consider applying other proposed methods.

1 Computational difficulties in Halliday’s more flexible approach limit the amount of heterogeneity for which he can allow (see
section 5.1.2 in Halliday, 2008).
2 See Arellano and Hahn (2007) for a good review of this literature, detailed references and a general framework in which the
various approaches can be included.
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In this paper, we derive explicit formulas of the modified MLE (MMLE) used in Carro (2007) for the
dynamic ordered probit model under consideration. We evaluate its finite sample performance and
compare it with the Bester and Hansen’s penalty estimator.3 The MMLE has better finite-sample
properties for all sample sizes considered in the simulation and negligible biases for the sample size
of our data. These Monte Carlo experiments are another contribution of this paper because, as Arellano
and Hahn (2007) note, more research is needed to know ‘how well each of the methods recently
proposed work for other specific models and data sets of interest in applied econometrics’. Also,
Greene and Henshen (2008) comment on the lack of studies concerning the applicability of the recent
proposals for bias reduction estimators in binary-choice models to ordered-choice models.
The rest of the paper proceeds as follows. Section 2 presents our model of self-assessed health status

and the data we use, and further explains the relation of this paper to a previous study that used random
effects to analyze self-assessed health status in the same dataset. Section 3 presents the estimation
problem and the method we propose. We also comment on other possible solutions from the nonlinear
bias correction literature and use simulations to evaluate the finite-sample performance of different
alternatives. These simulations justify the selection of MMLE as our estimator. Section 4 presents
the estimation results. The estimates of our model and comparison with random-effects estimates show
that there are important state dependence effects, and a statistically significant effect of income and
other socioeconomic variables. The results also show that flexibly accounting for permanent
unobserved heterogeneity matters. Our conclusions are provided in Section 5.

2. MODEL AND DATA

2.1. Empirical Model of Self-Assessed Health

We consider the following dynamic panel data ordered probit with fixed effects as a reduced-form
model of self-assessed health status (SAH):

h�it ¼ ai þ r11 hi;t�1 ¼ 1
� �þ r�11 hi;t�1 ¼ �1

� �þ x
0
itbþ eit;i ¼ 1; . . . ;N; t ¼ 0; . . . ; T (1)

where xit is a set of exogenous variables that influence SAH, eit is a time and individually varying error
term that is assumed to be eit

�
i:i:d:N 0; 1ð Þ, and h�it is latent health. The reported SAH (hit), which is what

we observe, is determined according to the following thresholds:

hit ¼
�1 if h�it <�ci
0 if �ci < h�it ≤ 0
1 if h�it > 0

8<
: (2)

where hit=� 1 corresponds to poor health, hit= 0 to fair health, and hit= 1 to good health. ai and ci are
the model’s fixed effects; these account for permanent unobserved heterogeneity, both in unobserved
factors affecting health (index shifts) and in reporting behavior (cut-point shifts) in an unrestricted
way. An example of index shifts are genetic traits. Cut-point shifts occur if individuals use different
thresholds to assess their health and report different values of SAH even though they have the same
level of true health.4 Note that in addition to the usual scale normalization in discrete-choice models
(i.e. restricting the variance of eit to equal one), we are also normalizing one of the two cut-points to
zero. The somewhat more conventional normalization of setting the intercept in the linear index equal

3 The MMLE is obtained from modifying the score of the MLE so that the order of the bias in T is reduced.
4 See Lindeboom and van Doorslaer (2004) for a test that shows evidence of existence of these two different types of shifts.
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to zero is not available to us because the distribution of the intercept, including its mean, is unrestricted
in the fixed-effects approach. An alternative normalization would be to have the two fixed effects in the
two cut-points and leave the linear index equation without an intercept.

As this discussion on normalization shows, it is not possible to separately identify individual effects
that impact only h�it (index shifts) from those that impact the cut-points. Therefore, although we control
for the two mentioned sources of unobserved heterogeneity, we cannot separate them. Additionally,
having only the fixed effect in the linear index (ai) would also account for heterogeneity in the
cut-points, but in a very restrictive way. Specifically, by introducing only one individual effect (ai),
we would be assuming that both sources of unobserved heterogeneity must have effects in opposite
directions in Pr(hit= 1) and Pr(hit=� 1); furthermore, we would be restricting how these two effects
differ in magnitude for all individuals. We do not have evidence in favor of these assumptions.
Moreover, given the different sources of the unobserved heterogeneity and the potential relations
among them and the observable variables, it is likely that these assumptions are too restrictive and lead
to incorrect inferences. In contrast, by having two fixed effects in (2) we do not impose any restrictions
on the cut-point shifts, nor on the index shift. This constitutes an important divergence from previous
studies, such as Contoyannis et al. (2004).

In addition to the parameters that capture the effect of heterogeneity, b captures the effect of
exogenous variables, and r1 and r� 1 are the parameters that allow for state dependence in this model.
Determining the relative importance of state dependence versus permanent unobserved heterogeneity
as alternative sources of persistence is crucial because each has a very different implication. State
dependence may arise for structural reasons, such as differing abilities to deal with new health shocks
depending on a previous health status or willingness to invest in health, which changes as the health
status evolves. For example, people may be less prone to invest in their health after a health shock that
lowers their returns to that investment. In any case, as in labor force participation, regardless of the
underlying source, state dependence gives the long-run effect of a policy affecting health status today.
This is why it is so useful to know the magnitude of the state dependence.

2.2. Data and x Variables

This study uses the British Household Panel Survey (BHPS), a longitudinal survey of private
households in Great Britain. It was designed as an annual survey of each adult (16+) member of a
representative sample of more than 5000 households, with approximately 10,000 individual interviews.
The same individuals are re-interviewed in successive waves; if they leave their original households,
they are re-interviewed along with all adult members of their new households. Similarly, new adult
members joining the sample households and children who have reached the age of 16 become eligible
for the interview process. We use 16 waves of data (years 1991–2006) and include only individuals
who gave a full interview. An unbalanced panel of individuals who were interviewed in at least eight
subsequent waves is used. Our sample consists of 76,128 observations from 6375 individuals.

SAH is defined for waves 1–8 and 10–16 as the response to the question: ‘Compared to people of
your own age, would you say your health over the last 12months on the whole has been: excellent,
good, fair, poor, very poor?’ In wave 9, the SAH question and categories were reworded. This makes
comparison with other waves difficult and wave 9 is not used in our empirical analysis.

The original five SAH categories are collapsed to a three-category variable, creating a new SAH
variable that is our dependent variable, with the following codes: poor (hit=� 1) for individuals
who reported either ‘very poor’ or ‘poor’ health; fair (hit= 0) for individuals who reported ‘fair’ health;
and good (hit= 1) for individuals who reported ‘good’ or ‘excellent’ health.

The explanatory variables x that we use are: three dummy variables representing marital status
(Married, Widowed, Divorced/Separated), with Single as the reference category, the size of the
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household (the number of people living in the same household), the number of children in the household,
household income, year dummies (excluding the necessary number to avoid prefect collinearity), and a
quadratic function of age. The question about SAH that we use to construct our dependent variable asks
respondents to compare their health with people their own age. However, SAH becomes worse over time
in the raw sample data, perhaps indicating that the age effect over health is not totally discounted by
respondents. This can be seen in Table A.2 in the online Appendix.5 For this reason, we include age as
an explanatory variable. The income variable is the logarithm of equivalized real income, adjusted using
the retail price index, and equivalized byMcClement’s scale to adjust for household size and composition.
This income consists of the sum of non-labor and labor income in the reference year.
Variables that are time-constant and specific for individuals, such as the level of education or gender, are

not included in the set of explanatory variables because they cannot be separately identified from
permanent unobserved heterogeneity.6 Fixed effects account for these variables as well as for unobserved
characteristics, and we cannot separate their effects. This is sometimes seen as a drawback of the
fixed-effects approach. However, the random-effects approach separately identifies the effect of these
variables only because of the unrealistic assumption that unobserved characteristics are independent from
them (for example, that unobserved healthy lifestyle is independent of education). Even with a correlated
random-effects approach, if correlation is allowed in a Mundlak (1978) and Chamberlain (1984) style and
initial conditions are controlled for following Wooldridge (2005), it is not possible to separately identify
the effect of these time-constant variables from the effect of the unobserved factors correlated with them
without making further assumptions. Contoyannis et al. (2004) followWooldridge’s (2005) proposal, and
they comment about this impossibility of separating the effect of variables, such as education, from the
effects of the unobservable variables that are correlated with them.
The tables in section A of the online Appendix (supporting information) and Table 1 here contain

some descriptive statistics of self-assessed heath reported in our sample. The most frequent category
is ‘excellent’ or ‘good’, with more than 70% of the answers corresponding to this category. Supporting
information Table A.2 presents the variation of SAH across different characteristics and health
variables. For example, married or single people respond in the ‘excellent’ or ‘good’ health category
more frequently than widows or divorced people. There is high persistence in SAH reported as seen
in Table 1, which shows the transition probabilities. In this table, the largest numbers are on the
diagonal for all three values of SAHt� 1.

