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Abstract

In nonlinear panel data models, fixed effects methods are often criticized because
they cannot identify average marginal effects (AMEs) in short panels. The common
argument is that identifying AMEs requires knowledge of the distribution of unobserved
heterogeneity, but this distribution is not identified in a fixed effects model with a short
panel. In this paper, we derive identification results that contradict this argument. In
a panel data dynamic logit model, and for T as small as three, we prove the point iden-
tification of different AMEs, including causal effects of changes in the lagged dependent
variable or the last choice’s duration. Our proofs are constructive and provide simple
closed-form expressions for the AMEs in terms of probabilities of choice histories. We
illustrate our results using Monte Carlo experiments and with an empirical application
of a dynamic structural model of consumer brand choice with state dependence.
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1 Introduction

Ignoring the correlation between unobserved heterogeneity and pre-determined explanatory

variables in dynamic panel data models can generate significant biases in estimating dy-

namic causal effects. The literature distinguishes two approaches to deal with this issue.

The random effects (RE) approach integrates over the unobserved heterogeneity using a

parametric assumption on the distribution of this heterogeneity conditional on the initial

values of the predetermined explanatory variables. Typically, this distribution is not iden-

tified nonparametrically in short panels, and random effects approaches are not robust to

the misspecification of parametric restrictions. This issue is the so-called initial conditions

problem (Heckman, 1981). In contrast, fixed effects (FE) approaches do not restrict this

distribution such that identifying parameters of interest is robust to the misspecification of

this primitive.

A limitation of FE methods in dynamic discrete choice models with short panels is that

they cannot identify the distribution of the time-invariant unobserved heterogeneity. This

limitation arises because the data comprises a finite number of probabilities—equivalent to

the number of possible choice histories—while the distribution of unobserved heterogeneity

has an infinite dimension. This identification problem has generated a more substantial

criticism of FE approaches. The applied researcher is often interested in estimating the

average marginal effects (AME) of changes in explanatory variables or structural parameters.

Since these AMEs are expectations over the distribution of the unobserved heterogeneity,

and this distribution is not identified, the common wisdom is that FE approaches cannot

(point) identify AMEs.1

This paper presents new results on the point identification of AMEs in FE dynamic
1Examples of recent papers describing this common wisdom are Abrevaya and Hsu (2021) (on page 5:

"For ‘pure’ fixed effects models, where the conditional distribution is left unspecified, identification of the
partial effects described above would generally require T →∞.") and Honoré and De Paula (2021) (on page
2: "It is important to recognize that knowing β [slope parameters] is typically not sufficient for calculating
counterfactual distributions or marginal effects. Those will depend on the distribution of αi [incidental
parameters] as well as on β and they are typically not point-identified even if β is.")
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logit models. We prove the identification of the AME for a change in the lagged dependent

variable, a crucial parameter in dynamic models that measures the causal effect of an agent’s

past decision on their current decision. Our constructive proofs provide simple closed-form

expressions for AMEs based on the probabilities of choice histories in panels where the time

dimension can be as small as T = 3.

In Section 2, we focus exclusively on binary choice models. Proposition 1 presents a

straightforward identification result for dynamic binary logit models. However, it is limited

to AMEs where exogenous covariates remain constant over time or are absent from the

model. Propositions 2 and 3 present the main contributions of this paper. Proposition

2 provides necessary and sufficient conditions for identifying a general type of AME in a

broad class of discrete choice models. Proposition 3 applies these conditions to the dynamic

binary logit model, showing the identification of AMEs without requiring covariates to remain

constant over time, unlike the more straightforward result in Proposition 1. In Section 2.6,

we expand our analysis to include identification results for average transition probabilities

(Proposition 4), n-periods forward AMEs (Proposition 5), and AMEs in models with duration

dependence (Proposition 6). Section 3 presents our identification and non-identification

results for dynamic multinomial logit models (Propositions 7 and 8) and dynamic ordered

logit models (Proposition 9).

This paper is related to a large literature on FE estimation of panel data discrete choice

models pioneered by Rasch (1961), Andersen (1970), and Chamberlain (1980) for static

models, and by Chamberlain (1985) and Honoré and Kyriazidou (2000) for dynamic models.

Most papers in this literature focus on identifying and estimating slope parameters and

do not present identification results on AMEs. Some important exceptions are Bonhomme

(2011), Hoderlein and White (2012), and Chernozhukov, Fernandez-Val, Hahn, and Newey

(2013), and, more recently, Dobronyi, Gu, and Kim (2021), Davezies, D’Haultfoeuille, and

Laage (2022), Pakel and Weidner (2023), and Botosaru and Muris (2024).2

2Chamberlain (1984), Hahn (2001), and more recently Arellano and Bonhomme (2017), show the iden-
tification of a few AMEs in FE nonlinear panel data models. However, these are AMEs for a particular
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In an unpublished manuscript, Bonhomme (2011) examines the identification of AMEs

within a broad class of non-linear static panel data models, encompassing those with discrete

or continuous dependent variables. His work establishes a sufficient condition for identifying

AMEs in such models: an injective operator linking the distribution of unobserved hetero-

geneity to the distribution of the observed dependent variable. However, this condition does

not hold in discrete choice models with short panels and continuous distribution of the un-

observed heterogeneity. On the other hand, our Proposition 2 establishes both a necessary

and sufficient condition for identifying AMEs in a general class of dynamic panel data dis-

crete choice models. Notably, our condition does not necessitate an injective relationship

between the distributions of unobserved heterogeneity and the dependent variable. More-

over, we show that our condition holds in dynamic models where the injectivity condition

is not satisfied, such as the autoregressive binary logit (Proposition 3), binary logit with

duration dependence (Proposition 6), multinomial logit (Proposition 7), and ordered logit

(Proposition 9).

