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Summary We consider dynamic discrete choice models with heterogeneity in both the
levels parameter and the state dependence parameter. We first present an empirical analysis
that motivates the theoretical analysis which follows. The theoretical analysis considers a
simple two-state, first-order Markov chain model without covariates in which both transition
probabilities are heterogeneous. Using such a model we are able to derive exact small sample
results for bias and mean squared error (MSE). We discuss the maximum likelihood approach
and derive two novel estimators. The first is a bias corrected version of the Maximum
Likelihood Estimator (MLE) although the second, which we term MIMSE, minimizes the
integrated mean square error. The MIMSE estimator is always well defined, has a closed-
form expression and inherits the desirable large sample properties of the MLE. Our main
finding is that in almost all short panel contexts the MIMSE significantly outperforms the
other two estimators in terms of MSE. A final section extends the MIMSE estimator to allow
for exogenous covariates.

Keywords: Binary choice, Fixed effects, Heterogeneous slopes, Panel data, Unobserved
heterogeneity.

1. INTRODUCTION

Heterogeneity is an important factor to take into account when making inference based on
microdata. A significant part of the literature on binary choice models in the recent years has
been about estimating dynamic models accounting for permanent unobserved heterogeneity in
a robust way. Honoré and Kyriazidou (2000) and Carro (2007) are two examples; surveys of
this literature can be found in Arellano and Honoré (2001) and Arellano (2003a). Unobserved
heterogeneity in dynamic discrete choice models is usually only allowed through a specific
constant individual term, the so-called individual effect. In this paper, we consider that there
may be more unobserved heterogeneity than is usually allowed for. In particular, we investigate
whether the state dependence parameter in dynamic binary choice models is also individual
specific.

In Browning and Carro (2006) we presented two principal objections to allowing for limited
heterogeneity. The first is that this rules out, a priori, some interesting structural models. The
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2 M. Browning and J. M. Carro

second objection is that whenever we have sufficiently long panels to allow for heterogeneity
in slope parameters, we usually find it. In Section 2, we complement the latter analysis with
an illustration using consumer milk-type choice from a consumer panel data set. The sample
used contains more than 100 periods for each household, so we have a panel with large T .
This allows us to overcome the incidental parameters problem and use the standard Maximum
Likelihood Estimator (MLE) to test for the presence of permanent unobserved heterogeneity
both on the intercept and on the coefficient of the lag of the endogenous variable versus a model
where only the intercept is heterogeneous.1 A likelihood ratio test overwhelmingly rejects the
restricted model. Furthermore, the estimates of the parameters of interest are very different when
we allow for the more general form of heterogeneity. This illustration serves to further motivate
the subsequent theoretical analysis.

Micropanels with a large number of periods is rare. Therefore, we need to find a way to
estimate the model with two sources of heterogeneity when the number of periods is small.
Furthermore, we want to do that without imposing any restriction on the conditional distribution
of the heterogeneous parameters. There are not many examples in the literature where more than
one source of heterogeneity is allowed in dynamic models, even for linear models. For example,
the surveys of dynamic linear models in Arellano and Honoré (2001), Wooldridge (2002, ch. 11)
and (in the statistics literature) Diggle et al. (2002) do not consider the possibility of allowing for
heterogeneity other than in the ‘intercept’.

When we consider dynamic discrete choice models, even less is known than for the linear
model. Given this relative ignorance we begin by concentrating attention on the simplest
possible model and providing a thorough analysis of different estimators in respect to their
tractability, bias, mean squared error (MSE) and the power of tests based on them. Thus we
consider the model in which a lag of the endogenous variable is the only explanatory variable
and both the slope and the intercept are individual specific with an unknown joint distribution.
This simple two-state, first-order Markov chain model allows us to make a fully non-parametric
analysis and to derive exact analytical expressions for the bias and MSE of the estimators we
consider. We show how to use the analytical expression for the bias if T is fixed to correct
the MLE estimator and obtain a Non-linear Bias Corrected (NBC) Estimator. We find that
both MLE and NBC perform poorly in MSE terms. This leads us to suggest a third alternative
estimator which minimizes the integrated MSE; we term this the ‘minimizes the integrated mean
square error’ (MIMSE) estimator. This is an attractive estimator since it performs much better
than the other two for small values of T but converges to MLE as T becomes large. Moreover,
it is computationally very simple. After a thorough examination of the simple case with no
covariates, we provide an extension of the MIMSE estimator to the case in which we have
exogenous covariates.

The structure of rest of the paper is outlined in the next paragraphs. We regard the positive
suggestions below as a first step toward incorporating more heterogeneity in dynamic discrete
outcome models than is usually allowed for. Much of the analysis presented is frankly exploratory
and leads to inconclusive or even negative results. For example, the exact analytical results for
the MLE and NBC with small T indicate that bias reduction techniques are unlikely to lead to
useful estimators in these cases.

Section 2 presents the empirical milk analysis that illustrates the need for multiple sources of
heterogeneity.

1 Others have suggested panel data tests for heterogeneous slopes when the time dimension is small; see Pesaran
and Yamagata (2008) for a review of these tests and a novel test. Our emphasis in this paper is on allowing for slope
heterogeneity rather than simply testing for it.
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Heterogeneity in dynamic discrete choice models 3

In Section 3, we study the basic model without covariates and with four observations per
unit (including the initial observation). Although taking four observations for one unit may
seem excessively parsimonious, this analysis allows us to display almost all of the features of
interest in a transparent way. We show that there is no unbiased estimator. Following this we
derive the bias for the MLE. An important finding in this respect is that the bias of the MLE
estimator of the marginal dynamic effect is always negative; this is the non-linear analogue of
the Nickell bias result for linear dynamic models (see Arellano, 2003b). Based on this derivation
we define a one-step bias corrected estimator, which we term non-linear biased corrected (NBC).
We calculate the exact bias and MSE of the MLE and the NBC. We show that whilst NBC
reduces the bias it is sometimes worse than MLE for the MSE. The relatively poor performance
of the NBC together with the result on the non-existence of an unbiased estimator sets limits on
the bias correction route as a solution to the estimation problem for dynamic discrete outcome
models.

To take into account that both the MLE and the NBC display high MSE, in Section 4 we
present a new estimator that MIMSE. We derive the closed-form expression for the estimator. We
also derive the Bayesian posterior assuming a uniform prior over the two transition probabilities
and relate our estimators to that.

Section 5 compares the exact finite sample properties of the three estimators (MLE, NBC
and MIMSE) with T > 3. There are two main conclusions. First, for most of the possible values
the NBC is best in terms of bias, both for levels for very small T and for convergence of the bias
to zero as T becomes large. Second, MIMSE almost always dominates MLE and NBC on the
MSE criterion. We show the exact areas of dominance for MLE; these include most cases that
we would ever be interested in.

In Section 6, we shift perspective and consider estimating the distribution of parameters of
interest in the population of households. In a small-T context this will seem a natural shift given
that there are severe limits on how much we can learn about individual parameters with small
T . We consider estimators based on the three estimators already considered (MLE, NBC and
MIMSE). Using both analytical and simulation analysis, we conclude that MIMSE dominates
both other estimators and gives less biased estimators of both the location and dispersion of the
distribution. This is the case both as the number of cross-section units becomes large and when
it is fixed at the value we have in our empirical application in Section 2. The broad conclusion is
that if we are interested in population outcomes then MIMSE performs well relative to the other
two estimators.

In Section 7, we extend the MIMSE estimator to allow for exogenous covariates. We propose
to use the equivalence between MIMSE and the mean of the posterior distribution with flat priors.
This way it can be easily computed using MCMC techniques. Our analysis suggests that MIMSE
is a credible and feasible candidate for estimating dynamic discrete choice models. Section 8
concludes and proofs are given in the Appendix.

2. RESULTS FOR A LARGE T PANEL

2.1. Incorporating heterogeneity

In this section, we present results for a dynamic discrete choice analysis from a long panel.
Specifically, we estimate the patterns of buying full-fat milk (rather than low-fat milk) on a
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4 M. Browning and J. M. Carro

Danish consumer panel that gives weekly individual purchases by households for more than
100 weeks.2 Although the results have substantive interest, we present the analysis here mainly
to motivate the subsequent econometric theory. A conventional treatment would take

yit = 1
{
αyit−1 + x ′

itβ + ηi + vit ≥ 0
}

(t = 0, . . . , T ; i = 1, . . . , N ), (2.1)

where yit takes value 1 if household i purchases full-fat milk in week t, and zero otherwise. The
parameter ηi reflects unobserved differences in tastes that are constant over time. The parameter
α accounts for state dependence on individual choices due to habits. The xit variables are other
covariates that affect for the demand for full-fat milk. In our empirical analysis these are the
presence of a child aged less than 7, quarterly dummies and a time trend. Since the relative
prices of different varieties of milk are very stable across our sample period, it is reasonable to
assume that the time trend picks up both price effects and common taste changes. A more flexible
specification of model (2.1) that we will also consider is a model with interactions between the
lagged dependent variable and the observables.

yit = 1
{
αyit−1 + x ′

itβ + (yit−1xit)
′γ + ηi + vit ≥ 0

}
(t = 0, . . . , T ; i = 1, . . . , N). (2.2)

This allows that the state dependence depends on observables but still the only latent factor is the
individual specific parameter.

It is conventional to allow for a ‘fixed effect’ ηi as in (2.1). The primary focus of this paper is
on whether this makes sufficient allowance for heterogeneity. In particular, we examine whether
it is also necessary to allow that the state dependence parameter varies across households and, if
it does, how should we estimate if we have a short panel. Thus we take the following extended
binary choice model:

yit = 1
{
αiyit−1 + x ′

itβ + ηi + vit ≥ 0
}

(t = 0, . . . , T ; i = 1, . . . , N ). (2.3)

In model (2.3), we allow that both the intercept and the state dependence parameter are
heterogeneous but the effects of the covariates are assumed to be common across households.3

The values of the parameters of (2.3) are not usually of primary interest; rather they can be
used to generate other ‘outcomes of interest’. There are several candidates. In this paper, we
focus on the dependence of the current probability of y being unity on the lagged value of y; this
is the marginal dynamic effect:

mi(x) = Pr(yit = 1 | yi,t−1 = 1, x) − Pr(yit = 1 | yi,t−1 = 0, x). (2.4)

Another important outcome of interest is the long-run proportion of time that yit is unity, given a
particular fixed x vector. Using standard results from Markov chain theory this is given by

Pr(yit = 1 | yi,t−1 = 0, x)

Pr(yit = 1 | yi,t−1 = 0, x) + Pr(yit = 0 | yi,t−1 = 1, x)
. (2.5)

In this paper, we shall only concern ourselves with the marginal dynamic effect; this is simply
to limit what is already a long paper. In this empirical section we assume that the unobserved

2 In Denmark during the first four years of our sample period there were three levels of fat content in milk: skimmed
(0.01%), medium (1.5%) and high (3.5%). In the final year another low-fat (0.5%) milk was introduced. The 3.5% milk
is what we call full-fat milk.