2.3. Relation to Contoyannis et al. (2004)

There is a clear connection between this paper and Contoyannis et al. (2004): both papers use the
British Household Panel Survey to study the dynamics of SAH. Nevertheless, there are several aspects

Table I. Sample transition probabilities from SAH in t-1 to SAH in t

SAH in t

Excellent or good Fair Poor or very poor Total

SAH Excellent 85.91 11.84 2.25 100
in Fair 43.22 45.18 11.59 100
t-1 Poor or very poor 17.66 31.60 50.74 100

Proportion 72.80 19.67 7.53 100

5 See Contoyannis et al. (2004) for further discussion on this point.
6 They are, however, included in the random-effects estimation we make for comparison.
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considered in Contoyannis et al. (2004) that are not studied here. In particular, their paper contains a
more detailed data description than in our paper, and further discussion of the estimated model; it also
addresses other issues, such as sample attrition, that are not considered here.7 However, our paper
complements and adds to Contoyannis et al. (2004) in various ways.

First, we use more periods from the BHPS than they do. They only use the first eight waves
because the ninth contains a different question and categorization of SAH. While we also drop
the 9th wave, we incorporate waves after wave 9 in our estimation. Because the model specified
includes only one lag of hit, we have all the variables we need for the 11th to 16th waves. For
the 10th wave, we have all the variables but hit� 1, as is the case for the first wave. We treat
the 10th wave like an initial observation and condition it out in our likelihood, leaving the
probability for that observation totally unrestricted. In this model that has covariates X, Contoyannis
et al. (2004) cannot do this because of their method of solving the initial conditions problem and
their use of random effects.

Second, Contoyannis et al. (2004) impose homogeneous cut-points, whereas we have two individual
specific effects: one in the linear index and one in the cut-points. Although we cannot separately
identify both sources of unobserved heterogeneity, our approach is robust to heterogeneous cut-points
freely correlated with any determinant of SAH.

Finally, we use fixed effects instead of a random-effects approach. The advantages of this are that no
arbitrary restriction is imposed on the correlation between permanent unobserved heterogeneity and the
observable variables, and there is no initial conditions problem.

To make an assessment of the contributions of this paper with respect to the previous literature, we
also estimate our models using the same type of specification and estimation method as Contoyannis
et al. (2004). Thus we also estimate (2) using a correlated random-effects specification with only an
individual effect in the linear index equation (the ai parameter in (1)), but with homogeneous
cut-points. Therefore, in this correlated random effects specification:

hit ¼
�1 if h�it < c1
0 if c1 < h�it ≤ c2
1 if h�it > c2

8<
: (3)

where c1 and c2 are (homogeneous) parameters to be estimated, h�it is defined in (1), and ai in (1) is
assumed to be

ai ¼ g0 þ g
0
1hi0 þ g

0
2�xi þ ui (4)

where �xi is the average over the sample period of the exogenous variables, and ui �
i:i:d:

N 0; s2u
� �

independently of everything else. hi0 is in (4) to address the initial condition problem following
Wooldridge (2005). In this specification, it is not possible to separately identify an intercept in the
linear index and the cut-points. As a result of that, we have adopted the conventional normalization that
sets the intercept in the linear index equal to zero.

7 An unbalanced panel (with random attrition) in a dynamic panel model does not pose any complications to a fixed-effect
estimator (as opposed to a random-effects estimator), as long as it does not imply many individuals with a very small number
of periods; and in our sample all observations have at least eight periods. However, the assumption of attrition at random seems
unrealistic. Contoyannis et al. (2004) made a test and found evidence of non-random attrition, but they also found that the bias
this may be causing to the estimates is negligible. Given this result based on the same dataset as ours, to avoid distraction from the
main theme of this paper we do not consider non-random attrition here.
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3. ESTIMATION METHOD

3.1. Estimation Problem and Possible Solutions

From (1), (2) and the normality assumption about eit, we have that

Pr hit ¼ �1jxit; hit�1; ci; aið Þ ¼ 1�Φ ci þ mitð Þ (5)

Pr hit ¼ 0ð jxit; hit�1; ci; aiÞ ¼ Φ ci þ mitð Þ �Φ mitð Þ (6)

Pr hit ¼ 1jxit; hit�1; ci; aið Þ ¼ 1� Pr hit ¼ �1j:ð Þ � Pr hit ¼ 0ð j:Þ ¼ Φ mitð Þ (7)

where

mit ¼ ai þ r11 hi;t�1 ¼ 1
� �þ r�11 hi;t�1 ¼ �1

� �þ x
0
itb (8)

Conditioning on the first observation hi0, and taking into account that, as explained in Section 2.3,
we do not observe SAH at the 9th wave (t = 8), the log-likelihood is

l r1; r�1; b; a; cð Þ ¼
XN
i¼1

ð
X7
t¼1 ½ X1d¼�1

1 hit ¼ df glogPrðhit ¼ d xit; hit�1; ci; aij Þ�
þ
X15
t¼10

X1
d¼�1

1 hit ¼ df glogPrðhit ¼ djxit; hit�1; ci; aiÞ�Þ" (9)

where Pr(hit = d|xit, hit� 1, ci, ai) is defined in equations (5)–(8) for d=� 1, 0, 1.
Using standard MLE to estimate models like (2) is known to be biased because we do not have a

large number of periods. The MLE is inconsistent when T does not tend to infinity because the fixed
effects act as incidental parameters. Furthermore, existing Monte Carlo experiments with dynamic
nonlinear models show that the MLE has large biases. In fact, simulations of a dynamic ordered probit
in Bester and Hansen (2009) and simulations in the following sections show that the bias is non-
negligible even with a T as large as 20. As mentioned in the Introduction, several recently
developed bias correction methods could overcome this problem. Arellano and Hahn (2007)
summarize various approaches.
These methods can be grouped into three approaches, based on the object corrected. The first

approach constructs an analytical or numerical bias correction in a fixed-effect estimator. Fernandez-Val
(2009), among others, takes this approach and applies his analytical bias correction to dynamic
binary-choice models. The second approach is to correct the bias in moment equations. An example of this
is Carro (2007), who uses an estimator of this type to correct the bias in dynamic binary-choice models.
The third group is that which corrects the objective function. Arellano and Hahn (2006) and Bester and
Hansen (2009) take this approach, with the latter including an application to a dynamic ordered probit
model. The HS penalty estimator studied in Bester and Hansen (2009) is the first option we consider
because our model is also a dynamic ordered probit and because alternative approaches require
transformations or derivations. This estimator also has the advantage of being easier to compute than
the MMLE in Carro (2007) and the bias correction in Fernandez-Val (2009) because, unlike the other
two, the HS does not require the calculation of expectations. This advantage is more relevant in our case
because it has two fixed effects.