Chernozhukov, Fernandez-Val, Hahn, and Newey (2013) – henceforth, CFHN – study

the identification of AMEs within nonparametric and semiparametric binary choice models.

Their semiparametric model assumes that the transitory shock has a known distribution –

e.g., logit model – and corresponds to the model we consider in this paper. They propose

a computational method to estimate the bounds in the identified set of the AME. Through

numerical examples, they reveal that while the bounds for AME can be notably wide within

fully nonparametric models, they rapidly narrow as T increases within the semiparametric

model. In contrast to CFHN, our paper adopts a sequential identification strategy, the first

step of which is the identification of slope parameters.3 In the second stage, we take the slope

subpopulation of individuals defined by the data. In contrast, we focus on identifying marginal effects
defined as averages over the whole population of individuals.

3The sequential approach that we consider in this paper has been used, among others, by Honoré and
De Paula (2021) [on page 2 of their paper]: "It seems that point- or set-identifying and estimating β is
a natural first step if one is interested in bounding, say, average marginal effects". Previous results on
the identification of slope parameters in dynamic logit models include Chamberlain (1985), Honoré and
Kyriazidou (2000), Magnac (2000, 2004), Aguirregabiria, Gu, and Luo (2021), Honoré and Weidner (2020),
Dobronyi, Gu, and Kim (2021), and Honoré, Muris, and Weidner (2021).
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parameters as known to the researcher and consider the identification of AMEs. Our Propo-

sition 2 establishes necessary and sufficient conditions for AME point identification. These

conditions consist of infinite equations with a finite number of unknowns. Nonetheless, under

the logistic structure, we demonstrate that the infinite system of equations can be effectively

encapsulated within a finite framework. Specifically, the unobserved heterogeneity enters

through a finite-order polynomial, and the infinite system of equations can be represented

as a finite system in terms of the coefficients of each monomial term. We illustrate that this

system of equations admits a solution and, through straightforward manipulations, yields

closed-form expressions for the targeted AMEs. While CFHN’s approach is computationally

intensive, owing to the vast dimensionality of unobserved heterogeneity distribution, our

method stands out for its computational simplicity as it provides closed-form expressions for

AMEs.

Some identification results in our paper are linked to those outlined in Dobronyi, Gu, and

Kim (2021) (referred to as DGK hereafter). Within the framework of an autoregressive fixed

effects binary logit model, DGK elucidate the sharp identified set of slope parameters, the

probability distribution of unobserved heterogeneity, and various functionals derived from

these parameters, such as average treatment effects. Their findings stem from a comprehen-

sive examination of the full likelihood function of the model, revealing a polynomial structure

in terms of the fixed effects. This polynomial structure also serves as the foundation for our

identification results for average treatment effects.4 However, it is essential to note that our

derivations diverge from those presented in DGK. In particular, our Proposition 2 establishes

a necessary and sufficient condition for the point identification of average treatment effects

in a general class of panel data discrete choice models beyond logit models. This condition

consists of the existence of a solution to a system of equations with analytical expressions.

Unlike DGK, we focus on point identification results and a sequential identification approach

where slope parameters are initially identified. In contrast, DGK explore both point and
4As DGK acknowledge in section 4.1.1 of their paper, our finding of this polynomial structure predates

their work.
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set identification and delineate the identified set of average marginal effects, even in cases

where slope parameters are not point identified. Moreover, while DGK only investigate au-

toregressive binary logit models, our scope extends to identifying average marginal effects in

multinomial and ordered models, where the unobserved heterogeneity is non-scalar. Addi-

tionally, we examine models with duration dependence, broadening the applicability of our

identification framework across diverse model specifications.

Davezies, D’Haultfoeuille, and Laage (2022), Pakel and Weidner(2023), and Botosaru and

Muris (2024) investigate the estimation of AMEs within binary choice logit models, mainly

when these parameters are only partially identified. Their research introduces computation-

ally efficient inference methods regarding the identified set. Recognizing the complexities

inherent in estimating the sharp identified set, these authors propose diverse approaches for

inference on outer bounds for this set.

The remainder of the paper is organized as follows. First, in Section 2, we present our

identification results within binary choice logit models. Next, in Section 3, we investigate

the identification of AMEs in multinomial and ordered discrete choice models. To illustrate

our results, we conduct Monte Carlo experiments, detailed in Section 4, and apply our

methodology to a dynamic demand model using consumer scanner data, discussed in Section

5. We summarize and conclude in section 6.

2 Binary choice models

2.1 Model

Consider a panel dataset {yit,xit : i = 1, 2, ..., N ; t = 1, 2, ..., T} where t represents time, i

denotes individuals, and yit can assume two values, yit ∈ Y = {0, 1}. Our focus lies in the

investigation of dynamic logit models using panel data. The following equation describes
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the binary choice model:

yit = 1 { αi + β yi,t−1 + x′it γ + εit ≥ 0 } . (1)

where 1{.} is the indicator function, β and γ are slope parameters, and α ≡ (αi : i =

1, 2, ...N) are incidental parameters. The unobservable εit is i.i.d. over time and across

individuals with a Logistic distribution. The explanatory variables in the K × 1 vector xit

are strictly exogenous with respect to the transitory shock εit. In other words, for any pair

of periods (t, s), the variables xit and εis are independently distributed.