3 We could extend the following empirical analysis to allow for heterogeneous effects of these covariates (and would
certainly do so if our main concern was to analyse milk expenditure patterns) but for our purposes here it suffices to
consider only heterogeneity in (η, α).
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Heterogeneity in dynamic discrete choice models 5

random shock vit is an i.i.d. standard Normal; in the analysis in the following sections we consider
the non-parametric case in which the distribution of vit is not known. For the Normal case the
marginal dynamic effect is given by

mi(x) = �(αi + x ′β + ηi) − �(x ′β + ηi), (2.6)

where �(·) is the standard Normal cdf.

2.2. The Danish consumer panel

We have a Danish consumer panel that follows the same households for up to five years (with
most households exiting the survey before the end of the five-year period) from January 1997
to December 2001. This panel provides data on all grocery purchases during the survey period
and some characteristics of the household. Respondents provide detailed information on every
item bought. For example, for milk they record the volume and price paid, the store where it
is purchased, the fat content and other characteristics of that specific purchase. We aggregate
purchases of milk to the weekly level (in Denmark households only consume fresh milk so
that taking weekly averages gives positive purchases of milk in every week) and set the full-
fat indicator for that week/household to unity if the household buys any full-fat milk in that
week; this does not exclude the possibility that they also buy low-fat milk in the same week.

Our strategy in this empirical section is to estimate the parameters of (2.1), (2.2) and (2.3)
without imposing any restriction on the joint distribution of αi and ηi . We thus select a subsample
of the data in which the household is observed for at least for 100 weeks so that we are in a
large-T context. We assume that this selection is exogenous to the milk-buying decision. We also
select on households having the number of changes on their decision with respect to the previous
period greater than 10% of the number of periods; without this the parameters for a particular
household may not be estimated or may be very imprecisely estimated.4 We take up this issue in
more detail in the next section. This sample selection gives us 371 households who are observed
from between 100 and 260 weeks. We then use a standard Probit to estimate; this is a consistent
estimator under the assumptions made. If we did not include covariates with common effects
(βi = β) then this estimation strategy would be the same as treating each household as a time
series and estimating αi and ηi (and βi) for each separately. Given the length of our panel, we
invoke standard large-T results.

2.3. Missing observations

Some weeks are missing for some households. This seems to be mainly because households
are not disinclined to keep complete records in that week or because of being on holiday.5 We
shall take these missing weeks to be ‘missing at random’ in the sense that their occurrence is
independent of the taste for full-fat milk. There are then two options for dealing with missing

4 It should be noted that excluding observations that do not change their decision implies no bias on the estimation of
models (2.1) and (2.2), because the contribution to the log-likelihood of these observations is zero. To see this, notice that
the MLE estimate of ηi will ±∞, so the likelihood (log-likelihood) of the observations of those households i that never
change will be one (zero) at the estimated value of ηi , regardless of the value of the other variables and parameters.

5 We emphasize again that we are here presenting an illustration. For a substantive study of fat consumption we would
need to explicitly model the possibility of some purchases not being recorded.
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6 M. Browning and J. M. Carro

Table 1. Estimates.

Model (2.1) (2.2) (2.3)

α 0.81 0.71 –

mean(α) – – 0.70

SD(α) – – 0.76

mean(η) −0.72 −0.70 −0.73

SD(η) 0.60 0.61 0.70

corr(η, α) – – −0.31

Child present 0.47 0.14 0.38

Quarter 2 −0.04 −0.05 −0.05

Quarter 3 −0.06 −0.08 −0.06

Quarter 4 0.08 0.13 0.09

Trend (×100) −0.015 −0.014 −0.014

yit−1 ∗ Child present – 0.76 –

yit−1 ∗ Quarter 4 – −0.14 –

Log-likelihood −27,905 −27,659 −26,376

weeks. Suppose, for example, that week t − 1 is missing but we observe in weeks t − 2, t and
t + 1. The first option is to use the probability Pr(yit = 1 | yi,t−2 = 1, xit, xi,t−1) in the likelihood.
This assumes that we can impute xi,t−1 which is not problematic in our case (for example, the
presence of a child aged less than 7 or the season). The alternative procedure, which we adopt,
is to drop observation t and to start again at period t + 1. When we do this we of course keep
(ηi, αi) constant for each household. Using the latter procedure causes a small loss of efficiency
but is much simpler. The proportion of missing observations is about 14% of the total number of
observations.

2.4. Results for the long panel

Table 1 contains the estimates of models (2.1), (2.2) and (2.3) by maximum likelihood estimation
(MLE). The model with observable variation in the state dependence parameter, (2.2), fits
significantly better than the most restricted model (2.1) (a likelihood ratio statistic of 492 with
5 degrees of freedom) but much worse than the general model (2.3). The likelihood ratio test
statistic for model (2.1) against (2.3) is 3058 with 370 degrees of freedom and 2566 with
365 degrees of freedom for testing model (2.2) against (2.3). This represents a decisive rejection
of the conventional model which only allows for a single ‘fixed effect’. Figure 1 shows the
marginal distributions of the two parameters, αi and ηi ; as can be clearly seen the state
dependence parameter varies quite widely across households. Restricting the state dependence
parameter to be common across households gives significant bias in the mean of the state
dependence and in the impact of children. It also gives a value for the variability of the η that
is too low. For the general model we find a significant negative correlation between the two
parameters; obviously the standard model (2.1) is not able to capture this.

Figure 2 plots the estimated state dependence parameter (α̂i) and its 95% confidence
interval for each of our 371 households, sorted from the smallest value of α̂i to the largest
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Heterogeneity in dynamic discrete choice models 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-3 –2 –1          0          1          2          3
Value of the parameters

D
e
n
s
i
t
y

State dependence

Fixed effect

Figure 1. Marginal densities of αi and ηi .

Figure 2. Estimated state dependence parameter, αi .
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8 M. Browning and J. M. Carro
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Figure 3. Estimates of marginal dynamic effects.

value.6 The darker horizontal line is the value of α = 0.81 estimated from model (2.1). The
proportion of households whose confidence interval of α̂i contains α̂ is 59%. Thus for 41% of
our sample the estimated α parameter using a model with more heterogeneity (2.3) is statistically
different from the value using model (2.1).

We can also consider the marginal effect, which is of more interest than the parameters that
are directly estimated. For both models the marginal effect is different for each household but
the variation in the magnitude of the marginal effect among households is greater in model (2.3)
than in model (2.1). This is shown in Figure 3; to plot this we set the quarterly dummies and time
trend to zero and the child variable to the mode for the household. The x-axis values are sorted
according to the values of the marginal effect for the general model (2.3). The flatter (variable)
line is for model (2.1) and the increasing curve is the value for model (2.3) (with 95% confidence
bands). In this case 46% of households have a marginal effect that is significantly different from
that implied by model (2.1) and 52% have a marginal dynamic effect that is not significantly
different from zero (at a 5% significance level). The differences between the implications of the
two models for the outcome of interest (the marginal dynamic effect) can be seen even more
dramatically in Figure 4 and Table 2 which present the estimated distribution of the marginal
dynamic effect, for the three estimated models of those households with the child variable equal
to zero. We plot a grid on this figure to facilitate comparisons across the three sets of estimates.
Once again we see that the extended model gives much more variation across households in the
marginal effects. But there are also other strong differences; for example, for the conventional
models ((2.1) and (2.2)) all households are estimated to have a positive marginal dynamic effect,
whereas for the unrestricted model about 18% have a negative effect (although most are not

6 In the confidence intervals of Figures 2 and 3 we are ignoring the sampling variability in the estimation of model (2.1)
because it is negligible in comparison to the sampling variability in estimating model (2.3).
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Heterogeneity in dynamic discrete choice models 9

Figure 4. Distribution of the dynamic marginal effect.

Table 2. Distribution of the marginal dynamic effect.

Model (2.1) (2.2) (2.3)

Minimum 0.10 0.08 −0.29

First quartile 0.22 0.19 0.03

Median 0.26 0.23 0.15

Third quartile 0.30 0.26 0.32

Maximum 0.31 0.28 0.80

Mean 0.26 0.22 0.19

SD 0.05 0.04 0.23

‘significantly’ different from zero; see Figure 3). Moreover the mean and median are lower for
the extended model.

This empirical analysis serves to illustrate our contention that there is probably more
heterogeneity in dynamic models than is allowed for by conventional schemes that only allow
‘intercepts’ to vary across households. We turn now to a consideration of estimation when we do
not have the luxury of observing households for very many periods. One option is to formulate a
(random effects) parametric model for the conditional joint distribution of (α, η | x, y0) and then
to estimate the parameters by, say, maximum likelihood. This parametric model would have to
accommodate the bimodalities and fat tails displayed by the distributions shown in Figure 1. In
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10 M. Browning and J. M. Carro

this paper, we consider the alternative of estimating non-parametric models which do not restrict
the joint distribution of the latent factors.

3. EXACT BIAS AND MSE ANALYSIS, T = 3

3.1. A simple model with a lagged dependent variable

The empirical analysis above suggested strongly that we need to allow for heterogeneity in both
the intercept and the state dependence parameter when we consider dynamic models. Since
relatively little is known about the behaviour of the dynamic non-linear panel data estimators
in the simpler case in which we only allow for heterogeneity in the ‘intercept’ (see, for example,
Arellano and Honoré, 2001, sec. 8), we necessarily have to be modest in our aims here.
Consequently we restrict attention to the simple model with no covariates, in which case we
can dispense with parametric formulations such as (2.3) and focus directly on the two transition
parameters:

Gi = Pr(yit = 1 | yi,t−1 = 0), (3.1)

Hi = Pr(yit = 1 | yi,t−1 = 1). (3.2)

This is a two-state, first-order stationary Markov model with a marginal dynamic effect given by:

Mi = Hi − Gi. (3.3)

There is a large literature on the estimation of Markov models considering such issues as testing
for stationarity or the order of the process; the classic reference is Anderson and Goodman
(1957) who consider the case in which all agents have the same transition matrix. In general,
most investigators assume less heterogeneity than we do here. Exceptions include Billard and
Meshkani (1995) and Cole et al. (1995) who both use an empirical Bayes approach,7 and Albert
and Waclawiw (1998) who adopt a quasi-likelihood approach to estimate the first two moments of
the joint distribution of the transition probabilities. The distributions plotted in Figure 1 suggest
that this may miss important features of the joint distribution.