STATE DEPENDENCE AND HETEROGENEITY IN HEALTH 187

Copyright © 2012 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 181–207 (2014)
DOI: 10.1002/jae



Arellano and Hahn (2007) show how the different approaches are related. Asymptotically, all the
approaches always reduce the order of the bias of the MLE from the standard O(T � 1) to O(T � 2) in
the general classes of models for which they were developed. However, there may be differences when
they are applied to specific cases. The following very simple example used in Carro (2007), Arellano
and Hahn (2007) as well as in Bester and Hansen (2009) illustrates this point. Consider the model in

which yit
�

i:i:d:
N �i; s

2
0

� �
. The ML estimator of s20 iŝs

2
MLE ¼ 1

NT

X
i

X
t
yit �̂ �ið Þ2. It is well known that

ŝ2MLE is not a consistent estimator ofs20 when N!1 with fixed T because it converges to T�1
T s20. In this

case the problem is easily remedied. 1
N T�1ð Þ

XN

i¼1

XT

t¼1
yit �̂ �ið Þ2 is the fixed T consistent estimator of

s20 . The MMLE from Carro (2007) produces exactly this estimator, correcting not only the O(T � 1)
term of the bias but also all the asymptotic bias in this simple example. The HS removes the
O(T � 1) term of the bias, but it does not attain the fixed-T consistent estimator. Fernandez-Val’s
(2009) one-step bias correction to the ML estimator does not produce a fixed-T consistent estimator
either, but its iterated form does. Thus differences may appear between these different approaches
when they are applied to specific models.

On the other hand, the incidental parameters problem can be seen as a finite-sample bias problem
in the context of panel data. The problem is not important when T is large relative to N. However,
because our panel does not have a large number of periods it is reasonable to doubt that the
good asymptotic properties of the MLE when T goes to infinity (sufficiently fast) are a good
approximation to our finite sample. Simulations show that we would need panels with many more
time periods than are usually found in practice. The relevant implication is that we have to examine
the finite-sample performance of the estimators for our model and sample size. In the methods
considered here, this is done through Monte Carlo experiments. Bester and Hansen (2009) do
not compare the finite-sample properties of the method they use with others for the ordered probit
case because many of the other methods require some derivation to obtain the specific correction
for this case. However, they do this type of comparison using binary choice (probit and logit)
models. Additionally, Carro (2007) and Fernandez-Val (2009) conduct Monte Carlo experiments
for logit and probit models with different sample sizes (both in T and N ), allowing us to compare
a wide range of methods for those models. From these comparisons, we conclude that the HS
penalty approach is not the best choice, and significant biases can be found for sample sizes with
T smaller than 13. Given this result, we consider another of the proposed methods to estimate
our ordered probit and evaluate its finite sample properties. Fernandez-Val’s (2009) and Carro’s
(2007) corrections are interesting candidates because they are equally superior to other alternatives
in terms of finite-sample performance in the relevant existing comparisons. In the following
subsections, we derive explicit formulas of the modified MLE used in Carro (2007) for the
model considered here, evaluate its finite-sample performance, and compare it with the HS
penalty estimator.

3.2. MMLE for a Dynamic Ordered Probit with Two Fixed Effects

The model we want to estimate is defined in (1) and (2), and its log-likelihood is (9). Let g = (b,r1,r� 1)

and �i= (ai, ci). Partial derivatives are denoted by the letter d, so the first-order conditions are d�i g; �ið Þ �
@li g;�ið Þ

@�i
and dgi g; �ið Þ � @li g;�ið Þ

@g . Bold letters represent vectors.

The MLE of �i for given g, �i(g), solves d�i(g, �i) = 0. The MLE of g is obtained by maximizing the

concentrated log-likelihood
XN

i¼1
li g; �i gð Þð Þ

� �
, i.e. by solving the following first-order condition:
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1
TN

XN
i¼1

dgi g; �i gð Þð Þ ¼ 0 (10)

where dgi g; �i gð Þð Þ ¼ @li g; �ið Þ
@g �i¼�i gð Þ

�� .

To reduce the bias of the estimation, we follow Carro (2007) in modifying the score of the concentrated
log-likelihood by adding a term that removes the first-order term of the asymptotic bias in T. By doing so,
the MMLE of the g parameters of model (2) is the value that solves the following score equation:

dgMi gð Þ ¼ dgi g; �i gð Þð Þ � 1
2

1

daaidcci � daci
2 ½daai�dgcci þ dacci

@̂ai
@g

þ dccci
@ĉi
@g

�

þdcci

�
dgaai þ daaai

@̂ ai
@g

þ daaci
@ĉi
@g

�
� 2daci

�
dgaci þ daaci

@̂ ai
@g

þ dacci
@ĉi
@g

��
� @

@ai

E dgci
� �

E dacið Þ � E dccið ÞE dgai
� �

E daaið ÞE dccið Þ � E dacið Þ½ �2
 !

j
�i¼�i gð Þ

� @

@ci

E dgai
� �

E dacið Þ � E daaið ÞE dgci
� �

E daaið ÞE dccið Þ � E dacið Þ½ �2
 !

j
�i¼�i gð Þ

¼ 0

(11)

where dgi(g, �i(g)) is the standard first-order condition from the concentrated log-likelihood, as in (10).
dgci ¼ @2li

@g@ci
, daai ¼ @2li

@a2i
, dgaci ¼ @3li

@g@ci@ai
, and so on. From the first order conditions of ai and ci we obtain

âi gð Þ andĉi gð Þ in order to concentrate the log-likelihood. All expectations are conditional on the same
set of information as the likelihood. These expectations can be computed by recursively conditioning,
as we do to write the conditional likelihood. The parametric model (equations (1), (2) and the
assumption about eit) from which we write the likelihood also gives the parametric form of the
expectations we need to calculate.8

In the Appendix, we show how this modification on the score of the concentrated log-likelihood in
(11) is a first-order adjustment on the asymptotic bias of the ML score; thus the first-order condition is
more nearly unbiased and the order of the bias of the estimator is reduced from O(T � 1) to O(T � 2).
Furthermore, the bias is corrected without changing the asymptotic variance of the MLE.

3.3. Simulations

3.3.1. First DGP: Performance for Different T and Degrees of Persistence
We simulate the model in equations (1), and (2) with the following values for the parameters and the
data-generating process (DGP): b= 1, r1 = 0.5, and r� 1 =� 0.5. The error follows a normal
distribution: eit�N(0, 1). The fixed effects are constructed as follows:

ai ¼ 1
2

X4
t¼1

xit þ ui; where ui � N xi0; 1ð Þ (12)

ci ¼ zij j; where zi � N xi0; 1ð Þ (13)

so that they are correlated with the explanatory variables. When the unobserved heterogeneity and the
covariates are correlated the problem becomes more severe than when they are independent. We study

8 Section B in the online Appendix gives an explanation for computing the MMLE.
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the performance of estimators under this condition because we consider it to be more realistic.9 xit
follows a Gaussian AR(1) with autoregressive parameter equal to 0.5. Initial conditions are xi0�N
(0, 1) and h�i0 ¼ ai þ b0xi0 þ ei0 . We perform 1000 replications, with a population of N= 250
individuals. For each simulation we estimate the MLE, the MMLE given by equation (11) and the
HS estimator defined in Bester and Hansen (2009). The HS estimator is the value of the parameters that
maximize the following penalized objective function:

XN
i¼1

lki b; r1; r�1; ai; cið Þ �
XN
i¼1

1
2
trace

�̂
I�1
acîVaci

�
� k

2
(14)

where lki is the log-likelihood of i, Î aci is the sample information matrix for ei= (ai, ci)0 ,̂ Vaci is a robust

estimator of var 1ffiffiffi
T

p @li
@ei

� �
, and k = dim(ei). This penalty term is easier to calculate than the modification

of the score in (11) because the penalty term does not involve any expectation.
Results from this experiment for different T are reported in Table 2, which shows the mean bias and

the root mean squared error (RMSE). We find that for all T the MMLE performs better than the other
two estimators. Comparing it with the HS, the differences are greater for T= 4 and T= 8, where the HS

9 In the simulations of an ordered probit in Bester and Hansen (2009), the fixed effects are independent of the covariates. We
have simulated and compared MMLE and HS in this case as well. The bias is smaller for all T values, but the conclusions from
the comparison between MMLE and HS are the same as in the dependency case. Because the latter is more relevant in practice,
we do not report the independency case.