The parameter αi represents permanent unobserved heterogeneity in primitives affect-

ing individuals’ decisions, such as preferences or productivity. Its marginal distribution is

denoted as fα(αi), and fα|x{1,T}(αi|x
{1,T}
i ) represents the distribution of αi conditioned on

the history of x variables denoted as x{1,T}i = (xi1,xi2, ...,xiT ). These distributions are not

subject to any constraints. Likewise, the probability of the initial choice yi1 conditioned on

αi and x
{1,T}
i -— represented as p∗(yi1|αi,x{1,T}i ) -— is unrestricted. Following the standard

setting in fixed effect (FE) approaches, our identification results do not rely on any restric-

tions on the initial conditions. Assumption 1-BC summarizes the conditions in this binary

choice model.

ASSUMPTION 1-BC. (A) (Logit) εit is i.i.d. over (i, t) with Logistic distribution; (B)

(Strict exogeneity of xit) variable εit is independent of
(
αi,x

{1,T}
i

)
; and (C) (Fixed effects) the

density functions fα(αi), fα|x{1,T}(αi|x
{1,T}
i ), and p∗(yi1|αi,x{1,T}i ) are unrestricted. �

2.2 Average marginal effects

For the definition of average marginal effects and other parameters of interest, it is convenient

to define transition probabilities and their average versions. For j, k ∈ Y = {0, 1}, define the
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individual-specific transition probabilities:

πkj(αi,x) ≡ P (yit = j | αi, yi,t−1 = k, xit = x) , (2)

where x is an arbitrary value chosen by the econometrician. In the binary choice model

defined by equation (1) and Assumption 1-BC, we have that:

π11(αi,x) = Λ (αi + β + x′γ) and π01(αi,x) = Λ (αi + x′γ) (3)

where Λ(u) is the Logistic function eu/[1 + eu]. Let ∆(αi,x) be the individual-specific causal

effect on yit of a change in yi,t−1 from 0 to 1.

∆(αi,x) ≡ E (yit | αi, yi,t−1 = 1, xit = x)− E (yit | αi, yi,t−1 = 0, xit = x)

= π11(αi,x)− π01(αi,x) = Λ(αi + x′γ + β)− Λ(αi + x′γ).

(4)

This individual-specific causal effect represents the impact of yi,t−1 on yit. It measures the

persistence of individual i in state 1 generated by true dynamics or state dependence.

It is well-established in the literature that parameters β and γ are identified in short

panels (see section 2.3 below). However, the individual effects αi are not identified because

of the incidental parameters problem (Neyman and Scott, 1948; Heckman, 1981; Lancaster,

2000). Consequently, the individual-specific treatment effects are not identified. Instead,

we study the identification of Average Marginal Effects (AMEs) defined by integrating the

individual effects ∆(αi,x) over the distribution of αi.

In the model without x covariates (i.e., γ = 0), the individual-specific effect is ∆(αi) =

Λ(αi + β)− Λ(αi), and the Average Marginal Effect is:

AME =

∫
[Λ(αi + β)− Λ(αi)] fα(αi) dαi (5)
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The sign of the parameter β informs us about the sign of AME. However, the absolute

magnitude of β provides minimal insight into the magnitude of AME. Specifically, for any

positive value β, we have that AME can take virtually any value within the interval (0, 1)

depending on the location of the distribution of αi. This limitation underscores the crucial

importance of identifying Average Marginal Effects.

EXAMPLE 1. Suppose that yit is the indicator for firm i being active in the market during

period t. Consider the following thought experiment. At period t−1, firms are randomly split

into two groups, say groups 0 and 1. Firms in group 0 are designated to be inactive, while

those in group 1 are designated to be active. After one period, we examine the proportion

of active firms in each group. The Average Marginal Effect defined in equation (5) is the

proportion of active firms in group 1 minus the proportion of active firms in group 0. �

We can extend this type of AME to the model with covariates (when γ 6= 0). In this

scenario, the distribution of αi depends on the individual’s covariate history. Consequently,

the AME is not solely determined by the value of x at which we assess the individual effect

∆(αi,x), but also on the values of the covariates that we consider when integrating over

the distribution of the individual effect. We provide identification results for two versions

of these AMEs. The first AME is defined as an average conditional on a value of the whole

history of the covariates between periods 1 and T . For any chosen values of x and x{1,T},

determined by the researcher, we define the following AME:

AME(x,x{1,T}) ≡
∫

∆(αi,x) fα|x{1,T}(αi|x
{1,T}
i = x{1,T}) dαi (6)

This parameter denotes the average value of the marginal effect ∆(αi,x) across the popula-

tion of individuals with a covariate history x{1,T}.