There are two primary virtues of considering the simplest model of a first-order stationary
Markov chain without covariates. The first is that we can derive exact analytical finite sample
results and discuss estimation and bias reduction without recourse to simulation. This allows us,
for example, to sign the bias for particular estimators for any value of (G,H ) and not just for
particular values as in Monte Carlo studies. The second advantage is that the analysis here is
fully non-parametric and does not require assumptions concerning functional forms. Thus the
basic case serves as a general benchmark which we can examine in great and exact detail. We
shall only consider estimation conditional on the observed initial value yi0.8 We start with an
exhaustive account of the case in which T = 3 and, with no loss of generality, we only consider

7 This is essentially a random coefficients model.
8 If we are willing to make assumptions concerning the initially observed value (for example, it is drawn from the long-

run distribution) then there may be considerable gain in efficiency when T is small. We do not explore this here to avoid
potential biases caused by misspecifications of the distribution of the initial value. For recent results on taking account
of the initial conditions problem, see Honoré and Tamer (2006).
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Heterogeneity in dynamic discrete choice models 11

paths that start with yit = 1. This very simple case is instructive and leads us to reject some
possibilities and also suggests general results. In a later section, we consider the general fixed-T
case.

If we take a parametric formulation with an arbitrary cdf F (·) then we have

Gi = F (ηi),

Hi = F (αi + ηi).
(3.4)

Observing this allows us to derive a restriction that is analogous to the usual model (2.1)
with a homogeneous state dependence parameter, αi . Assuming that F (·) is everywhere strictly
increasing we can invert both equations to give

αi = F−1(Hi) − F−1(Gi). (3.5)

Then the usual homogeneity restriction , αi = α, gives the restriction

Hi = F (α + F−1(Gi)). (3.6)

It is important to note that this restriction is parametric and depends on the chosen cdf. That is,
an assumption of a homogeneous state dependence parameter for one distribution is implicitly
assuming that the state dependence parameter is heterogeneous for any other distribution, unless
α is zero. This emphasizes the arbitrariness in the usual homogeneity assumption since there
is no reason why the homogeneity of the state dependence parameter αi should be linked to
the distribution of F (·). Given this arbitrariness, we see as more natural the hypothesis that the
marginal dynamic effect is the same for everyone:

Mi = M ⇒ Hi = M + Gi. (3.7)

We shall return to testing for this in Section 3.6 below.
When there are no covariates we can treat each household as an individual (albeit short)

time series and drop the i subscript. Table 3 gives the outcomes for the case with T = 3 (that is,
four observations including period 0) and y0 = 1. The first column gives the name we have
given to each case, the second column gives the observed path and the next four columns
give the frequencies for observed pairs of outcomes 00, 01, 10 and 11, respectively. The final
column gives the probability of observing the path (conditional on y0 = 1) which we denote by

Table 3. Outcomes for T = 3.

Case Path n00 n01 n10 n11 Probability of case j, pj

a 1000 2 0 1 0 (1 − H ) (1 − G) (1 − G)

b 1001 1 1 1 0 (1 − H ) (1 − G) G

c 1010 0 1 2 0 (1 − H ) G(1 − H )

d 1011 0 1 1 1 (1 − H ) GH

e 1100 1 0 1 1 H (1 − H ) (1 − G)

f 1101 0 1 1 1 H (1 − H ) G

g 1110 0 0 1 2 HH (1 − H )

h 1111 0 0 0 3 HHH
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12 M. Browning and J. M. Carro

pa, pb, . . . , ph, respectively. This is given by

pj = (G)n
j

01 (1 − G)n
j

00 (H )n
j

11 (1 − H )n
j

10 , (3.8)

where n
j

01 is the number of 0 → 1 transitions for case j, etc. We now consider the choice of an
estimator for this scenario.

3.2. All estimators are biased

An estimator (Ĝ, Ĥ ) assigns values to G and H for each case a, b, . . . , h:

{Ĝ, Ĥ } : {a, b, c, d, e, f , g, h} → 	([0, 1]2), (3.9)

where 	(X) denotes the power set of X. An estimator (Ĝ, Ĥ ) is the correspondence (3.9)
evaluated at the random indicator for the paths a to h. For the marginal dynamic effect the
correspondence is given by

M̂ = Ĥ − Ĝ : {a, b, c, d, e, f , g, h} → 	([−1, 1]). (3.10)

If the values given by the estimator are unique for each case then the corresponding parameter
is point estimated, otherwise the estimator is partially defined. For example, as we shall see in
the next subsection, maximum likelihood is point defined for H but only partially defined for G.
Before considering particular estimators we show analytically that there is no unbiased estimator
for G and H.

PROPOSITION 3.1. All estimators of (G,H ) are biased.

This is a useful result since it shows that there is no point in searching for an unbiased
estimator and we consequently have to seek for estimators that have low bias or low MSE. An
alternative way to state this result is that for any estimator of (G,H ) we can find an alternative
estimator and some values of (G,H ) which give a lower bias. Thus we will always be in the
situation in which we are making trade-offs, even when we restrict attention to bias.

3.3. Maximum likelihood estimator

In the current context in which probabilities are given, the most natural estimator is maximum
likelihood. The MLE {ĜMLE

j , Ĥ MLE
j }j=a,...,h gives the values of G and H that maximize the

probabilities for each case. It is convenient to give the results for any fixed T (≥3) at this point.
From (3.8) it is easily seen that the log-likelihood is maximized for values of G and H given by

ĜMLE
j = n

j

01

n
j

00 + n
j

01

, (3.11)

Ĥ MLE
j = n

j

11

n
j

10 + n
j

11

. (3.12)

If this mapping exists then the parameter is point estimated. Since we condition on y0 = 1 we
always have (nj

10 + n
j

11) 
= 0 so that Ĥ MLE
j is always defined. The MLE estimator for G does not
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Heterogeneity in dynamic discrete choice models 13

Table 4. Outcomes conditioning on point estimation.

Maximum Non-linear
likelihood bias corrected

Adjusted
Case probability, p̃j ĜMLE Ĥ MLE ĜBC 1 Ĥ BC 1

a (1−G)(1−G)
(1+H ) 0 0 0 0

b (1−G)G
(1+H ) 1/2 0 3/8 0

c G(1−H )
(1+H ) 1 0 1 0

d GH

(1+H ) 1 1/2 1 2/3

e H (1−G)
(1+H ) 0 1/2 0 5/6

f HG

(1+H ) 1 1/2 1 2/3

exist if we observe yt = 1 for t = 1, 2, . . . , T − 1 (⇒ n00 + n01 = 0). The probability of this is
given by:

Pr(non-existence|y0 = 1) = HT −1. (3.13)

Thus there is always a positive probability of non-existence (so long as H > 0) but it goes to
zero as T becomes large (so long as H < 1). Even for modest T , it is small, unless H is very
close to 1. Moreover, for the ‘non-existence’ case where n

j

10 = 0, i.e. yt = 1 for t = 1, 2, . . . , T

(case h in Table 3), the contribution to the log-likelihood is zero since Ĥ MLE
j = 1 for this case.

For the other ‘non-existence’ case the contribution is not zero, but it is close to zero and it goes
to zero as T becomes large, since Ĥ MLE

j = T −1
T

. Given these reasons, most investigators ignore
the bias introduced by selecting out the non-identifying paths. We thus have two distinct classes
of estimator. In the first, we exclude any observation with n00 + n01 = 0. In this case, both G
and H are point estimated. When we analyse this case in finite samples, we have to correct the
probabilities for sample selection by dividing the given probabilities by (1 − HT −1) (and using
p̃ to denote adjusted probabilities). The second class of estimator uses all the observed paths but
then ĜMLE is only partially defined. We concentrate attention on the former, (point estimated)
case and do not consider the partially defined estimator.9

Table 4 gives the relevant details for the point-estimated context for T = 3 in which we
exclude cases g and h. The second column gives the probabilities adjusted for the sample
selection and the next two columns give the maximum likelihood estimators for (G,H ). These
estimators are calculated without taking into account that we select out cases g and h (that is, they
are based on the unadjusted probabilities given in Table 3). This is largely to conform with current
practice which does not adjust probabilities when calculating maximum likelihood estimators for
the reasons given in the previous paragraph. The alternative is to use the adjusted probabilities
when calculating the MLE; this is perfectly legitimate (and may even be considered better) but
it is not the common practice and it leads to estimators which look ‘non-standard’ so we choose
to analyse only the MLE estimator using the unadjusted probabilities. In all the analysis, we
always use the adjusted probabilities when calculating biases and MSEs, as previously explained.

9 The proof that there is no unbiased estimator was given for the no-selection case. It is easy to show by the same
methods that there is no unbiased estimator of the pair (G, H ) for the class in which we select our cases g and h.
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14 M. Browning and J. M. Carro

The result of the previous subsection tells us that MLE is biased. Since we have an exact
probability model we can go further than this and give the exact bias (using the notation ĜMLE

j to

denote the jth element of ĜMLE):

bias(ĜMLE) = E(ĜMLE) − G = p̃aĜ
MLE
a + · · · + p̃f ĜMLE

f − G

= 1

2

(1 − G)G

(1 + H )
≥ 0, (3.14)

bias(Ĥ MLE) = E(Ĥ MLE) − H = p̃aĤ
MLE
a + · · · + p̃f Ĥ MLE

f − H

= 1

2

(G − 2H − 1)H

(1 + H )
≤ 0, (3.15)

bias(M̂MLE) = bias(Ĥ MLE) − bias(ĜMLE)

= 1

2

G2 − G + GH − H − 2H 2

(1 + H )
≤ 0. (3.16)

Although the exact bias depends on the unobserved probabilities G and H, the sign of the bias
does not. As can be seen, ĜMLE is always biased upwards and Ĥ MLE and M̂MLE always have a
negative bias. In particular, the bias of the MLE estimate of the marginal dynamic effect, M̂MLE,
is always negative for interior values of (G,H ). This is the analogue of the signable Nickell bias
for the linear autoregressive model (see, for example, Arellano, 2003b).10 We shall return to this
in the section in which we consider T > 3. The bias of G is maximized at (G,H ) = (0.5, 0) and
the absolute value of the biases of H and M are both maximized at (G,H ) = (0, 1).

Knowing the sign of the bias is sometimes useful since it allows us to put bounds on the
possible values of the parameters and the marginal effect. For example, for the marginal effect
for case j we have the bounds [Ĥ MLE

j − ĜMLE
j , 1]. Admittedly these are not very tight bounds

(particularly for case c), but we should not expect tight bounds if we only observe a household for
four periods. One view of the choice of an estimator is then that it reduces to finding an estimator
that has the smallest expected bounds. The negative bias result of the previous subsection then
states that no estimator gives uniformly tight bounds (that is, smallest bounds independent of the
true parameter values).