Table II. Monte Carlo results: dynamic ordered probit parameters

Parameter: b r1 r�1

True value: 1 0.5 �0.5

Estimator Mean bias RMSE Mean bias RMSE Mean bias RMSE

T= 4
MLE 0.816 0.828 �0.474 0.516 0.551 0.586
HS 0.796 0.809 �0.392 0.443 0.467 0.509
MMLE 0.172 0.182 �0.254 0.282 0.280 0.305
T= 8
MLE 0.335 0.341 �0.188 0.216 0.189 0.216
HS 0.247 0.254 �0.115 0.153 0.119 0.154
MMLE 0.073 0.086 �0.062 0.108 0.067 0.109
T= 10
MLE 0.257 0.263 �0.145 0.171 0.154 0.179
HS 0.170 0.178 �0.083 0.119 0.093 0.127
MMLE 0.052 0.067 �0.036 0.086 0.050 0.093
T= 12
MLE 0.210 0.215 �0.217 0.152 0.127 0.151
HS 0.127 0.134 �0.072 0.106 0.074 0.106
MMLE 0.040 0.054 �0.030 0.079 0.036 0.081
T= 16
MLE 0.154 0.159 �0.093 0.118 0.096 0.119
HS 0.081 0.088 �0.048 0.083 0.054 0.085
MMLE 0.026 0.041 �0.017 0.068 0.022 0.069
T= 20
MLE 0.122 0.127 �0.072 0.095 0.078 0.101
HS 0.058 0.065 �0.034 0.067 0.042 0.074
MMLE 0.019 0.034 �0.009 0.058 0.016 0.062

Note: See a detailed description of the simulated model and other characteristics of the DGP in Section 3.3.1.
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is closer to the MLE than to the MMLE. When using the MMLE, the bias is smaller than 10% of the
true values with T= 10 for all but one of the r parameters. With T= 12, the MMLE has negligible
biases for all the parameters, whereas the HS contains biases and RMSEs larger than the MMLE with
T= 10. Even with T= 16, the HS exhibits mean biases greater than the MMLE with T= 10. It is not
until T= 20 that the HS has small biases and small RMSEs. Therefore, the HS requires more periods
(at least more than 16) to have small finite-sample biases. Given this and the fact that the sample sizes
we have in our empirical analysis are smaller than T= 14, we use the MMLE.
The reasons for the MMLE’s better performance is the use of the specific structure of the model

when calculating the modification term. This structure translates into the expectations in the modifica-
tion term. The likelihood includes the fact that we know the distribution of one of the explanatory
variables: the lag of the dependent variable. Therefore, we write the likelihood for each period
(conditional on the previous period) up to the likelihood of the initial condition, in a recursive manner.
This is used in the modification, so it includes expectations, using the known distribution of hit� 1

conditional on hit� 2. The HS is generally written so that it does not make any intensive use of a
specific likelihood and thus it does not include such expectations. Therefore, the HS does not exploit
all the information that our specification provides and it requires more periods to attain the same
performance as the MMLE, thus confirming the idea expressed in Bester and Hansen (2009) that the
simplicity of the HS (because it does not calculate expectations) might come at a cost, leading to a
poorer performance than the other approaches.

Quality of inference.We consider the quality of inference on finite samples, based on these estimators.
Table 3 presents the coverage of 95% confidence intervals, and the average estimated asymptotic
standard errors divided by the standard deviation calculated from the Monte Carlo simulations. The
latter ratio is very close to 1 in all cases for the MMLE and in most cases for the other estimators,
which indicates that we have good estimates for the variance and the problem lies in the bias. This
corresponds with the fact that we are correcting a bias without altering the asymptotic variance.

Table III. Monte Carlo results: inference over dynamic order probit parameters: conference intervals coverage and
estimation of the standard errors

Parameter: b r1 r�1

True value: 1 0.5 �0.5

Estimator % Coverage CI 95% SE/SD % Coverage CI 95% SE/SD % Coverage CI 95% SE/SD

T= 8
MLE 0% 0.85 47% 0.87 48% 0.90
HS 0% 0.86 74% 0.91 73% 0.94
MMLE 64% 1.02 87% 0.93 85% 0.96
T= 10
MLE 0% 0.81 54% 0.91 53% 0.91
HS 3.5% 0.83 82% 0.96 78% 0.95
MMLE 74% 0.94 90% 0.96 89% 0.96
T= 12
MLE 0% 0.89 58% 0.91 62% 0.93
HS 8.8% 0.92 85% 0.96 83% 0.98
MMLE 81% 1.00 92% 0.95 92% 0.97
T= 20
MLE 2% 0.90 77% 0.96 73% 0.94
HS 48% 0.93 91% 1 88% 0.98
MMLE 90% 0.97 95% 0.98 93% 0.95

Note: This is for the simulation experiment in Table 2. We have used the inverse of the Hessian as estimator of variance. SE/SD
is the average estimated asymptotic standard error divided by standard deviation calculated from the Monte Carlo simulations.
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In terms of inference, the coverage of the confidence intervals is extremely poor for the MLE,
specifically for b. Even with T= 20, the coverage for b is smaller than 3%. The HS estimator improves
inference with respect to the MLE, but it remains far from the theoretical coverage of 95%; the
coverage for b is particularly bad even with T= 20. Therefore, also in terms of inference the MMLE
is clearly the best estimator of these three for doing inference, for all periods and parameters.

Performance for different degrees of persistence. To check whether results are maintained under
different scenarios of state dependence, we present simulations for different values of r1 and r� 1, with
T= 10 in the online Appendix. The DGP is the same as that of Table 2 except for the values of r1 and
r� 1.Here the state dependence changes from very negative to very positive, including the case with no
state dependence. In terms of bias and RMSE, we find that the MMLE performs better than the other
methods for all cases. In principle, having a negative state dependence may improve all the estimators
because it induces higher variance in yit. This is the case for the estimation of b, where the three
estimation methods improve, but it is not the case for the estimation of r1 and r� 1, where the MMLE
improves but the MLE and HS perform worse than with positive state dependence.

3.3.2. Simulations Based on Real Data
Finally, we perform a simulation based on the real data used in this paper. This will provide further
evidence about the finite-sample performance of the MMLE and will provide increased robustness
to our choice of estimator. The DGP takes the estimates obtained by MMLE and reported in Table 4
as the true model. It takes the real data for all the individuals used in that estimation and all the signif-
icant x variables, leaving out the time dummies. Therefore, in this DGP, xit is a vector containing

Table IV. Estimates

Variable

1 2 3

Pooled Correlated random effects MMLE

Health in t-1: good 0.6527*** (0.0185) 0.5028*** (0.0234) 0.4875*** (0.0186)
Health at t-1: poor �0.4417*** (0.0233) �0.3259*** (0.0343) �0.4375*** (0.0242)
Age 0.0011 (0.0032) 0.0200 (0.0210) 0.0205 (0.0222)
Age squared �0.0000 (0.0000) �0.0007*** (0.0001) �0.0005*** (0.0001)
Married 0.0344 (0.0286) 0.1722 (0.0752) 0.0749 (0.0606)
Separated/divorced �0.0580 (0.0358) 0.0475 (0.1028) 0.0375 (0.0729)
Widowed �0.0243 (0.0408) 0.3668** (0.1329) 0.0542 (0.0918)
Household size �0.0782*** (0.0138) �0.0112 (0.0189) �0.0388** (0.0177)
Number of children 0.0647*** (0.0155) 0.0423 (0.0189) 0.0472** (0.0188)
Household income 0.0816*** (0.0122) 0.0188 (0.0191) 0.0396*** (0.0147)
Male �0.0095 (0.0175) 0.0116 (0.0265)
Non-white �0.0890* (0.0467) �0.1277* (0.0709)
Higher/1st degree 0.1540*** (0.0345) 0.1563*** (0.0466)
HND/A level 0.0810*** (0.0250) 0.0696* (0.1862)
CSE/O level 0.0860*** (0.0225) 0.0923*** (0.0327)
Cut-point 1 0.0192 (0.1233) �0.0277*** (0.2265)
Cut-point 2 1.0698*** (0.1235) 1.0528*** (0.2267)
s2u 0.0686
Mean ci 1.1323
Variance ci 0.3277
Mean ai �0.0743
Variance ai 0.6311
Correlation (ai, ci) �0.3326
Akaike information criterion 38544.0 37334.3 37275.2