In Proposition 1, we provide a straightforward proof of the identification of this AME

under two specific conditions: either the model excludes covariates (γ = 0), or the covariate

history x{1,T} is such that the values remain constant x2 = . . . = xT = x. Proposition 2
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establishes necessary and sufficient conditions for identifying the parameter AME(x,x{1,T})

within a broad class of models. By applying these conditions to the binary choice logit

model, in Proposition 3, we substantially extend the result of Proposition 1 to a broader

context, demonstrating the identification of AME(x,x{1,T}) for any arbitrary selection of x

and x{1,T} as determined by the researcher, provided that xT = x.

Often, we are not particularly interested in the causal effect of yt−1 on yt for a sub-

population of individuals with a specific history of covariates, but rather in the average of

these effects across the entire distribution of covariate histories. Specifically, the following

parameter represents the average value of the marginal effect ∆(αi,x) across the population

of individuals with a value of the covariates equal to x at period t:5

AMEt(xit = x) ≡
∫

∆(αi,xit) fα|xt(αi | xit = x) dαi (7)

Similarly, the following causal parameter is the average value of ∆(αi,xit) across the joint

distribution of αi and xit at period t:

ÃMEt ≡
∫

∆(αi,xit) fα,xt(αi,xit) dαi dxit (8)

Importantly, the AMEs defined in equations (7) and (8) can be derived by integrating the

AME presented in equation (6) over the empirical distribution of the covariate history.

Specifically:

AMEt(xit = x) = E
x
{1,T}
i |xit=x

[
AME(xit,x

{1,T}
i )

]

ÃMEt = E
x
{1,T}
i

[
AME(xit,x

{1,T}
i )

] (9)

where E
x
{1,T}
i

[.] represents the expectation operator over the distribution of x{1,T}i . Similarly,

E
x
{1,T}
i |xit=x

[.] is the expectation over the distribution of x{1,T}i conditional on xit = x.

5Since the joint distribution of αi and xit can change over time, this AME can vary with t. We can use
the identified time-specific AMEs to test the null hypothesis of stationarity of the distribution of (αi,xit).
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2.3 Identification: Slope parameters

We consider a sequential approach to the identification of AMEs. Slope parameters θ ≡

(β,γ) are identified in a first step. In the second step, we treat θ as known and focus on

establishing the identification of AMEs. The identification of slope parameters in fixed effects

dynamic logit models has been well-established in prior literature.6 A crucial prerequisite for

identification is that the panel must include at least three periods in addition to the initial

condition. In models with covariates xit, the identification of β necessitates the constancy of

these covariates for a minimum of two consecutive periods, that is, Pr(xi2−xi3 = 0) > 0. For

the identification of γ, an additional condition is necessary: the variance-covariance matrix

V ar(xi1 − xi2|xi2 − xi3 = 0) must be full-column rank.

When the support of xit is discrete, the conditions for consistent estimation of the slope

parameters through a Conditional Maximum Likelihood (CML) method remain the same

as those for identification. When the support of xit is continuous, the conditions become

somewhat more stringent, as elucidated in Theorem 1 by Honoré and Kyriazidou (2000).

For consistent estimation of β, we need the density function of xi2 − xi3 to be strictly

positive and continuous in a neighborhood of zero (condition C3 in Theorem 1, Honoré and

Kyriazidou, 2000). Achieving consistent estimation of γ in continuous scenarios necessitates

the additional condition that the variance-covariance matrix V ar(xi1 − xi2|xi2 − xi3 = u) is

full-column rank for every value u in a neighborhood of zero (condition C6 in Theorem 1,

Honoré and Kyriazidou, 2000).
6Specifically, these identification results on slope parameters include: Chamberlain (1985) for the binary

choice AR(1) model without exogenous regressors; Magnac (2000) for multinomial AR(1) models; Honoré
and Kyriazidou (2000) for binary and multinomial models with exogenous regressors; Aguirregabiria, Gu,
and Luo (2021) for models with duration dependence; Honoré and Weidner (2020) and Dobronyi, Gu, and
Kim (2021) for binary AR(p) models with p ≥ 2; and Honoré, Muris, and Weidner (2021) for the dynamic
ordered logit.
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2.4 Identification of AME: A simple result

The distribution of the fixed effects is not non-parametrically identified in discrete choice

models with short panels. Consequently, conventional wisdom dictates that functions depen-

dent on this distribution, such as AMEs, remain non-identifiable. Contrary to this prevailing

belief, our research challenges this notion, showing specific instances where AMEs are point-

identified without necessitating full knowledge or imposing constraints on the fixed effects

distribution. In this section, we present a straightforward yet significant and novel result. In

section 2.5, we introduce a method based on new necessary and sufficient conditions, which

leads to more general identification results.

Consider the binary choice model in equation (1). Our proof of identification exploits

a relationship between the individual effect ∆(αi,x), the transition probabilities π01(αi,x)

and π11(αi,x), and the parameter β in the Logit model. The following Lemma 1 establishes

this relationship.

Lemma 1. In the binary choice model defined by equation (1) and Assumption 1-BC, the

following conditions hold:

∆(αi,x) =
[
eβ − 1

]
π01(αi,x) π10(αi,x), (10)

and

eβ =
π11(αi,x) π00(αi,x)

π10(αi,x) π01(αi,x)
. � (11)

Proof of Lemma 1. See Appendix A.1.

Proposition 1 establishes the identification of AME in the dynamic binary choice model

without covariates, and of AME(x, [x1,x,x]) in the model with covariates.