3.4. Bias corrected estimators

Since we have an exact and explicit form for the bias, one improvement that immediately suggests
itself is to use these expressions for the bias with the ML estimates substituted in to define a new
(bias corrected) estimator. We define the NBC estimator, which we denote (ĜNBC, Ĥ NBC), as the
MLE estimate minus the estimated bias of the latter.11 We denote the probability of case k using

10 We have the same pattern of signs for the bias when we consider the case in which y0 = 0, so this is a general result.
11 The terminology here is to distinguish our correction from linear bias correction estimators as in McKinnon and

Smith (1998).
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Heterogeneity in dynamic discrete choice models 15

the estimates from observing case j by pk(ĜMLE
j , Ĥ MLE

j ) and define the new estimator by

ĜNBC
j = ĜMLE

j −
[

f∑
k=a

p̃k

(
ĜMLE

j , Ĥ MLE
j

)
ĜMLE

k − ĜMLE
j

]

= 2ĜMLE
j −

[
f∑

k=a

p̃k

(
ĜMLE

j , Ĥ MLE
j

)
ĜMLE

k

]
, (3.17)

Ĥ NBC
j = Ĥ MLE

j −
[

f∑
k=a

p̃k

(
ĜMLE

j , Ĥ MLE
j

)
Ĥ MLE

k − Ĥ MLE
j

]

= 2Ĥ MLE
j −

[
f∑

k=a

p̃k

(
ĜMLE

j , Ĥ MLE
j

)
Ĥ MLE

k

]
. (3.18)

The values for these are given in the NBC column of Table 4.
We can also derive the biases for the NBC estimator:

bias(ĜNBC) = E(ĜNBC) − G = 3

8

(1 − G)G

(1 + H )
≥ 0, (3.19)

bias(Ĥ NBC) = E(Ĥ NBC) − H = 1

6

(3G − 6H − 1)H

(1 + H )
≶ 0, (3.20)

bias(M̂NBC) = 1

24

(9G2 − 9G + 12GH − 4H − 24H 2)

(1 + H )
≶ 0. (3.21)

Note that the bias for H and M is now not necessarily negative. Nevertheless the situation where
bias(Ĥ NBC) and bias(M̂NBC) are not negative is an extreme case of ‘negative autocorrelation’ in
that it implies that both Pr(yit = 1 | yi,t−1 = 1) and Pr(yit = 0 | yi,t−1 = 0) are small. The bias for
H is positive if the following two conditions are both satisfied: H < 1

3 and G > 1
3 + 2H . If we

restrict attention to values of (G,H ) such that M = H − G > −0.5 then we can show that the
bias of M̂NBC is negative. Comparing the bias for ĜNBC with equation (3.14) we see immediately
that the NBC estimator always has a smaller bias for G than MLE. Moreover, if we again restrict
attention to M = H − G > −0.5 then we can show that the absolute value of biases of H and
M are lower for NBC than for MLE. Actually, for M that holds also for M > −0.8. Thus, for
T = 3 and ‘reasonable’ values of (G,H ), the bias correction does indeed lead to a reduction in
the bias; although there are some extreme cases for which bias correcting actually increases the
bias of the estimator.

The definitions in (3.17) and (3.18) suggest a recursion in which we take the new bias
corrected estimator and adjust the bias again. This leads to a second round estimator in which
some estimated probabilities exceed unity. If we continue iterating then the estimator does not
converge. Formally we can show that there does not exist a limit estimator (see the Appendix) and
numerically we have that the iterated estimator does not converge for one case. This may happen
when dealing with non-linear transformations as here. Even if a limit estimator had existed, it
would still be biased, since we proved there is no unbiased estimator in Proposition 3.1. Given
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16 M. Browning and J. M. Carro

Table 5. Mean squared errors for estimators.

Mean squared error

Ĝ Ĥ

MLE 1
4

(5−4G+4H )(1−G)G
(1+H )

1
4

(4H 2−4GH+G+1)H
(1+H )

(Mean) (0.138) (0.159)

NBC 1
64

(73−48G+64H )(1−G)G
(1+H )

1
36

(36H 2−36GH+7G−24H+25)H
(1+H )

(Mean) (0.140) (0.158)

Note: Value in parenthesis is mean assuming uniform over (G, H ).

this we consider only two candidate estimators: maximum likelihood and the (one-step) non-
linear bias corrected estimator.

3.5. Mean squared error of the estimators

The results above have focused on the bias of the maximum likelihood estimators (ĜMLE, Ĥ MLE)
and the NBC estimators (ĜNBC, Ĥ NBC). However, the MSE can increase even if the bias is
reduced. Thus we also need to consider the MSE of our candidate estimators. The MSE for
any estimator is given by

MSE(Ĝ) = E(Ĝ − G)2

=
f∑

j=a

p̃j (G,H )(Ĝj − G)2, (3.22)

MSE(Ĥ ) = E(Ĥ − H )2

=
f∑

j=a

p̃j (G,H )(Ĥj − H )2. (3.23)

Table 5 gives the exact MSEs for the two estimators; the values given are not symmetric in G and
H since we consider only the case with y0 = 1. Given these expressions, it is easy to show neither
estimator dominates the other in terms of MSE. For example, if we take (G,H ) = (0.5, 0.5) then
the MSE of ML estimators of G and H are lower, whereas for (G,H ) = (0.25, 0.75) the NBC
estimator has the lowest MSE. Given that we have exact expressions for the MSE, we can find the
mean for each of our estimators if we assume a distribution for (G,H ). The values in parentheses
in Table 5 give the means assuming a uniform distribution over [0, 1]2. As can be seen, the two
estimators of G and H are quite similar in this regard. We shall return to the MSE analysis in the
later sections.

3.6. Inference

The final consideration for the two estimators is their performance for hypothesis testing. In the
current context the most important hypothesis we would wish to test is that the marginal dynamic
effect is zero: G = H . Table 6 gives the probabilities for the six possible paths under H0 : G = H
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Heterogeneity in dynamic discrete choice models 17

Table 6. Outcomes for no marginal dynamic effect.

Case Path Prob, given G = H ĜMLE ĜNBC

a 1000 (1−G)2

(1+G) 0 0

b 1001 (1−G)G
(1+G) 1/3 7/18

c 1010 (1−G)G
(1+G) 1/3 7/18

d 1011 G2

(1+G) 2/3 38/45

e 1100 (1−G)G
(1+G) 1/3 7/18

f 1101 G2

(1+G) 2/3 38/45

Figure 5. Inference for MLE and NBC.

and the corresponding ML estimator and NBC estimator under the null. To consider inference
we have to specify a decision process that leads us to either reject or not reject H0 consequent on
observing one of the cases a, b, . . . , f . We consider symmetric two-sided procedures in which
we reject H0 if |M̂| > τ , where τ is a cut-off value between zero and unity. The top panel of
Figure 5 shows the probabilities of rejecting the null when it is true for values of τ ∈ (0, 1) and
G = H = 0.5 when T = 3. This shows that neither estimator dominates the other in terms of
size. What of the converse: the probability of rejecting H0 when it is false. The bottom panel of
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18 M. Browning and J. M. Carro

Figure 5 shows the case with G = 0.25, H = 0.75 (that is, with reasonably strong positive state
dependence). Once again, neither estimator dominates the other.

3.7. Where does this leave us?

A number of conclusions arise from a consideration of the simple model with T = 3 and
y0 = 1:

• There is no unbiased estimator for either the point-identified case nor the partially
identified case.

• MLE gives an upwards biased estimator for G = Pr(yit = 1 | yi,t−1 = 0) and a downwards
biased estimator of H = Pr(yit = 1 | yi,t−1 = 1) and the marginal dynamic effect M =
H − G.

• We can calculate the bias of the MLE and consequently define a one-step bias corrected
estimator (NBC).

• The bias corrected estimator makes the absolute value of the bias of G smaller, as compared
to MLE. For values of M > −0.8 the NBC estimator of M also gives a lower bias in
absolute terms than MLE, but not for values of M close to −1.

• NBC does not dominate MLE on an MSE criterion. In fact the mean MSE of the two
estimators are very close if we assume that (G,H ) are uniformly distributed.

• Neither of the two estimators dominates the other in terms of making inferences.

Most of these conclusions apply in the T > 3 case; before considering that explicitly we present
a new estimator that is designed to address the relatively poor performance of MLE and NBC for
the MSE.

4. MINIMIZING THE INTEGRATED MSE

4.1. Minimum integrated MSE estimator of M

The two estimators developed so far are based on MLE but the case for using MLE is not very
compelling if we have small samples (see Berkson, 1980, and the discussion following that
paper). As we have seen, we can make small sample corrections for the bias to come up with
an estimator that is less biased, but our investigations reveal that this is not necessarily better on
the MSE criterion. Given that we use the latter as our principal criterion, it is worth investigating
alternative estimators that take the MSE into account directly. To focus our discussion we
concentrate on the estimator for the marginal effect M = H − G. The MSE for an estimator
M̂j (where j refers to an observed path of zeros and ones) is given by:

λ(M̂; G,H ) =
J∑

j=1

pj (M̂j − (H − G))2. (4.1)

As with the bias, we can show that there is no estimator that minimizes the MSE for all
values of (G,H ) so we have to settle for finding the minimum for some choice of a prior
distribution of (G,H ). Given that we are looking at the general case in which we have no
idea of the context, the obvious choice is the uniform distribution on [0, 1]2. This gives the
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Heterogeneity in dynamic discrete choice models 19

integrated MSE:

ψ =
∫ 1

0

∫ 1

0
λ(M̂; G,H ) dGdH

=
∫ 1

0

∫ 1

0

J∑
j=1

pj (M̂j − (H − G))2 dGdH

=
∫ 1

0

∫ 1

0

J∑
j=1

(
Gn

j

01 (1 − G)n
j

00Hn
j

11 (1 − H )n
j

10
)
(M̂j − (H − G))2 dGdH, (4.2)

where we have substituted for pj from Table 3. The criterion (4.2) is additive in functions of
M̂1, M̂2, . . . , M̂J so that we can find minimizing values of the estimator considering each case
in isolation. Differentiating (4.2) with respect to M̂j , setting the result to zero and solving for M̂j

gives:

M̂j =
∫ 1

0

∫ 1
0 pj (H − G)dGdH∫ 1

0

∫ 1
0 pjdGdH

(4.3)

=
(∫ 1

0 H (1+n
j

11)(1 − H )n
j

10dH
)

(∫ 1
0 Hn

j

11 (1 − H )n
j

10dH
) −

(∫ 1
0 G(1+n

j

01)(1 − G)n
j

00dG
)

(∫ 1
0 Gn

j

01 (1 − G)n
j

00dG
) . (4.4)

Using the result that for x and z that are integers we have∫ 1

0
Y x(1 − Y )zdY = 
(x + 1)
(z + 1)


(x + z + 2)
= x!z!

(x + z + 1)!
(4.5)

(where 
(·) is the gamma function) we have the following closed form for the minimum
integrated MSE (MIMSE) estimator:

M̂MIMSE
j =

(
n

j

11 + 1
)
!
(
n

j

10 + n
j

11 + 1
)
!(

n
j

10 + n
j

11 + 2
)
!nj

11!
−

(
n

j

01 + 1
)
!
(
n

j

00 + n
j

01 + 1
)
!(

n
j

00 + n
j

01 + 2
)
!nj

01!