Note: Standard errors are reported in parentheses. Number of individuals used in estimation of all models is 1739. Estimates of
year dummies in all models and within means of variables in random effects are not reported. Asterisks indicate significance at
*10%; **5%; ***1%.
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observations of the following variables: age, squared age, household size, number of children, and
income. The true values of the parameters are: r1 = 0.4875, r� 1 =� 0.4375, b0 = (0.0205,� 0.0005,
� 0.0388, 0.0472, 0.0396). N= 1739, T is the same as in our data (i.e. between 8 and 14 periods),
and eit�N(0, 1).
ai and ci are the estimates of these parameters by MMLE. The distributions of these two parameters are

found in Figure 1. The distribution of ai is not normal and is correlated with ci (correlation coefficient
between ai and ci is �0.33). Thus the distribution of unobserved heterogeneity is not an arbitrary and
statistically convenient distribution, but an empirically founded distribution that captures both real
correlations with the covariates and correlations between fixed effects. These correlations and distributions
of ai and ci are richer than those in the previous simulation experiments. Furthermore, this is the relevant
DGP to compare the proposed strategy for dealing with unobserved heterogeneity with the random-effects
approach previously used in the literature. Making this comparison with an arbitrarily chosen DGP may
imply a too favorable assumption to the random effects, as in our first DGP, or a too arbitrarily unfavorable
one. However, this case is the relevant case for our empirical analysis.
For the reasons discussed above, we evaluate the finite-sample performance of the random-effects

approach (CRE) described at the end of Section 2.3, in addition to the MLE, HS and MMLE. To make
the comparison as close as possible with the estimators used with real data, we include the following
constant variables as covariates when estimating by random effects: gender, race, and education
indicators. These are implicitly included in the DGP through the estimated ai and ci, since in the fixed
effects these variables cannot be separately identified from the fixed effects.
The results of this simulation are presented in the online Appendix. The MMLE is decidedly

the best of all estimators in terms of RMSE. More specifically, the bias and RMSE for the
CRE are twice the bias and RMSE of the MMLE for some parameters, such as r1 and the b
for household size. As in the previous simulation experiments with similar number of periods,
the MMLE exhibit small biases.

Figure 1. Density estimate (histogram) of the fixed effects from MMLE
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4. ESTIMATION RESULTS

Table 4 presents the coefficient estimates for our model based on three different estimators. This
includes different specifications of the heterogeneity. The first estimated model (column 1) is a pooled
version of the model in (1) and (2), without individual specific effects. The second estimated model
(column 2) is the correlated random-effects model described in equations (3) and (4). It is similar to
models estimated in Contoyannis et al. (2004). It has homogeneous cut-points and uses a random-
effects approach to control for the individual specific intercept in the linear index. The last specification
(column 3) is described in previous sections; it is the model in (1) and (2) treating ai and ci as fixed
effects, and it is estimated by MMLE.

To compare magnitudes of the effects across variables and estimates we look at the relative effects
(i.e. ratio of coefficients), and the average marginal effects reported in Table 5 for the variables with a
coefficient significantly different from zero.10,11

The pooled model exacerbates the state dependence effect due to the lack of permanent unobserved
heterogeneity. Although it is not reported, we also estimated the model in (1) and (2) by MLE.

Table V. Average marginal effects on probability of reporting good and poor health for significant variables

(a) Good

1 2 3

Correlated random

Pooled SE Effects SE MMLE SE

Health in t-1: good 0.2528 0.0071 0.1883 0.0114 0.1653 0.0080
Health in t-1: poor �0.1550 0.0078 �0.1149 0.0139 �0.1403 0.0520
Age �0.0005 0.0003 �0.0170 0.0089 �0.0089 0.0064
Household size �0.0282 0.0050 �0.0040 0.0112 �0.0120 0.0054
Number of children 0.0233 0.0056 0.0150 0.0141 0.0145 0.0058
Household income 0.0294 0.0044 0.0067 0.0094 0.0122 0.0045
(b) Poor

1 2 3
Correlated random

Pooled SE Effects SE MMLE SE
Health in t-1: good �0.1399 0.0046 �0.1057 0.0206 �0.0984 0.1153
Health in t-1: poor 0.1477 0.0081 0.0968 0.0164 0.1268 0.0947
Age 0.0003 0.0002 0.0105 0.0060 0.0058 0.0117
Household size 0.0173 0.0031 0.0024 0.0069 0.0081 0.0086
Number of children �0.0143 0.0034 �0.0090 0.0084 �0.0095 0.0102
Household income �0.0181 0.0027 �0.0040 0.0058 �0.0081 0.0082

10 These marginal effects are also called partial effects. The marginal effects are averaged across the first eight waves of the
panel, as well as across the values of the covariates for each individual. Thus we first calculate the marginal effect for each
individual in the sample at the observed values of the regressors, and then we calculate their average, rather than calculating
the marginal effect at the average value of the covariates. We do this to obtain summary measures of the marginal effects that
are representative of the population’s situation (see Chamberlain, 1984, p. 1273). Moreover, a measure that substitutes the values
of the covariates, and especially the individual specific effect ai, with their means (or any other fixed value) ignores any possible
correlation between them.
11 An alternative way to identify and estimate the marginal effects is the approach taken in Chernozhukov et al. (2010). They
show that in a model like ours, with fixed effects, when T is fixed the (average and quantile) marginal effects are not point
identified. However, they are set identified, and they propose a way to estimate bounds on the partial effect. These nonparametric
bounds tighten as T grows. The main advantage is that the bounds analysis applies to any T, whereas our bias correction method
depends on T not being very small. However, the bounds analysis is only available with discrete covariates for the moment. In
contrast, bias correction methods work well in many examples, including with continuous covariates, and they consistently point
estimate the identified average effect.
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As seen in the simulations, it is severely biased, estimating much lower state dependence effects
and a higher effect for the other explanatory variables.
Of more interest is the comparison between the correlated random-effects model and the

fixed-effects model estimated by MMLE. These estimates are in columns 2 and 3 of Tables 4 and 5,
respectively. The first difference is in the variables that are statistically significant. Table 4 shows that
in the MMLE household size, number of children, and household income have an impact that is
statistically different from zero. However, none of them has a significant effect in the random-effect
estimates. The average marginal effect of those variables correspondingly increases in absolute value
in the MMLE case with respect to the random-effects model, especially for household income.
Regarding the state dependence effect (effect of hit� 1), there are also changes. The effect of hit� 1 = good
decreases in absolute value when estimating by MMLE, and the effect of hit� 1 = poor increases.
Comparing coefficients in Table 4, we can also see that the effect of hit� 1 = poor increases proportionally
less than the effect of the other relevant explanatory variables. In the random-effects specification the ratio
of the coefficient of 1(hi,t� 1 = poor) to the coefficient of ‘Household income’ is approximately 17, whereas
in the MMLE that ratio is 11. In any case, this partial increase in the effect of state dependence and of
the effect of the explanatory variables is remarkable because the model in column 3 allows for more
permanent unobserved heterogeneity and more flexibility than the model in column 2.12