Proposition 1. Consider the binary choice model defined by equation (1), under Assumption

1-BC, with a fixed T ≥ 3 and known β. In the model without covariates (i.e., γ = 0), AME
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is identified by the following expression:

AME =
[
eβ − 1

]
[P0,1,0 + P1,0,1] (12)

where Py1,y2,y3 is the probability of the choice history (y1, y2, y3). In the model with covariates

(i.e., γ 6= 0), for any arbitrary values x and x1 chosen by the econometrician, the causal

effect parameter AME(x,x{1,3} = [x1,x,x]) is point identified by the following expression

AME(x,x{1,3} = [x1,x,x]) =
[
eβ − 1

] [
P0,1,0|x1,x,x + P1,0,1|x1,x,x

]
(13)

where Py1,y2,y3|x{1,3} is the probability of the choice history (y1, y2, y3) conditional on the co-

variate history x{1,3}. In equation (13), x1 is free to take any value, while x2 = x3 = x.

�

Proof of Proposition 1. See Appendix A.2.

Remark 1.1. The proof of identification of AME(x, [x1,x,x]) in Proposition 1 relies on

the restriction xi2 = xi3 = x. This constraint arises from the application of Lemma 1,

which establishes ∆(αi,x) =
[
eβ − 1

]
π01(αi,x) π10(αi,x). To relate this Lemma to the

probability of a choice history (yi1, yi2, yi3), it is necessary that xi2 = xi3 = x.

Remark 1.2. Since Proposition 1 applies to arbitrary values of x1 and x, it enables the

construction of the following integrated AME:

ÃMEx2=x3 =

∫
AME(x,x

{1,3}
i ) p

(
x
{1,3}
i |xi2 = xi3

)
dx
{1,3}
i (14)

where p
(
x
{1,3}
i |xi2 = xi3

)
represents the empirical distribution of the covariate history con-

ditional on xi2 = xi3. While this is a relevant average causal parameter, its interest is limited

by the constraint of covariate constancy between two consecutive periods, making it appli-

cable only to that specific sub-population. In cases where x includes continuous covariates,
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this integrated AME applies to a subpopulation of mass zero. To address this limitation

and obtain an AME without the restrictive condition xi2 = xi3, we introduced a causal

parameter denoted as AMEt(xit = x), as specified in equation (7), and its integrated coun-

terpart, ÃMEt, as defined in equation (8). Proposition 3 below establishes the identification

of AMEt(xit = x) and of ÃMEt, providing an average causal effect applicable to the entire

population.

Remark 1.3 (Over-identification). For panels where T ≥ 4, there are over-identifying

restrictions on AME(x, [x1,x,x]) because we can construct the empirical distribution of

3-period histories using various groups of periods. As an illustration, when T = 4, we

can consider two groups: (y1,x1, y2,x2, y3,x3) and (y2,x2, y3,x3, y4,x4). For each of these

groups, a distinct estimator of AME(x, [x1,x,x]) can be derived, such that this AME is

over-identified. These different estimates of the same AME can be used to test the over-

identifying restrictions. If the hypothesis is not rejected, the researcher can combine these

estimates to obtain a more precise estimate of the AME.

Remark 1.4 (Estimation). Equation (13) suggests a simple analog or plug-in estimator for

the AMEs. In a first step, we estimate θ ≡ (β,γ) using Conditional Maximum Likelihood

(CML) and the probabilities Py1,y2,y3|x{1,3} using a frequency estimator. Then, we plug these

estimates in equation (13) to obtain estimates of AME(x, [x1,x,x]). When the support of x

is discrete, this estimator is root−N consistent and asymptotically normal. This estimator

is a function of slope parameter estimates and frequency estimates of choice histories. When

T is greater than three, the set of three-period histories used to derive this estimator may

contain overlapping observations. For these reasons, the bootstrap method emerges as a

straightforward and convenient approach for inference on AME(x, [x1,x,x]). Indeed, this is

the methodology employed in our empirical application in Section 5. For the estimation of

the integrated ÃMEx2=x3 defined in equation (14), we can use a kernel-weighted estimator

in line with Honoré and Kyriazidou (2000).
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2.5 Identification of AME: Necessary and sufficient conditions

The identification findings in the preceding section indicate that, despite the inherent chal-

lenges arising from the non-identification of fixed effects distribution, there exist instances

where average marginal effects are identified with fixed T . The proof establishes a specific

linear combination (weighted sum) of probability choices that equates to the AME. The

question then arises: How can one determine these weights? Is there a systematic procedure

to assess the existence of a linear combination that identifies the AME in other models?

In this section, we derive necessary and sufficient conditions, developing a constructive

approach to obtain AMEs within a broad class of dynamic logit models. Employing this

method, we establish the identification of various AMEs or causal effects and unveil instances

of non-identification for specific AMEs.

Let y
{1,T}
i ∈ YT be the vector with individual i’s observed choice history, and let

x
{1,T}
i ∈ X T represent the history of the exogenous variables. We use y

{2,T}
i ∈ YT−1 to

denote the sub-history from period 2 to T . For arbitrary histories y{1,T} and x{1,T}, let

Py{1,T}|x{1,T} represent the probability of a choice history conditional on a covariate history.

This probability is identified from the data. Let P YT |XT be the vector with the probabilities

Py{1,T}|x{1,T} for every possible value of y{1,T} and x{1,T} in YT ×X T . Vector P YT |XT contains

all the information in the data that is relevant to identify slope parameters, the distribution

of α, and any AME of interest.