= n
j

11 + 1

n
j

10 + n
j

11 + 2
− n

j

01 + 1

n
j

00 + n
j

01 + 2
. (4.6)

As can be seen, the MIMSE estimator is simply the MLE estimator with n
j
st + 1 replacing n

j
st

everywhere. It is important to note that the first term on the right-hand side of equation (4.6) is
Ĥ MIMSE

j , and the second term is ĜMIMSE
j .

The MIMSE point estimates the values of the parameters in cases where the MLE did not
exist. Moreover, the MIMSE estimate will always be in the interior of the parameter space (that
is, M̂MIMSE

j ∈ (−1, 1)). In terms of computational difficulty, the MIMSE estimator is as easy to
compute as the MLE estimator and somewhat easier to compute than the NBC estimator. In
particular, we only require observation of the sufficient statistics {nj

00, n
j

01, n
j

10, n
j

11} to compute
the estimator M̂MIMSE

j . Of most importance is that as each nst → ∞ (which would follow from
n → ∞ and the transition probabilities being interior) the MIMSE estimator converges to the
MLE. Convergence to MLE is a considerable virtue, since then MIMSE inherits all of the
desirable asymptotic properties (consistency and asymptotic efficiency) of MLE.
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20 M. Browning and J. M. Carro

4.2. A Bayesian perspective

The use of a uniform distribution in the derivation of the MIMSE estimator suggests extending
to a Bayesian analysis (see Billard and Meshkani, 1995, Cole et al., 1995). Suppose we have a
sample Y and parameters (G,H ) ∈ [0, 1]2. The posterior distribution of the parameters is given
by

P (G,H | Y ) = P (Y | G,H )P (G,H )

P (Y )
= P (Y | G,H )P (G,H )�

P (Y | G,H )P (G,H )dGdH
, (4.7)

where P (Y | G,H ) is the likelihood of the data and P (G,H ) is the prior distribution. In our case:

P (Y | G,H ) = Gn01 (1 − G)n00Hn11 (1 − H )n10 (4.8)

and we take a uniform prior P (G,H ) = 1. Then, using the same results used to obtain the closed
form for the MIMSE, we have

P (Y ) =
∫ 1

0

∫ 1

0
Gn01 (1 − G)n00Hn11 (1 − H )n10dGdH

= n11!n10!

(n10 + n11 + 1)!

n01!n00!

(n00 + n01 + 1)!
. (4.9)

The posterior distribution is given by

P (G,H | Y ) = Gn01 (1 − G)n00Hn11 (1 − H )n10
(n00 + n01 + 1)!(n10 + n11 + 1)!

n11!n10!n01!n00!
. (4.10)

For a Bayesian analysis this provides all that is required from the data for subsequent analysis
of, say, the Bayesian risk for the marginal dynamic effect, M = H − G. Our interest here is in
how this relates to our estimators.

To link to estimators we consider the marginal posterior of G:

P (G | Y ) =
∫ 1

0
P (G,H | Y )dH

= (n00 + n01 + 1)!(n10 + n11 + 1)!

n11!n10!n01!n00!
Gn01 (1 − G)n00

∫ 1

0
Hn11 (1 − H )n10dH

= Gn01 (1 − G)n00
(n00 + n01 + 1)!

n00!n01!
,

where we have used (4.10). A standard result is that the MLE is the mode of the posterior
distribution assuming a flat prior. In the current context, taking the derivative of this expression
with respect to G, setting this equal to zero and solving for G gives the maximum likelihood
estimator in equation (3.11). To show the link to the MIMSE, we have that the conditional mean
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Heterogeneity in dynamic discrete choice models 21

Table 7. Estimates of marginal effect for three estimators.

Case Path M̂MLE M̂NBC M̂MIMSE

a 1000 0 0 1/12

b 1001 −1/2 −3/8 −1/6

c 1010 −1 −1 −5/12

d 1011 −1/2 −1/3 −1/6

e 1100 1/2 5/6 1/6

f 1101 −1/2 −1/3 −1/6

g 1110 – – 1/10

h 1111 – – 3/10

of G is given by

E(G | Y ) =
∫ 1

0
GP (G | Y )dG

= (n00 + n01 + 1)!

n00!n01!

∫ 1

0
Gn01+1(1 − G)n00dG

= (n00 + n01 + 1)!

n01!n00!

(n01 + 1)!n00!

(n00 + n01 + 1 + 1)!

= n01 + 1

n00 + n01 + 2
,

which is the MIMSE estimator for G (see the second expression on the right-hand side of
equation (4.6)).

4.3. Comparing the MIMSE estimator with MLE and NBC, T = 3

We now consider how the MIMSE estimator compares to MLE and NBC in terms of finite sample
bias and MSE. In the interests of comparability we shall only consider the estimates for cases
a to f and exclude the cases for which MLE does not exist. In doing this, we use the adjusted
probabilities given in Table 4 that take into account the sample selection. This is consistent with
our earlier decision to consider the MLE derived using the uncorrected probabilities but to use
the corrected probabilities when considering bias and MSE. Note that the MIMSE estimator
does not minimize the integrated MSE for the corrected probabilities so that these comparisons
are relatively unfavourable to MIMSE.

In Table 7 we give the three sets of values for the estimator of M. As can be seen, the estimates
of M for MIMSE range from −5/12 to 0.3. Figure 6 shows the comparisons of bias and MSE
for values of G = 0.2, 0.5, 0.8 and H ∈ [0, 1] when T = 3. The left-hand panels give the bias
and the right-hand panels give the MSE. As can be seen for the bias, sometimes MIMSE is
worse than NBC and sometimes it is better. In particular, since the bias of the MIMSE estimator
can be positive or negative, we can have zero bias for some parameter values (for example, at
(G,H ) = (0.5, 0.366)). Turning to the right-hand-side panels for MSE we see that the MIMSE
estimator does better than MLE and NBC unless there is strong negative state dependence and
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22 M. Browning and J. M. Carro

Figure 6. Bias and MSE for three estimators, T = 3.

sometimes does very much better. For example, for (G,H ) = (0.5, 0.8) (which implies moderate
positive state dependence with M = 0.3) we have values for the MSE of 0.49, 0.41 and 0.17 for
MLE, NBC and MIMSE, respectively.

5. EXACT BIAS AND MSE ANALYSIS FOR FIXED T > 3

As before we shall only consider sequences that start with y0 = 1. When considering T = 3 we
could write down all eight possible cases and show explicit expressions for the bias and MSE.
For larger values of T , tables such as Table 3 become impractical. For the observed sequence
{1, y1, y2, . . . , yT } there are 2T possible distinct paths; for convenience we denote 2T by 
. An
estimator for G and H is given by a mapping from the 
 outcomes to values for Ĝ and Ĥ . Given
(3.11) and (3.12), the bias of the MLE estimators is given by

bias(ĜMLE) =
⎛
⎝ 1

(1 − HT −1)


−2∑
j=1

pj

(
n

j

01

n
j

00 + n
j

01

)⎞
⎠ − G, (5.1)
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Heterogeneity in dynamic discrete choice models 23

bias(Ĥ MLE) =
⎛
⎝ 1

(1 − HT −1)


−2∑
j=1

pj

(
n

j

11

n
j

10 + n
j

11

)⎞
⎠ − H. (5.2)

Note that the summation is from 1 to (
 − 2) since the last two cases are selected out. The MSEs
for the MLE are given by

MSE(Ĝ) = 1

(1 − HT −1)


−2∑
j=1

pj

((
n

j

01

n
j

00 + n
j

01

)
− G

)2

,

MSE(Ĥ ) = 1

(1 − HT −1)


−2∑
j=1

pj

((
n

j

11

n
j

10 + n
j

11

)
− H

)2

.

(5.3)

These are exact analytical expressions for the bias and MSE. We cannot derive closed form
expressions for these (mainly because we cannot display closed form expressions for n

j
st ) but we

can compute the exact values numerically using these formulas. We postpone presenting these
until after we define the bias corrected estimator.

As before, we can define a new estimator by taking the bias of the MLE estimator, assuming
that the values of G and H are the estimated values and then bias correcting. This gives12

ĜNBC
j = 2ĜMLE

j −
[


−2∑
k=1

p̃k

(
ĜMLE

j , Ĥ MLE
j

)
ĜMLE

k

]
,

Ĥ NBC
j = 2Ĥ MLE

j −
[


−2∑
k=1

p̃k

(
ĜMLE

j , Ĥ MLE
j

)
Ĥ MLE

k

]
.

(5.4)

Finally, the MIMSE estimator is given by (4.6).
We turn now to the performance of our three estimators as we increase T from 3 to 12. We

consider three cases: (G,H ) = (0.75, 0.25), (0.5, 0.5) and (0.25, 0.75). The first of these cases
is somewhat extreme in that M = −0.5 and the y variable has a high probability of changing from
period to period. For most contexts (for example, state dependence due to habit formation as in
our empirical example) this will never be considered. Nonetheless, there may be circumstances,
such as the purchase of a particular small durable, when we see this sort of behaviour. Figure 7
shows the results. The left-hand panels give the bias against T and the right-hand panels give
the MSEs against T; note that the y-axis scales vary from panel to panel. We consider first the
(absolute) biases. There are two aspects to this. First, how big is the bias for very small T? And,
second, how quickly does the bias converge to zero (if it does) as T increases (see, for example,
Carro, 2007; Hahn and Newey, 2004). Since we gave an exact analysis of the former for T = 3
in the previous section we concentrate here on the second issue. For all three cases shown in
Figure 7 the NBC estimator usually has the smallest bias (in absolute value) and appears to be
converging to zero faster.13 Taking the values shown in the figure we can actually be more precise

12 Since we have to sum over all the 
 − 2 cases to calculate the NBC, the computation time increases with T . However,
for any T < 24 a regular PC takes less than a minute in computing the NBC. We have not tried higher T , because most
of the micropanels found in practice have fewer than 25 periods.

13 It is worth noting that the biases for G and H are not so regular and are not even always monotone decreasing in T .
Despite this, the difference, M, is well behaved.
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24 M. Browning and J. M. Carro

Figure 7. Bias and MSE for estimators of marginal dynamic effect.

than this. To a very high order of approximation we have that the bias of estimator e, which we
denote be, is polynomial in T with the following dominant term:

be  κeT
δe , (5.5)

where κe and δe are functions of (G,H ). For the case G = H = 0.5 and the MLE estimator
this is an exact relationship with κMLE = −1 and δMLE = −1 so that the bias is always exactly
−1/T . Regressions, for the three cases we consider, of the log (absolute) bias on log T gives
values of δMLE  −0.9, δNBC  −2 and δMIMSE  −0.6. Thus the bias disappears fastest for
NBC and slowest for MIMSE. The exact rates for MLE and NBC are close to the expected orders
of O(T −1) and O(T −2), respectively. Given that the bias of NBC is also usually lowest for T = 3
this corroborates what the figure suggests, namely that NBC is superior to MLE and MIMSE in
terms of bias.