Moreover, many of the differences in the estimated effects of the explanatory variables between the
correlated random-effects model and the fixed-effects model estimated by MMLE are statistically
significant. If the restrictions imposed by the correlated random-effects model are correct, its estimates
are more precise (i.e. efficient) than the estimates of the fixed-effects model (even after the modification
of the MLE), although both are consistent. Given this, we have used a Hausman-type test to determine
whether those important differences are only because of the less precise estimates given in column 3.
We have made the test over the average marginal effects instead of the parameters in Table 4 for two
reasons. First, marginal effects (including their average), and not the parameters in equations (1) and
(2), are usually the parameters of interest in nonlinear models. Second, the average marginal
effects do not suffer the different scales problem that would prevent magnitudes in columns 2 and 3
of Table 4 from being directly comparable or directly interpretable. The average marginal effects of
both models are well defined within the same scale, as any other marginal effect over choice pro-
babilities, and their magnitude has the same clear interpretation. If we were primarily interested in a
single average marginal effect, such as the effect of hi,t� 1 = good over the probability of hi,t = good,
we could use a t-statistic that ignores the other effects. Doing this for all the average marginal
effects, we reject at 5% the null hypothesis that both estimates are the same for four variables. Doing
a joint test, we also reject the null hypothesis that the correlated random-effects estimates and the
fixed-effects MMLE estimates are the same, thus rejecting the restrictions imposed in the correlated
random-effects model.13

The previous two paragraphs are a clear indication that ignoring the added dimension of heteroge-
neity and flexibility in the distribution of the fixed effects matters for the estimation of both the model’s
parameter and the marginal effects of variables. It is not only the amount of heterogeneity, but also

12 Recall that permanent unobserved heterogeneity, state dependence and persistence in observable variables are alternative
explanations of the observed high persistence in hit.
13 In the Hausman-type test we have used the variance–covariance matrix of the fixed-effects estimates only, instead of
subtracting from it the variance of the random effects. We do this to avoid having the difference be a non-positive definite matrix
because of the use of different estimates of the variance of the errors. Under correct specification, this represents a lower bound
for this test and a rejection here will also be a rejection when using the well-defined difference in the variance–covariance
matrices. A different solution to the non-positive definiteness problem is to use a score test that is asymptotically equivalent to
the Hausman test. Doing such a score test we also reject the null hypothesis at any reasonable level of significance. See White
(1982) and Ruud (1984) for further information on this score test.
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the other restrictions being imposed on the model in column 2 that matters for estimation of the
parameters of interest.

Aside from the formal test of random effects versus fixed effects, we look at the unobserved
heterogeneity in the linear index equation and in the cut-point shift. Figure 1 displays the estimated
distribution (histogram) of both fixed effects in the population, and both exhibit large variation. The
average for ai is �0.074 and for ci is 1.13. The standard deviations of these distributions are 0.79
and 0.57, respectively. In the random-effects specification, ai is the compound equation (4) that
includes a linear relation to some observables and an additive unobserved term that is assumed to
follow a normal distribution. Given the estimates of the parameters of equation (4), the estimated
average for ai in the random-effects model is 1.41, and its standard deviation is 0.9626. With respect
to the heterogeneity on the cut-points, the average of � ci, the first cut-point, is �1.13 and the estimate
of the first cut-point in the random effects specification is �0.03. Additionally, as shown in the
right-hand panel of Figure 1, there is large variation in ci among individuals that is ignored by the
estimated random-effects model.Moreover, the normality of the distribution of ai is rejected at 1%.14 Finally,
the correlation between ai and ci is�0.33; therefore, there are rich interactions between both fixed effects
forming a joint distribution that is not the simple combination of their marginal distributions.

Focusing on the MML estimates, we find evidence of strong positive state dependence. With respect
to socioeconomic variables, we find that aging and household size have a small but significant negative
effect on SAH.15 Number of children has a positive and significant average marginal effect, and it is the
largest average effect in absolute value of all the x variables. Household income has the second largest
effect among the x variables, and it is also a positive and significant average effect. Jones and Schurer
(2011) focused on the gradient of health satisfaction with respect to income and did not include state
dependence. We account for state dependence and it is interesting to determine whether that is also
affecting the estimates of the effect of income. In Table 6 we show, for each age–gender group,
the marginal effect of income at the average values of the explanatory variables and unobserved
heterogeneity. That effect at the average is the marginal effect calculated in Jones and Schurer
(2011). The age pattern is similar to that found in Figure 4 of Jones and Schurer (2011): it is positive,
decreasing slightly with age, and significant for all age groups except the oldest group.

14 ci cannot be normal by definition because it is restricted to be positive.
15 Halliday (2008) found, based on Akaike information criterion (AIC), that a quadratic function of age was only weakly
preferred to the linear model and that no significant losses were found by using a linear model in age. We have estimated model
3 in Table 4 excluding age2 as an explanatory variable, and in our case the fit is significantly worse because the effect of age
increases more than linearly at older ages. Additionally, when introducing the quadratic term, the AIC changes to a greater
degree than in Halliday (2008). Here, in the linear model AIC is 37373.4 and in the quadratic model it is 37275.2—nearly
100 points smaller.

Table VI. Marginal effects of income on probability of reporting good health by age and gender

Age

<31 31–40 41–50 51–60 61–70 >70

Marginal effects at the average

Female 0.0158*** 0.0158*** 0.0158*** 0.0158*** 0.0157** 0.0153
Male 0.0158*** 0.0157*** 0.0158*** 0.0158*** 0.0157** 0.0157**
Average marginal effects

Female 0.0128*** 0.0125*** 0.0118*** 0.0118*** 0.0121*** 0.0118***
Male 0.0130*** 0.0120*** 0.0122*** 0.0120*** 0.0117*** 0.0116**

Note: Asterisks indicate significance at
*10%; **5%; ***1%.
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However, significant differences arise when comparing the magnitude of the effect. While Jones and
Schurer’s estimated effect for men takes values between 2.5 and 5 percentage points for all but the
oldest age group, our estimated effect at the average is never greater than 1.6 percentage points.16

These much smaller marginal effects are in accordance with the intuition that the magnitude of the pos-
itive effect of a variable will probably tend to be overestimated when not accounting for relevant state
dependence. Finally, we also calculate the average marginal effect for the same age–gender groups. We
find a similar pattern, but even smaller point estimates. The difference between the marginal effect at
the average and the average marginal effect comes mainly from the former, ignoring the correlation
between explanatory variables and the unobserved heterogeneity.
With respect to how the models fit the observed data, in addition to the information criteria (AIC)

reported in Table 4, some predictions of the estimated models and their sample counterparts are
provided in Table 7. Overall, the MMLE model fits the data better because its predictions are closer
to the actually observed proportions in the sample. In a similar manner, the MMLE predictions are
better at capturing the inverted-U shape of the proportion of individuals reporting excellent or good
health as we look at people with higher number of children. They are also better at capturing the slope
in the increasing pattern when looking at people with higher incomes.17

In addition to considering the average marginal effects reported in Table 5, we look at how many
individuals have a significant marginal effect in the sample, given their particular situation and
unobserved characteristics. Table 8 presents the proportion of individuals with significant (at 10%)
marginal effects over the probability of reporting good and bad health, for the same variables as in
Table 5. Notice that, although the average marginal effects are significant, there is a great deal of

16 Caution should be taken with this comparison: the datasets are different; Jones and Schurer’s specification differs in the way
covariates enter; they use health satisfaction and not self-assessed health; and they have more categories than us in the outcome
variable. In any case, given their categorization and ours, the closer comparison of our marginal effects estimates are with those in
their Figure 4, and the economic interpretation of their numbers in Figure 4 and our numbers in Table 6 is meant to be the same.
17 Note that we are not controlling for any other observable characteristics. Thus there may be other differences between people
with a different number of children (or different incomes) that can reinforce or cancel the effect of number of children (or income)
on average. Therefore these numbers cannot be interpreted as the effect of the number of children (nor the effect of income).