According to the model, the probability Py{1,T}|x{1,T} has the following structure:

Py{1,T}|x{1,T} =

∫
G
(
y{2,T} | y1,x{1,T}, αi,θ

)
p∗(y1|αi,x{1,T}) fα|x{1,T}(αi|x{1,T}) dαi,

(15)

whereG(y{2,T}|y1,x{1,T}, αi,θ) is the probability of sub-history y{2,T} predicted by the model.

For instance, in the binary logit model:

G
(
y{2,T}|y1,x{1,T}, αi,θ

)
≡

T∏
t=2

Λ ([2yt − 1] [αi + βyt−1 + x′tγ]) (16)

14



We can say that AME(x,x{1,T}) is point identified if there is a function h(P YT |XT ,θ)

such that AME(x,x{1,T}) = h(P YT |XT ,θ). Proposition 2 states a necessary and sufficient

condition for the point identification of this AME.

Proposition 2. Consider a fixed effects model represented by the probability function G.

Let AME(x,x{1,T}) denote the causal parameter defined in equation (6) for arbitrary values

of x and x{1,T} chosen by the researcher. This AME is point-identified if and only if there

exists a weighting function wy{1,T},x{1,T},θ, mapping from YT ×X T ×Θ to R, which satisfies

the following equation:

∑
y{2,T}∈YT−1

wy1,y{2,T},x{1,T},θ G
(
y{2,T}|y1,x{1,T}, αi,θ

)
= ∆(αi,x), (17)

for every y1 ∈ Y and αi ∈ R. Furthermore, this condition implies the following form for the

function that identifies AME(x,x{1,T}):

AME(x,x{1,T}) =
∑

y{1,T}∈YT
wy{1,T},x{1,T},θ Py{1,T}|x{1,T} � (18)

Proof of Proposition 2. See Appendix A.3.

Remark 2.1. Proposition 2 places no constraints on the form of function G(.). Specifically,

it does not require the structure outlined in equation (16). Consequently, Proposition 2

applies to a broad class of fixed-effects dynamic discrete choice models, extending beyond

the logit class.

Remark 2.2. Bonhomme (2011) delves into the identification of AMEs within a broad range

of non-linear static panel data models, including those with discrete or continuous depen-

dent variables. His work establishes a sufficient condition, albeit not necessary, for identifying

AMEs in such models: the existence of an injective operator connecting the distribution of

unobserved heterogeneity to the distribution of the observed dependent variable. However,
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this condition fails in discrete choice models with short panels and unobserved heterogeneity

with continuous support. In contrast, our Proposition 2 establishes both a necessary and suf-

ficient condition for identifying AMEs in a general class of panel data discrete choice models.

Notably, our condition does not require an injective relationship between the distributions

of unobserved heterogeneity and the dependent variable.

Remark 2.3. Looking at the structure of the system of equations in (17), one may be

inclined to perceive that meeting the necessary and sufficient conditions for identification

established in this Proposition seems quite unlikely. Specifically, note that (17) establishes

an infinite system of equations – as many equations as values of αi. The researcher knows the

closed-form expressions for functions G(.) and ∆(.). The unknown variables in this system

of equations consist of the weights wy{1,T},x{1,T},θ for every y{1,T} ∈ YT . Given that the set

YT is finite, we are in a scenario where the system presents an infinite number of restrictions

with only a finite set of unknowns. In the absence of a specific structure, this system lacks

a solution. This feature underpins the common belief that AMEs are not identifiable within

this class of models.

Proposition 3 below establishes that, in the binary choice logit model defined by equation

(1) and Assumption 1-BC, the structure of functions G(.) and ∆(.) is such that equation (17)

can be represented as a finite order polynomial in the variable eαi . This result implies that

there is a solution to the system if and only if the coefficients multiplying every monomial

term in this polynomial are all equal to zero. This property transforms the infinite system of

equations into a finite linear system with finite unknowns. Furthermore, if a solution exists,

this solution implies a closed-form expression for the weights wy{1,T},x{1,T},θ, and therefore,

for the expression that identifies the AME.

Proposition 3. In the binary choice model defined by equation (1) and Assumption 1-BC:

(A) In Proposition 2, we can express equation (17) as a finite-order polynomial in the
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variable eαi. This formulation leads to a system characterized by a finite number of linear

equations, where the unknowns are the weights wy{1,T},x{1,T},θ for every y{1,T} ∈ YT .

(B) For T ≥ 3, the causal parameter AME(x,x{1,T}), defined in equation (6), is identified

for any value x and x{1,T} chosen by the researcher with xT = x. For instance, for T = 3:

AME(x,x{1,3}) = w0,0,1,x{1,3} P0,0,1|x{1,3} + w0,1,0,x{1,3} P0,1,0|x{1,3}

+ w1,0,1,x{1,3} P1,0,1|x{1,3} + w1,1,0,x{1,3} P1,1,0|x{1,3}

(19)

where Py1,y2,y3|x{1,3} is the probability of (y1, y2, y3) conditional on x{1,3}. The weights are:

w0,0,1,x{1,3} = −1 + e[x2−x3]′γ ; w0,1,0,x{1,3} = −1 + eβ+[x3−x2]′γ ;

w1,0,1,x{1,3} = −1 + eβ+[x2−x3]′γ ; w1,1,0,x{1,3} = −1 + e[x3−x2]′γ. �

(20)

Proof of Proposition 3. See Appendix A.4.