In addition to the dependence on T , the bias also depends on the values of G and H; that
is, on the number of transitions we have. Given that we are analysing paths that start with 1,
the bias, for any given T , is higher the closer H is to 1. That is, the bias is higher, the higher
the probabilities of having paths with no changes. This effect of H on the bias can be seen in
Figure 6, and in Figure 7 where for any given T the bias of the MLE is always higher in the third
panel which has the higher H (H = 0.75).
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Figure 8. MIMSE and MLE of M in terms of MSE.

Turning to the MSEs a radically different pattern emerges. MIMSE has the lowest MSE in
all cases and MLE is almost always better than NBC. One feature to note is that although the
MLE MSE is clearly converging towards the MIMSE MSE (as we expect theoretically) it is still
significantly higher even when we have T = 10. The figures for these three cases suggest that
MIMSE is usually best in MSE terms. In Figure 8, we display the values of G and H in the
unit square for which MIMSE is MSE better than MLE for values of T = 3, 4, 5. Note that the
sets for the different values of T are not nested The MIMSE estimator performs worse only for
extreme values of G and H, particularly those that imply a very negative state dependence.

6. MANY HOUSEHOLDS

6.1. Using MLE, NBC and MIMSE to estimate the distribution of M

In the previous three sections we have considered households in isolation and treated their
observed paths as separate time series. However, in most empirical analyses, the interest is
not in individual households but in the population. Thus it may be that the distribution of M
in the population is of primary interest, rather than the values for particular households. We
now consider how the estimators we had before—MLE, NBC and MIMSE—could be used in
estimating the distribution of M on the population. We take T = 9 (that is, 10 observations per
unit, including the initial observation) as being a ‘reasonably’ long panel in practical terms,
but still short enough to give concern over small sample bias. As before we continue with the
context in which yi0 = 1. We present results for three different distributions of (G,H ). Firstly
we consider a uniform distribution for (G,H ) over [0, 1]2. For this distribution we have exact
calculations of the properties of the estimators when T = 9 and N goes to infinity. The second
distribution is the empirical distribution of (G,H ) for the 367 households considered in the
empirical section above. In this case we simulate a sample with T = 9 and large N to display the
properties of the estimators when we pool many households. For the final set of simulations we
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26 M. Browning and J. M. Carro

take a uniform distribution for G on [0.1, 0.9] and impose the homogeneous state dependence
parameter condition (3.6) for H with a Normal distribution:

Hi = �(0.81 + �−1(Gi)). (6.1)

The value of α = 0.81 is taken from the empirical estimate of (2.1). This can be considered a
‘standard’ model with homogeneous state dependence.

For the first case, the true distribution of M over the population has the following cdf:

FMi
(x) =

{
1
2 (1 + 2x + x2) if x ≤ 0,

1
2 (1 + 2x − x2) if x > 0,

(6.2)

and pdf

fMi
(x) =

{
(1 + x) if x ≤ 0,

(1 − x) if x > 0.
(6.3)

This implies that the mean and median value of the marginal dynamic effect M are zero. To
calculate the estimated distributions, firstly note that M̂i can only take one of 2T possible values,
since any household sequence observed on the pooled sample will correspond with one of the
2T combinations of 1’s and 0’s we can have conditional on the first observation. Then, the
distribution of M̂i when N goes to infinity and T is fixed is given by the probabilities of observing
each path j on a pooled sample:

Pr(j ) = Pr(j | H,G) Pr(H,G) =
∫

G

∫
H

pjf (G,H ) dGdH

=
∫

G

∫
H

(G)n
j

01 (1 − G)n
j

00 (H )n
j

11 (1 − H )n
j

10f (G,H ) dGdH. (6.4)

In the case of a uniform distribution we are considering,

Pr(j ) =
∫ 1

0

∫ 1

0
(G)n

j

01 (1 − G)n
j

00 (H )n
j

11 (1 − H )n
j

10 dGdH (6.5)

= n11!n10!

(n10 + n11 + 1)!

n01!n00!

(n00 + n01 + 1)!
. (6.6)

From this we can derive the distribution of M̂ as N → ∞ with a fixed T . The differences in
the estimated distribution between the three estimators comes from the different M̂i’s estimated
from a given path j (this is what we have studied in previous sections). Figures 9 and 10
give the graphical comparisons of the true distribution and the estimated distributions based
on the estimates of Mi for each possible path by MLE, NBC and MIMSE, conditioning
on identification of the MLE for T = 9 and N → ∞, uniform case. The first, Figure 9,
shows the cumulative distributions and the second, Figure 10, shows the Q − Q plot;
although the two figures are informationally equivalent, the latter reveals to the eye different
detail to the former. Consider first the MLE and NBC estimators. The NBC cdf is always
to the right of the MLE estimator, and for many values NBC is closer to the true
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Heterogeneity in dynamic discrete choice models 27

Figure 9. Estimates of the distribution of M.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

centiles of true distribution of M

ce
n

ti
le

s 
o

f 
d

is
tr

ib
u

ti
o

n
s

True

MLE

NBC

MIMSE

Figure 10. Q–Q plot of estimators of M.

distribution, since the bias is higher in absolute value for MLE as compared to NBC. However,
these figures also show that the NBC estimate does worse than MLE for high values of the
marginal effect. Thus the lower bias at the lower end for NBC is cancelled out by the higher bias
for higher values of M. Hence the MLE usually has a lower variance. A conventional statistic to
measure the difference between a true distribution and one for an estimator is the absolute value
of the difference between them; that is the Kolmogorov–Smirnov (K–S) statistic:

D = sup
m∈[−1,1]

| ̂F (m) − F (m)|. (6.7)
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28 M. Browning and J. M. Carro

The NBC estimator dominates the ML estimator on this criterion. Turning to the MIMSE
estimator, we see from the Q − Q plot that up to the 6th decile this tracks the true value very
closely; the divergences are mainly due to the MIMSE estimator taking on a finite number of
values. In particular, the median of the MIMSE estimator and the true distribution are very
close. The estimated medians when N → ∞ and T = 9 by MLE, NBC and MIMSE converge
to −0.14, −0.11 and −0.07, respectively. This close correspondence is to be expected given that
the estimator was derived assuming a distribution close to the one used here. At the top of the M
distribution, however, the MIMSE tends to underestimate the true value (that is, the cdf is to the
left of the true cdf). Despite these differences, the main conclusion from the two figures is that
the MIMSE estimator is considerably better than either MLE or NBC in terms of the fit to the
true cdf.

The probabilities in (6.6) can also be used in deriving the asymptotic properties of estimates
of moments of Mi as N → ∞ and T is held fixed. This can then be used as an approximation to
exact finite sample properties in panels with large N and small T . Looking at the mean marginal
dynamic effect, the estimated average from our three estimators ( ˆ̄M = 1

N

∑N
i=1 M̂i) converge

to the true value as (T ,N ) → ∞, because M̂i → Mi and the sample average converges to the
population mean. But for a given T , as N → ∞,

ˆ̄M →p E(M̂i) 
= E(Mi) (6.8)

as long as M̂i is a biased estimator of Mi .14 Therefore, Pr(j ) in (6.6) will give the probabilities
of each possible value of M̂i , allowing us to calculate the asymptotic properties as N → ∞, of
the estimators based on moments of Mi :

ˆ̄M →p E(M̂i) =
∑

j

Pr(j )M̂j , (6.9)

√
N ( ˆ̄M − bias(M̂i)) →d N (0, Var(M̂i)), (6.10)

where bias(M̂i) = E(M̂i) − E(Mi). When N goes to infinity and T equals 9, the MLE, NBC and
MIMSE estimates of the mean of M converge to −0.16, −0.08 and −0.05, respectively. Thus
pooling gives that the MIMSE has lower asymptotic bias than NBC for the mean of M. As for
the asymptotic root MSE, we have values of 0.21 for the MLE, 0.25 for the NBC and 0.10 for
the MIMSE. Thus MIMSE is best for this criterion and NBC is worst.

The top panels of Figure 11 present results using the empirical distribution (G,H ) for the
367 households considered in Section 2. For each pair we simulate 50 paths of length 10 with an
initial value of unity (so that we have 18,350 paths in all, before we select out the paths for which
MLE is not identified). The mean of M for the data is 0.23 (positive mean state dependence)
and the means of the estimates from the simulated data are 0.08, 0.17 and 0.14 for MLE, NBC
and MIMSE, respectively. Thus the bias is negative in all three cases and largest in absolute
value for MLE and smallest for NBC. This reflects the fact that the NBC estimator usually has
a lower bias for any particular path (see Section 5). The median of M for the data is 0.178 and
the estimates are 0, 0 and 0.150 for the MLE, NBC and MIMSE, respectively. The latter displays
much less bias than the other two estimators. One notable feature of these distributions is that all
three display a sharp jump at some point in the distribution; at zero for MLE and NBC (hence the
median result) and at about 0.25 for MIMSE. It is this clustering (around zero for MLE and NBC

14 Also, note that E( ˆ̄M) = E(M̂i ).
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Heterogeneity in dynamic discrete choice models 29

Figure 11. Estimates of the distribution of M.

and close to the true mean for MIMSE) that seems to give the lower mean bias for the MIMSE.
Once again, the MIMSE estimator gives a much closer fit to the true distribution.

The final set of simulations assume that the state dependence parameter in a parametric
Normal model is constant across the population (note that this does not impose that the dynamic
marginal effect is the same for everyone). The results for the three estimators are given in the
bottom panels of Figure 11. When comparing the three estimators, the conclusion is the same
as in the other two simulations: the MIMSE estimator is clearly better than MLE or NBC. And
this is true here even for the higher percentiles. Note that the overall fit for all estimators is much
worse in the case, mainly due to the efficiency loss caused by not imposing a constant state
dependence parameter when estimating. This emphasizes the importance of first testing for slope
homogeneity (see Pesaran and Yamagata, 2008).

6.2. Finite sample comparisons

In the previous subsection, we examined the estimated distribution when the number of
households becomes large. To end this section, we look at the finite sample performance of
the three estimators, in terms of mean bias and root mean squared error (RMSE), when we want
to estimate the mean and some quartiles of the distribution of M, with samples where the number
of households is large but not unduly so and the number of periods is small. We consider the
same three experiments as in the previous subsection. The first simulation experiment consider
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30 M. Browning and J. M. Carro

a uniform distribution for (G,H ) over [0.1, 0.9]2. The second distribution is the empirical
distribution of (G,H ) for the 367 households considered in the empirical section above. For
the final set of simulations we take a uniform distribution for G on [0.1, 0.9] and impose the
homogeneous state dependence parameter condition (3.5) for H with a Normal distribution, as in
equation (6.1), with α = 0.81. In all of them, yi0 = 1 and the number of households N is equal to
367 (the number of households in the empirical illustration). As before, we exclude observations
for which MLE is not identified.