Table VII. Sample versus predicted proportions of SAH (%)

Panel A: Total proportions

Poor or very poor Fair Excellent or good

Sample 16 31 53
Predicted MMLE 15 32 53
Predicted CRE 12 31 57
Predicted pooled 13 28 60

Panel B: Proportions of people reporting excellent or good SAH
Predicted

Sample MMLE CRE Pooled

By number of children

0 52 53 57 59
1 55 54 56 61
2 58 56 57 63
3+ 50 51 54 60
By income quartiles

1st quartile 47 50 53 56
2nd quartile 51 52 56 59
3rd quartile 56 55 58 62
4th quartile 58 57 59 62
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heterogeneity; for around half the population, the marginal effects over the probability of reporting
good health is not significantly different from zero for many of these variables.

5. CONCLUSION

In this paper, we have considered the estimation of a dynamic ordered probit of self-assessed health
status with two fixed effects: one in the linear index equation and one in the cut-points. The inclusion
of two fixed effects, instead of only one as usual, is motivated by the potential existence of two sources
of heterogeneity: unobserved health status and reporting behavior. Although we cannot separately
identify these two sources of heterogeneity, we robustly control for them by using two fixed effects.
Based on our best estimates, the two fixed effects exhibit important variation, and it is relevant to
account for both when estimating the effect of other variables. Our estimates also show that state
dependence is large and significant even after controlling for unobserved heterogeneity. By a
comparison with previously used random-effects estimates, we show that flexibly accounting for more
permanent unobserved heterogeneity is important.

The recent literature in bias-adjusted methods of estimation of nonlinear panel data models with
fixed effects has produced several potentially equivalent estimators. We find that the a priori most
directly applicable correction to our model, the HS estimator proposed in Bester and Hansen (2009),
still has significant biases in our sample size. This finding led us to consider the modified MLE
proposed in Carro (2007). We derive the expression of the MMLE for our model, conduct Monte Carlo
experiments to evaluate its finite-sample properties, and compare it with the HS. The MMLE has a
negligible bias in our sample size. The Monte Carlo experiments contribute to the literature on bias-
adjusted methods for estimating nonlinear panel data models by showing how well two of the proposed
methods work for a specific model and sample size. This information will be useful for other
applications when choosing among several correction methods existing in the literature.
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APPENDIX A: REDUCTION OF THE ORDER OF THE BIAS

In this Appendix we show that the modified score presented above corrects the first-order asymptotic
bias of the original score. The algebra is somewhat tedious because of the many terms, but the idea is
clear. We first expand the score of the MLE around the true value of the fixed effects and make some
calculations and substitutions on it to obtain the leading term of the bias of the MLE’s score. We then
show that the modification in the MMLE’s score, equation (11), is subtracting that leading bias term
from the score. This follows Carro (2007), and is adapted to our model with two fixed effects.

The notation used is the same as in section 3.2: g= (b,r1, r� 1) and �i = (ai, ci); we denote

partial derivatives by the letter d; bold letters are used to denote vectors; d�i � @li g;�ið Þ
@�i

, dgi � @li g;�ið Þ
@g ,

dgci ¼ @2li
@g@ci

, daai ¼ @2li
@a2i

, dgaci ¼ @3li
@g@ci@ai

, and so on; the derivatives evaluated at the true values of the

parameters are represented by including a 0 in the sub-index (e.g. d�i0 = d�i(g0, �i0)).

Deriving the Leading Term of the Bias of the Score in the MLE

We start by deriving the first term of the bias in the score of the original unmodified concentrated
log-likelihood. Expanding this score around �i0, and evaluating it at g0, we get

dgi g0; �i g0ð Þð Þ ¼ dgi0 þ dgai0 âi g0ð Þ � ai0ð Þ
þdgci0 ĉi g0ð Þ � ci0ð Þ
þ 1
2
dgaai0 âi g0ð Þ � ai0ð Þ2 þ 1

2
dgcci0 ĉi g0ð Þ � ci0ð Þ2

þdgaci0 âi g0ð Þ � ai0ð Þ ĉi g0ð Þ � ci0ð Þ þ Op T�1=2
� �þ . . .

(15)

This equation clearly shows that the score evaluated at the true value g0 differs from the value of the
score we want to obtain, dgi0 = dgi(g0, �i0), as much as âi g0ð Þ and ĉi g0ð Þ differ from ai0 and ci0. This is
the source of the incidental parameters problem.

Now we need expressions for âi g0ð Þ � ai0ð Þ and ĉi g0ð Þ � ci0ð Þ , for which we do asymptotic
expansions, following Rilstone et al. (1996):

âi g0ð Þ � ai0ð Þ ¼ ba�1=2 þ ba�1 þ Op T�3=2
� �

(16)

ĉi g0ð Þ � ci0ð Þ ¼ bc�1=2 þ bc�1 þ Op T�3=2
� �

(17)

where ba�1=2 and bc�1=2 are the elements of the vector b� 1/2, and ba�1 and bc�1 are the elements of the
vector b� 1, which are determined as follows:

b�1=2 ¼ �Q�1R

b�1 ¼ �Q�1Sb�1=2 � 1
2
Q�1U b�1=2�b�1=2

� �
R ¼ 1

T
dai0
dci0

� �
Q ¼ E rRð Þ
S ¼ rR� Q
U ¼ E r2Qð Þ

From the above expressions we obtain

J. M. CARRO AND A. TRAFERRI200

Copyright © 2012 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 181–207 (2014)
DOI: 10.1002/jae



ba�1=2 ¼
1
T dci0E

1
T dcai0
� �� 1

T dai0E
1
T dcci0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 (18)

bc�1=2 ¼
1
T dai0E

1
T dcai0
� �� 1

T dci0E
1
T daai0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 (19)

It is also useful to obtain

âi g0ð Þ � ai0ð Þ2 ¼ ba�1=2

� �2
þ Op T�3=2

� �
(20)

ĉi g0ð Þ � ci0ð Þ2 ¼ bc�1=2

� �2
þ Op T�3=2

� �
(21)

âi g0ð Þ � ai0ð Þ ĉi g0ð Þ � ci0ð Þ ¼ ba�1=2b
c
�1=2 þ Op T�3=2

� �
(22)

With respect to the squares of ba�1=2 and bc�1=2, we get

ba�1=2

� �2
¼

1
T
dai0

� �2

E
1
T
dcci0

� �2

þ 1
T
dci0

� �2

E
1
T
dcai0

� �2

� 2
1
T
dai0

1
T
dci0E

1
T
dcai0

� �
E

1
T
dcci0

� �

E
1
T
daai0

� �
E

1
T
dcci0

� �
� E

1
T
dcai0

� �2
 !2

bc�1=2

� �2
¼

1
T
dci0

� �2

E
1
T
daai0

� �2

þ 1
T
dai0

� �2

E
1
T
dcai0

� �2

� 2
1
T
dai0

1
T
dci0E

1
T
daai0

� �
E

1
T
dcai0

� �

E
1
T
daai0

� �
E

1
T
dcci0

� �
� E

1
T
dcai0

� �2
 !2

Substituting by expectations, and using the information matrix identity (E(dcai) =�E(daidci)), we get

ba�1=2

� �2
¼ � 1

T

E 1
T dcci0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 þ Op T�3=2

� �
(23)

bc�1=2

� �2
¼ � 1

T

E 1
T daai0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 þ Op T�3=2

� �
(24)

Following the same procedure for the cross-product, we get

ba�1=2b
c
�1=2 ¼

1
T

E 1
T dcai0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 þ Op T�3=2

� �
(25)

With respect to ba�1 and bc�1, we follow the same procedure (replace by expectations and use the
information matrix identity) to get
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ba�1 ¼
1
2T