Remark 3.1. Two significant corollaries of Proposition 3 are the identification of the AMEs

AMEt(xit = x) and ÃMEt, defined in equations (7) and (8), respectively. As established in

equation (9), both AMEs can be derived by integrating the AME identified in Proposition

3 over a distribution of observed covariate histories. Specifically, for T = 3 and t = 3:

AME3(xi3 = x) = E
x
{1,3}
i |xi3=x

[
AME(xi3,x

{1,3}
i )

]

ÃME3 = E
x
{1,3}
i

[
AME(xi3,x

{1,3}
i )

] (21)

Remark 3.2. It is noteworthy to highlight the broader scope of the identification result

presented in Proposition 3 compared to that in Proposition 1. While Proposition 1 enables

the identification of AME(x,x{1,3} = [x1,x,x]) for any given value of x1 and x2 = x3 = x

and allows us to integrate these AMEs across all values of x1 and x, this "integrated AME"
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still carries the restriction of covariates at two consecutive periods, rendering this causal effect

applicable only to a specific sub-population. The identified AME in Proposition 3, and the

implied identification of AMEt(xit = x) and ÃMEt, are not subject to that constraint.

Remark 3.3. When T = 3 and the history of the exogenous covariates is such that x2 =

x3 = x, the identification result in Proposition 3(B) is the one in Proposition 1. That is,

the weights that solve the system of equations (17) lead to the expression AME(x,x
{1,3}
i =

[x1,x,x]) =
[
eβ − 1

] [
P0,1,0|[x1,x,x] + P1,0,1|[x1,x,x]

]
.

Remark 3.4. (Over-identification). For panels with T ≥ 4, there are over-identifying

restrictions on the parameter AME(x,x{1,3}). In Appendix A.4.3, we employ the same pro-

cedure to derive the closed-form expression for the weights when T exceeds three. Notably,

for panels with T ≥ 4, there emerge over-identifying restrictions on AME(x,x{1,T}).

Remark 3.5. Proposition 3 places no constraints on the stochastic process of xit, except that

it is strictly exogenous concerning the transitory shock εit. Furthermore, this identification

result applies to scenarios where xit includes continuous variables.

Remark 3.6. In the dynamic binary logit model, Proposition 3(A) can be extended to

AMEs where ∆(x, αi) represents the product, ratio, or a polynomial function of logit tran-

sition probabilities, provided these probabilities are evaluated at the same covariate values

x. Proposition 3(B) addresses the existence of a solution to the finite system of equations,

which needs to be determined individually for each case.

2.6 Extensions

2.6.1 Other average treatment effects

In a binary choice model without covariates, for k, j ∈ {0, 1}, we define Πkj as the aver-

age transition probability from k to j that results from integrating the individual-specific
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transition probability over the distribution of αi.

Πkj ≡
∫
πkj(αi) fα(αi) dαi (22)

For instance, Π01 =
∫

Λ(αi) fα(αi) dαi, and Π11 =
∫

Λ(αi+β) fα(αi) dαi. In the model with

covariates, we define Πkj(x,x
{1,T}) as the average transition probability from k to j with the

current value of the covariates is x and integrated over the distribution of αi conditional on

the covariate history x{1,T}:

Πkj(x,x
{1,T}) ≡

∫
πkj(αi,x) fα|x{1,T}(αi | x

{1,T}
i = x{1,T}) dαi (23)

Proposition 4 establishes the identification of these average transition probabilities.

Proposition 4. Consider the binary choice model defined by equation (1), under Assumption

1-BC, with a fixed T ≥ 3 and known θ. In the model without covariates, all the average

transition probabilities Π00, Π01, Π10, and Π11 by the following expressions:


Π11 = P1,1 + P0,1,1 + eβ P0,1,0

Π00 = P0,0 + P1,0,0 + eβ P1,0,1

(24)

and by definition, Π10 = 1 − Π11 and Π01 = 1 − Π00. In the model with covariates, for any

arbitrary values x and x1 chosen by the econometrician, the average transition probabilities

Π00(x, [x1,x,x]), Π01(x, [x1,x,x]), Π10(x, [x1,x,x]), and Π11(x, [x1,x,x]) are point identified

by the following expressions:


Π11(x, [x1,x,x]) = P1,1|x1,x + P0,1,1|x1,x,x + eβ P0,1,0|x1,x,x

Π00(x, [x1,x,x]) = P0,0|x1,x + P1,0,0|x1,x,x + eβ P1,0,1|x1,x,x

(25)
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where x1 is free to take any value, while x2 = x3 = x. �

Proof of Proposition 4. See Appendix A.5.

Remark 4.1. Using the definition of AME, it is straightforward to show that AME =

Π11−Π01. Identifying the average transition probabilities is an alternative way of identifying

the AME. This identification not only elucidates the AME but also extends to other relevant

causal effects, encompassing the ratio Π11/Π01, the percentage change [(Π11−Π01)/Π01], the

additive effect Π01 + Π11, a weighted sum of Π01 and Π11, or, more broadly, any well-defined

function involving these parameters.