As before, we take the number of observed periods equal to 10 (T = 9). Table 8 contains the
true values and mean estimates of the mean marginal dynamic effect (mean M), and of the median
and the other quartiles of the distribution of M. Mean bias and RMSE over 1000 simulations are
also reported. The results are in accordance with the conclusions from the previous subsection. In
terms of RMSE, the MIMSE estimator is significantly better than other two, except for the highest
quartile, where MLE has a better RMSE in two of the three experiments. For the mean marginal
dynamic effect, NBC has slightly smaller RMSE than MIMSE in the last two experiments.
However, the NBC estimator of the median M, performs significantly worse than MIMSE, both
in terms of mean bias and RMSE.

7. EXTENSION TO THE CASE WITH COVARIATES

In the previous sections, we considered the case without covariates. This allowed us to derive
exact results for the MLE (including the sign of the bias in the dynamic marginal effect) and to
consider exact bias corrections instead of corrections based on the leading terms of an asymptotic
approximation. We now extend the application of the alternative estimators proposed in this paper
to the semiparametric case with covariates, allowing for full heterogeneity. That is,

yit = 1
{
αiyit−1 + x ′

itβi + ηi + vit ≥ 0
}

t = 0, . . . , T ; i = 1, . . . , N, (7.1)

where xit is a vector of exogenous variables. We assume that identification conditions are
satisfied. These include, for instance, the condition that xit covariates vary over time for
person i.

7.1. Discrete covariates

If xit contains only discrete variables, it is conceptually simple to extend our estimators. For a
single binomial covariate we have:

Hi0 = Pr(yit = 1 | yit−1 = 1, xit = 0),

Gi0 = Pr(yit = 1 | yit−1 = 0, xit = 0),

Hi1 = Pr(yit = 1 | yit−1 = 1, xit = 1),

Gi1 = Pr(yit = 1 | yit−1 = 0, xit = 1),

as parameters to be estimated. The estimators are analogous to the case without covariates. The
only difference is that now we have to look not only at the 0 → 1 transition in the yit but also at
the possible values of xit. That is, the likelihood of an observed path is

G
n

j

01 | 0

0s (1 − G0s)
n

j

00 | 0H
n

j

11 | 0

0s (1 − H0s)
n

j

10 | 0G
n

j

01 | 1

1s (1 − G1s)
n

j

00 | 1H
n

j

11 | 1

1s (1 − H1s)
n

j

10 | 1 , (7.2)
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Heterogeneity in dynamic discrete choice models 31

Table 8. Estimation of the quartiles and the mean of the distribution of M on the population.

Parameters of interest

1st quartile Median 3rd quartile Mean

1. (G, H ) from a Uniform distribution (0.1, 0.9)2

True value −0.233 0 0.237 0

MLE −0.384 −0.144 0.121 −0.129

Mean estimate NBC −0.344 −0.081 0.245 −0.046

MIMSE −0.240 −0.030 0.156 −0.041

MLE −0.150 −0.143 −0.116 −0.130

Mean bias NBC −0.110 −0.080 0.008 −0.047

MIMSE −0.006 −0.030 −0.081 −0.041

MLE 0.158 0.143 0.125 0.132

RMSE NBC 0.124 0.083 0.046 0.053

MIMSE 0.023 0.058 0.084 0.044

2. (G,H ) from the empirical distribution for the 367 households

True value 0.047 0.177 0.381 0.227

MLE −0.143 0.000 0.327 0.080

Mean estimate NBC −0.124 0.002 0.488 0.169

MIMSE 0.026 0.153 0.240 0.139

MLE −0.190 −0.176 −0.054 −0.148

Mean bias NBC −0.171 −0.175 0.107 −0.058

MIMSE −0.021 −0.024 −0.141 −0.088

MLE 0.190 0.176 0.063 0.149

RMSE NBC 0.172 0.175 0.115 0.062

MIMSE 0.023 0.029 0.142 0.089

3. Homogeneous state dependence parameter

True value 0.1597 0.2516 0.2974 0.2202

MLE −0.1259 0.0013 0.3397 0.0926

Mean estimate NBC −0.0520 0.0430 0.5084 0.1977

MIMSE 0.0359 0.1440 0.2441 0.1529

MLE −0.2856 −0.2503 0.0422 −0.1276

Mean bias NBC −0.2117 −0.2087 0.2109 −0.0225

MIMSE −0.1239 −0.1076 −0.0533 −0.0674

MLE 0.2856 0.2506 0.0475 0.1291

RMSE NBC 0.2118 0.2162 0.2137 0.0323

MIMSE 0.1248 0.1085 0.0560 0.0683
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32 M. Browning and J. M. Carro

where n
j

01 | 0 is the number of yt−1 = 0 → yt = 1 transitions for path j given xt = 0, n
j

01 | 1 is
the number of yt−1 = 0 → yt = 1 transitions for path j given xt = 1, and similarly for the other
three transitions. For example, the MLE for Hi0 is given by Ĥ MLE

i0 = n
j

11 | 0/(nj

10 | 0 + n
j

11 | 0) (and
similarly for the other parameters). The NBC and MIMSE estimators are obtained similarly by
following the same procedure as in previous sections. In fact, the MIMSE estimator has the same
simple form as in (4.6), replacing n

j

01 by n
j

01 | 0 or n
j

01 | 1 depending on the whether we want to
obtain a transition probability given xit = 0 or given xit = 1.

7.2. Continuous covariates

The approach in the previous subsection has the virtue of being non-parametric but it quickly
becomes infeasible as the number of values of the discrete covariate increases and/or as the
number of covariates increases. Moreover, this non-parametric approach is not feasible if we
have a continuous covariate. Therefore we go back to the parametric assumption about vit in (7.1)
that we made in Section 2. In this subsection, for simplicity in the notation we consider only one
x covariate. We assume that −vit follows a distribution with cdf F. Then, the log-likelihood for
each i is

lki(γi) =
T∑

t=1

log[F (αiyit−1 + βixit + ηi)(2yit − 1) + 1 − yit] (7.3)

and the MLE of γi = (αi, ηi, βi)′ is the value that maximizes lki . The first-order conditions are a
set of non-linear equations that do not have a closed form solution.

Here it is not possible to repeat the analysis in previous sections to derive the exact bias of
the MLE, even numerically. It is only possible to get information about the bias by simulation.
Although simulation is a very good way of finding the bias of an estimator of the parameters in
(7.1), a correction made based on the bias from simulations will include the simulation error on
top of the problems inherent in non-linear bias corrections. Moreover, as we have seen for the
case without covariates, the MIMSE estimator outperforms both the MLE and NBC in terms of
MSE. As a result of all this, we consider only the MIMSE estimator as an alternative to the MLE.

In what follows, we omit the subscript i since, as before, we are considering each individual
in isolation. The MSE for an estimator γ̂j (where j refer to an observed path of zeros and ones),
conditional on x, is given by

λ(γ̂j ; γ ) = E[(γ̂j − γ )′(γ̂j − γ ) | x; γ ] =
∑

j

pj (γ̂j − γ )′(γ̂j − γ ), (7.4)

where pj is the likelihood of the observations of path j conditional on x:

pj =
T∏

t=1

(F (αyjt−1 + βxt + η)(2yjt − 1) + 1 − yjt ). (7.5)

The non-informative or flat prior for parameters between −∞ and +∞ is the Jeffrey’s prior:

p(γ )dγ = dγ. (7.6)
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Heterogeneity in dynamic discrete choice models 33

This is the equivalent to the uniform prior when the parameter is in the [0, 1] interval that we
used in Section 4.15 This gives the integrated MSE:

ψ =
∫

λ(γ̂j ; γ )dγ =
∫ ∑

j

pj (γ̂j − γ )′(γ̂j − γ )dγ, (7.7)

where the integrals are between −∞ and +∞. The criterion (7.7) is additive in functions of j so
that we can find minimizing values of the estimator considering each case in isolation. MIMSE
is the value of γ̂j that minimize ψ . Differentiating (7.7) with respect to γ̂j , setting the result to
zero and solving for γ̂j gives

γ̂ MIMSE
j = 1∫

pjdγ

∫
pjγ dγ. (7.8)

Since (7.8) do not have an analytical closed form solution, these integrals have to be solved
numerically. Alternatively, we can take advantage of the relation between MIMSE and the mean
of the posterior of γ when using a flat prior. The posterior distribution of γ if the priors are those
in (7.6) is

P (γ | Y ) = 1∫
pjdγ

pj , (7.9)

where pj is the likelihood of the data (given γ and x) written in (7.5). Since the denominator is
a constant that does not depend on γ̂ nor γ , we have that

min
γ̂j

ψ = min
γ̂j

∫
(γ̂j − γ )′(γ̂j − γ )pjdγ

= min
γ̂j

1∫
pjdγ

∫
(γ̂j − γ )′(γ̂j − γ )pjdγ

= min
γ̂j

∫ (
(γ̂j − γ )′(γ̂j − γ )

1∫
pjdγ

pj

)
dγ

= min
γ̂j

∫
(γ̂j − γ )′(γ̂j − γ )P (γ | Y )dγ. (7.10)

Therefore, minimizing the integrated MSE is equal to minimizing the expected posterior loss
function with a quadratic loss function. As it is proved, for instance, in page 24 of Zellner (1971),
this minimum in (7.10) is equal to the mean of the posterior function. Hence, we can obtain the
MIMSE estimates of γ by computing the mean of the posterior function (7.9).

The only difficult part to compute in (7.9) is
∫
pjdγ , since the likelihood has a simple

analytical form and does not require any integral (given a known cdf). The Metropolis–Hastings
Algorithm can be used to obtain draws from the posterior density without computing

∫
pjdγ .

Since the likelihood can be calculated very easily, we can make very many iterations in this
MCMC algorithm, both to guarantee convergence to the posterior and to obtain a good number
of valid draws. Once we have many draws we simple compute the average to obtain the MIMSE
estimator. One important advantage of this procedure is that we can automatically accommodate
a large number of covariates (subject to the identification conditions).

15 See Zellner (1971) for further discussion on non-informative priors.
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34 M. Browning and J. M. Carro

In order to illustrate the usefulness of MIMSE when having covariates, we simulate (7.1),
obtain the marginal dynamic effect M from the MLE and the MIMSE estimates for different T
and values of the parameters. In particular, we choose values of γ so that G, H and M evaluated
at the mean value of x are equal to the values used in Figure 6 for the case without covariates.
This will allow to have graphs as comparable as possible. The specific details of the simulations
are: β = 1, xit ∼

i.i.d.
N (0, 1), vit ∼

i.i.d.
logistic, we make 10,000 simulations and 20,000 iterations in

the Metropolis–Hastings Algorithm of which the first 10,000 are for burn-in and of the 10,000
made after convergence every fifth is retained as a draw from the posterior. This is made for T =
4, . . . , 13 and for the following three values of the α and η parameters. Firstly with α = −2.2
and η = 1.1, which imply G = 0.75, H = 0.25 and M = −0.5 when computed at the mean of
x. Secondly, with α = 0 and η = 0, which imply G = 0.5, H = 0.5 and M = 0 when computed
at the mean of x. Thirdly, with α = 2.2 and η = −1.1, which imply G = 0.25,H = 0.75 and
M = 0.5 when computed at the mean of x.