1

E
1
T
daai0

� �
E

1
T
dcci0

� �
� E

1
T
dcai0

� �2
 !2

(
2E

1
T
dcai0

� �2

E
1
T
dacci0

� �
þ E

1
T
dai0dcci0

� �
þ E

1
T
dci0dcai0

� �� �

þE
1
T
dcci0

� �2

E
1
T
daaai0

� �
þ 2E

1
T
dai0daai0

� �
 �

þE
1
T
daai0

� �
E

1
T
dcci0

� �
E

1
T
dacci0

� �
þ 2E

1
T
dci0dcai0

� �
 �

�E
1
T
dcai0

� �
E

1
T
daai0

� �
E

1
T
dccci0

� �
þ 2E

1
T
dci0dcci0

� �
 �

�E
1
T
dcai0

� �
E

1
T
dcci0

� �
3E

1
T
daaci0

� �
þ 4E

1
T
dai0dcai0

� �
þ 2E

1
T
dci0daai0

� �
 �g
þOp T�3=2

� �

(26)

bc�1 ¼
1
2T

1

E
1
T
daai0

� �
E

1
T
dcci0

� �
� E

1
T
dcai0

� �2
 !2

(
2E

1
T
dcai0

� �2

E
1
T
daaci0

� �
þ E

1
T
dci0daai0

� �
þ E

1
T
dai0dcai0

� �
 �

þE
1
T
daai0

� �2

E
1
T
dccci0

� �
þ 2E

1
T
dci0dcci0

� �
 �

þE
1
T
daai0

� �
E

1
T
dcci0

� �
E

1
T
daaci0

� �
þ 2E

1
T
dai0dcai0

� �
 �

�E
1
T
dcai0

� �
E

1
T
dcci0

� �
E

1
T
daaai0

� �
þ 2E

1
T
dai0daai0

� �
 �

�E
1
T
dcai0

� �
E

1
T
daai0

� �
3E

1
T
dacci0

� �
þ 4E

1
T
dci0dcai0

� �
þ 2E

1
T
dai0dcci0

� �
 �g
þOp T�3=2

� �

(27)

Introducing all these expressions in (15), and taking expectations, we get
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E dgi g0; �̂ i g0ð Þð Þ� � ¼ E
1
T
dgai0dci0

� �
E

1
T
dcai0

� �
� E

1
T
dgai0dai0

� �
E

1
T
dcci0

� �

E
1
T
daai0

� �
E

1
T
dcci0

� �
� E

1
T
dcai0

� �2

þ 1
2

E
1
T
dgai0

� �

E
1
T
daai0

� �
E

1
T
dcci0

� �
� E

1
T
dcai0

� �2
 !2f2E

1
T
dcai0

� �2�
E

1
T
dacci0

� �

þE
1
T
dai0dcci0

� �
þ E

1
T
dci0dcai0

� ��

þE
1
T
dcci0

� �2

E
1
T
daaai0

� �
þ 2E

1
T
dai0daai0

� �
 �

þE
1
T
daai0

� �
E

1
T
dcci0

� �
E

1
T
dacci0

� �
þ 2E

1
T
dci0dcai0

� �
 �

�E
1
T
dcai0

� �
E

1
T
daai0

� �
E

1
T
dccci0

� �
þ 2E

1
T
dci0dcci0

� �
 �

�E
1
T
dcai0

� �
E

1
T
dcci0

� �
3E

1
T
daaci0

� �
þ 4E

1
T
dai0dcai0

� �
þ 2E

1
T
dci0daai0

� �
 �g
þ
E

1
T
dgci0dai0

� �
E

1
T
dcai0

� �
� E

1
T
dgci0dci0

� �
E

1
T
daai0

� �

E
1
T
daai0
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E

1
T
dcci0

� �
� E

1
T
dcai0

� �2

þ 1
2

E
1
T
dgci0
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E
1
T
daai0
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E

1
T
dcci0

� �
� E

1
T
dcai0
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 !2

f2E
1
T
dcai0
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E
1
T
daaci0
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1
T
dci0daai0
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1
T
dai0dcai0
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þE
1
T
daai0
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E
1
T
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 �g
þ 1
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1
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� �2 ½E 1
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dcai0

� �
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1
T
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� �
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2
E
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E
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� �� þ O T�1
� �

(28)
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The remainder of this expression is O(T� 1) because Op(T
� 1/2) terms have zero mean. This means

that the score of the original concentrated likelihood has a bias of order O(1), whose expression is in
the previous formulae.

Modified Score

The modified score in (11) can be decomposed into three terms, dgMi(g) =A+B+C, such that

A ¼ dgi g; �i gð Þð Þ (29)

B ¼ � 1
2

1

daaidcci � dcai
2

½daai dgcci þ dacci
@âi
@g

þ dccci
@ĉi
@g

� �

þdcci dgaai þ daaai
@âi
@g

þ daaci
@ĉi
@g

� �

�2dcai dgaci þ daaci
@âi
@g

þ dacci
@ĉi
@g

� ��
(30)

C ¼ � @

@ai

E dgci
� �

E dcaið Þ � E dccið ÞE dgai
� �

E daaið ÞE dccið Þ � E dcaið Þ½ �2
 !j

�i¼�i gð Þ

� @

@ci

E dgai
� �

E dcaið Þ � E daaið ÞE dgci
� �

E daaið ÞE dccið Þ � E dcaið Þ½ �2
 !j

�i¼�i gð Þ

(31)

A is the score of the original unmodified concentrated log-likelihood. So, we now analyze B and C
Part B. We first want to derive an expression for @âi=@g and @ĉi=@g. Differentiating the score of the

concentrated log-likelihood, d�i(g, �i(g)), with respect to g we get a system of two equations with two
unknowns. Solving for @âi=@g and @ĉi=@g we get

@âi gð Þ
@g

¼ dgcidcai � dccidgai
daaidcci � d2cai

(32)

@ĉi gð Þ
@g

¼ dgaidcai � daaidgci
daaidcci � d2cai

(33)

evaluating at g0 and replacing by expectations:

@âi g0ð Þ
@g

¼ E 1
T dgci0
� �

E 1
T dcai0
� �� E 1

T dcci0
� �

E 1
T dgai0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 þ Op T�1

2

� �
(34)

@ĉi g0ð Þ
@g

¼ E 1
T dgai0
� �

E 1
T dcai0
� �� E 1

T daai0
� �

E 1
T dgci0
� �

E 1
T daai0
� �

E 1
T dcci0
� �� E 1

T dcai0
� �2 þ Op T�1

2

� �
(35)

Introducing in (31) and rearranging terms:
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(36)

Evaluating at g0, using the fact that �i(g) = �i0 +Op(T
� 1/2), adding 1/T2 in numerators and

denominators and replacing by expectations:
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(37)

Finally, taking the expected value of this expression will not change anything, except that the
remainder would be O(T� 1) instead of Op(T

� 1/2).

STATE DEPENDENCE AND HETEROGENEITY IN HEALTH 205

Copyright © 2012 John Wiley & Sons, Ltd. J. Appl. Econ. 29: 181–207 (2014)
DOI: 10.1002/jae



Part C. To analyze C, we need the following result:

@

@ai
E dgci
� � ¼ E dgaci

� �þ E dgcidai
� �

(38)

This works with other derivatives of expectations as well.
C is the sum of two derivatives, which we call Ca and Cc respectively, evaluated at �i = �i(g). C

a

is equal to

Ca ¼ � @
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Working with the derivative and using the above result, we get

Ca ¼ � 1
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Likewise, for Cc we have
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We then evaluate at g0 and take the expected value of these expressions.
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Putting everything together. Finally, if we add all the terms of B and C from before, which is
equal to dgMi(g)�dgi(g, �i(g)) =B+C, we get exactly minus (29). Therefore, the modified score equals
the standard score minus the first-order term of the bias, because we are subtracting it with the
modification B +C.The reminder of this expansion for dgMi(g) is O(T

� 1), as opposed to O(1), which
is the order of magnitude of the bias of dgi(g, �i(g)). This shows that MMLE reduced the order of the
bias of the MLE.
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