As we did in Figure 7, Figure 12 shows the mean bias and MSE of the MLE and MIMSE
in estimating the marginal dynamic effect at the mean value of x for those three sets of values
of the parameters as we increase T . Note that the results as T increases are not as smooth as in
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Figure 12. Bias and MSE for estimators of marginal dynamic effect in a model with covariates.
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Heterogeneity in dynamic discrete choice models 35

Figure 7, because this is based on simulations and seven are exact calculations. As can be seen,
the MIMSE is performing better than the MLE in terms of MSE for all T and the three values
of (G,H ) as it did in the case without covariates. However, here MIMSE is better than the MLE
also in terms of bias. In the comparison between Figures 7 and 12, it is important to note that,
for most of the cases, both the MLE and the MIMSE have smaller biases (in absolute value)
and MSEs in the case with covariates than in the case without covariates. This is not surprising
since we have added exogenous variations to the model. This is an indication that the detail and
exact results for models without covariates in previous sections could be taken as a worse case
reference when adding exogenous covariates. For a similar reason, the marginal dynamic effect
in model (7.1) that is considered in Figure 12, is more problematic than looking at the marginal
effect of x.

8. CONCLUSIONS

We have considered in detail the dynamic choice model with heterogeneity in both the intercept
(the ‘fixed effect’) and in the autoregressive parameter. We motivated this analysis by considering
the estimates from a long panel in which we could effectively treat each household as a
single time series. This analysis suggested strongly that both the parameters vary systematically
across households. Moreover, the results of this analysis gave us a joint distribution over the
two latent variables that may be difficult to pick up with the usual fully parametric random
coefficients model. Consequently, we examined the finite sample properties of non-parametric
estimators. In the case without covariates we present exact analytical results for the bias and
MSE.

We found the following for a simple two-state first-order Markov chain model:

(1) There is no unbiased estimator for the transition probabilities.
(2) Conditioning on identification, we found that the MLE estimate of the marginal dynamic

effect:

Pr(yit = 1 | yi,t−1 = 1) − Pr(yit = 1 | yi,t−1 = 0) (8.1)

has a negative bias. This is the non-linear analogue of the Nickell finding that in the linear
autoregressive model panel data estimates of the autoregressive parameter are biased toward
zero but note that our results are exact finite sample calculations. The degree of bias depends
on the parameter values and the length of the panel, T . The bias of the MLE estimator of
the marginal dynamic effect does diminish as we increase the length of the panel, but even
for T = 16 it can be high.

(3) Based on the analysis of bias, we constructed an NBC estimator as a two-step estimator with
the MLE as the first step. We find that this estimator does indeed reduce the bias for most
cases (as compared to MLE) but in MSE terms it is similar or even worse than MLE. For
all but extreme values of negative state dependence, the NBC estimator also has a negative
bias for the marginal dynamic effect. A detailed examination of the distribution of the MLE
and NBC estimators for T = 3 and T = 10 suggested that neither can be preferred to the
other.

(4) Given the relatively poor performance of the MLE and NBC in terms of MSE, we
constructed an estimator that MIMSE and that has a simple closed form. This estimator
coincides with the mean of the posterior distribution assuming a uniform prior. The MIMSE
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36 M. Browning and J. M. Carro

estimator is sometimes better than MLE and NBC in terms of bias but usually it is worse. In
terms of MSE, however, it is much better than either of the first two estimators, particularly
when there is some positive state dependence.

(5) Turning to the many-person context, we considered a joint distribution of Pr(yit =
1 | yi,t−1 = 1) and Pr(yit = 1 | yi,t−1 = 0) over the population and use our non-parametric
estimators to estimate the empirical distribution of the parameters. Exact calculations and
simulations with T = 9 and large N suggest that the MIMSE-based estimator significantly
outperforms the MLE and NBC estimators in recovering the distribution of the marginal
dynamic effect.

The conclusion from our exact analyses on a single observed path and from simulations in a
many-unit context is that the MIMSE estimator is superior to MLE or a particular bias corrected
version of MLE.

As emphasized in Section 3, we deemed it necessary to examine the no-covariate case in
great detail given that we know very little about the performance of alternative dynamic choice
estimators which allow for a great deal of heterogeneity. However, for most analyses, we would
also want to condition on covariates. The results in Section 7 suggest that MIMSE is a credible
and feasible candidate for estimating dynamic discrete choice models with exogenous covariates.
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APPENDIX

A.1. Proof of Proposition 3.1

Take any estimator {Ĝ, Ĥ } = {(Ga, Gb, . . . , Gh), (Ha, Hb, . . . , Hh)}. If Ĝ is unbiased then we have

G = E(Ĝ) =
h∑

j=a

pjGj

= (Gh − Gg)H 3 + (Gc + Ge − Gd − Gf )GH 2 + (Gg − Ge)H
2

+ (Gb − Ga)G2H + (2Ga + Gd + Gf − Gb − 2Gc − Ge)GH + (Ge − Ga)H

+ (Ga − Gb)G2 + (Gb + Gc − 2Ga)G + Ga. (A.1)

Equating the last four terms on the right-hand side with the left-hand side in order to obtain the values of
the coefficients that make the right- and left-hand-side polynomials of G and H equal, that is,

Ga = 0,

Gb + Gc − 2Ga = 1,

Ga − Gb = 0,

Ge − Ga = 0,

gives

Ga = Gb = Ge = 0, Gc = 1. (A.2)

Substituting into the first three terms and equating gives

Ge = Gg = Gh, 1 + Ge = Gd + Gf . (A.3)
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38 M. Browning and J. M. Carro

Substituting this into the term for GH gives the contradiction

0 = 2Ga + Gd + Gf − Gb − 2Gc − Ge

= 0 + 1 + Ge − 0 − 2 − Ge = −1. (A.4)

If Ĥ is unbiased, then

H = E(Ĥ ) =
h∑

j=a

pjHj

= (Hh − Hg)H 3 + (Hc + He − Hd − Hf )GH 2 + (Hg − He)H
2

+ (Hb − Ha)G2H + (2Ha + Hd + Hf − Hb − 2Hc − He)GH + (He − Ha)H

+ (Ha − Hb)G2 + (Hb + Hc − 2Ha)G + Ha (A.5)

and calculations similar to those for Ĝ also lead to a contradiction. �

A.2. The recursive biased corrected estimator

If we iterate on (3.17) and (3.18) and the process converges (so that |G(k+1)
j − G

(k)
j | → 0 as k → ∞ and

similarly for H) then we have the limit estimators when G
(k+1)
j = G

(k)
j :

Ĝj = E(∞)(Ĝ)

= pa

(
G

(∞)
j , H

(∞)
j

)
Ĝa + · · · + pf

(
G

(∞)
j , H

(∞)
j

)
Ĝf , (A.6)

Ĥj = E(∞)(Ĥ )

= pa

(
G

(∞)
j , H

(∞)
j

)
Ĥa + · · · + pf

(
G

(∞)
j , H

(∞)
j

)
Ĥf . (A.7)

This gives two equations in two unknowns for each case a, . . . , f . The first issue in this iteration is whether
there is a solution to these two equations, i.e. whether there is a fixed point on the iterative process. Ideally
we would like to have a unique solution for each case that satisfies G

(∞)
j ∈ [0, 1] and H

(∞)
j ∈ [0, 1]. We can

do this for cases a, b, c, d, f but not for case e. To see this, note that the equations for case e are:

0 = 0.5pb

(
G(∞)

e , H (∞)
e

) + (
pc

(
G(∞)

e , H (∞)
e

) + pd

(
G(∞)

e , H (∞)
e

) + pf

(
G(∞)

e , H (∞)
e

))
(A.8)

= 1

2

(
3 + 2H (∞)

e − G(∞)
e

)
G(∞)

e(
1 + H

(∞)
e

) , (A.9)

0.5 = 0.5
(
pd

(
G(∞)

e , H (∞)
e

) + pe

(
G(∞)

e , H (∞)
e

) + pf

(
G(∞)

e , H (∞)
e

))
= 1

2

(
1 + G(∞)

e

)
H (∞)

e(
1 + H

(∞)
e

) .
(A.10)

This set of equations has no solution that satisfies the constraints. To see this, if G(∞)
e = 0 then the second

equation implies a contradiction. Thus we must have 3 + 2H (∞)
e − G(∞)

e = 0. Substituting this into the
second equation gives

2
(
H (∞)

e

)2 + 3H (∞)
e − 1 = 0, (A.11)

which does not have any roots between zero and unity.
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Heterogeneity in dynamic discrete choice models 39

Table A.1. Outcomes conditioning on point identification.

MLE NBC Limit estimator

Case Prob Ĝ Ĥ G(1) H (1) G(∞) H (∞)

a (1−H )(1−G)(1−G)
(1−H 2)

0 0 0 0 0 0

b (1−H )(1−G)G
(1−H 2)

1/2 0 3/8 0 0.382 0

c (1−H )G(1−H )
(1−H 2)

1 0 1 0 1 0

d (1−H )GH

(1−H 2)
1 1/2 1 2/3 1 1

e H (1−H )(1−G)
(1−H 2)

0 1/2 0 5/6 (0) (1)

f H (1−H )G
(1−H 2)

1 1/2 1 2/3 1 1

A second issue is where the iterated estimators converge to. For case e the recursion goes outside the
interval [0, 1] and never reach a fixed point for H. Nonetheless, the other five cases converge to their fixed
points; these are given in Table 4. We can also take the estimates for case e that minimize the sum of the
differences between the expected values of the ML estimators and the values of the latter:{

1

2

(
3 + 2H (∞)

e − G(∞)
e

)
G(∞)

e(
1 + H

(∞)
e

)
}2

+
{

1

2

(
1 + G(∞)

e

)
H (∞)

e(
1 + H

(∞)
e

) − 0.5

}2

. (A.12)

The minimizing values are G(∞)
e = 0 and H (∞)

e = 1 (shown in parentheses in Table A.1 to indicate that they
are biased). In fact, these values are a solution of the equation for G but not for H.

The biases for the limit estimator are given by:

φ
(
G(∞)

) = E
(
G(∞)

) − G = 0.382
(1 − G)G

(1 + H )
≥ 0, (A.13)

ϕ
(
H (∞)

) = E
(
H (∞)

) − H = (G − H )H

(1 + H )
≷ 0. (A.14)

For H we can now have a positive bias if M = H − G < 0 and it is unbiased if H = G, i.e. if M = 0. It
could be seen that the bias for G is smaller than for ML but larger than for the one-step estimator. The bias
for H is smaller than for the MLE or the NBC for some values of (G,H ), but not for all.
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