Remark 4.2. Proposition 4 implies also the identification of two interesting average treat-

ment effects (ATEs). For concreteness, we describe these ATEs using the application in

Example 1 above. Consider a policy experiment where firms in the experimental group are

assigned to the active status at period t − 1. For instance, they receive a large temporary

subsidy to operate in the market. Firms in the control group are left in their observed status

at period t−1. Then, at period t, the researcher observes the proportion of firms that remain

active in the experimental and control groups. The difference between these two proportions

is the average effect of this policy treatment, which we can denote as ATE11,t. According

to the model, this average treatment effect is ATE11,t ≡ Π11 − E(yit|t), where E(yit|t) is the

mean value of y in the actual distribution of this variable at period t. Since this distribution

may change over time, this ATE may also vary with t. We can consider a similar experiment

where firms in the experimental group are assigned to be inactive at period t − 1 – they

receive a large temporary subsidy for being inactive. We use ATE01,t to denote the average

effect of this other policy treatment. By definition, ATE01,t ≡ Π01 − E(yit|t).

2.6.2 n-periods forward AME

Researchers can be interested in the response to a treatment over multiple periods. Let

∆(n)(αi) denote the individual-specific causal effect on yi,t+n resulting from a change in yit
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from 0 to 1.

∆(n)(αi) ≡ E (yi,t+n | αi, yit = 1)− E (yi,t+n | αi, yit = 0) = π
(n)
11 (αi)− π(n)

01 (αi). (26)

As previously mentioned in the context of ∆(αi), the individual effect projected forward over

n periods remains unidentifiable in a short panel. Our focus, however, lies in the average of

this effect:

AME(n) ≡
∫

∆(n)(αi) fα(αi) dαi =

∫ [
π
(n)
11 (αi)− π(n)

01 (αi)
]
fα(αi) dαi. (27)

This n-periods forward average causal effect differs from raising the 1-period AME to

the power of n: specifically, AME(n) 6= [AME]n. Consequently, identifying AME(n) is not

a straightforward implication from identifying the singular AME.

In the binary choice model with x covariates, we can define n-periods forward AMEs

conditional on a constant value of x:

AME(n)(x{1,T} = [x, ...,x]) =

∫ [
π
(n)
11 (αi,x)− π(n)

01 (αi,x)
]
fα|x(αi|x{1,T}i = [x, ...,x]) dαi

(28)

Our proof of the identification of AME(n) builds on Lemma 1 and the following Lemma 2.

Lemma 2. In the binary choice model defined by equation (1) and Assumption 1-BC, the

n-periods forward individual causal effect with constant-over-time x satisfies the following

equation:

∆(n)(αi,x) =
[
eβ − 1

]n
[π10(αi,x)]n [π01(αi,x)]n . � (29)

Proof of Lemma 2. See Appendix A.6.

Proposition 5. Consider the binary choice model defined by equation (1) and Assumption

1-BC. Let n be any positive integer, and let 1̃0
n
be the choice history that consists of the
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n-times repetition of the sequence (1,0), e.g., for n = 2, we have that 1̃0
2

= (1, 0, 1, 0). If

T ≥ 2n + 1 , then parameter AME(n)(x{1,T} = [x, ...,x]) is identified as:

AME(n)(x{1,T} = [x, ...,x]) =
[
eβ − 1

]n [
P0,1̃0

n|x,...,x + P1̃0
n
,1|x,...,x

]
(30)

where P0,1̃0
n|x,...,x and P1̃0

n
,1|x,...,x are the probabilities of choice histories (0, 1̃0

n
) and (1̃0

n
, 1),

respetively, conditional on x1 = ... = xT = x. �

Proof of Proposition 5. See Appendix A.7.

2.6.3 Duration dependence

There are many applications of dynamic models where the dependent variable has duration

dependence. For instance, in a model of individual employment, where y = 1 represents

employment and y = 0 unemployment, a worker’s productivity often rises with job experi-

ence, suggesting that the likelihood of employment increases over the duration in that state.

Similarly, in a market entry and exit model, where y = 1 denotes a firm’s activity in the

market, and y = 0 denotes inactivity, a firm’s profit may rise with its market experience,

increasing the probability that the firm stays active.

Let dit ∈ {0, 1, 2, ...} represent the duration in the choice of alternative y = 1. This

duration variable can be defined recursively as dit = yi,t−1 (di,t−1 + 1). We consider the

following dynamic binary choice logit model with duration dependence:

yit = 1 { αi + β yi,t−1 + δ dit + εit ≥ 0} , (31)

where β and δ are slope parameters.7

7We can extend our identification results of AMEs for models with duration dependence to allow for a
more flexible specification with a different parameter for each possible value of duration greater than 1. That
is, we can replace the term δ dit with δ2 1{dit = 2}+ δ3 1{dit = 3}+ ... where 1{.} is the indicator function,
and δ2, δ3, ... are parameters.
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We are interested in the causal effect on yit of a change in the duration variable dit. For

instance, in a market entry/exit model, we can be interested in the causal effect of one more

year of experience on the probability of being active in the market. Let ∆d(αi, d) be the

individual-specific causal effect on yit of a unit change in duration from d to d+ 1.

∆d(αi, d) ≡ E (yit | αi, dit = d+ 1)− E (yit | αi, dit = d)

= π11(αi, d+ 1)− π11(αi, d) = Λ (αi + β + δ (d+ 1))− Λ (αi + β + δ d) .
(32)

where π11(αi, d) ≡ E(yit|αi, yi,t−1 = 1, dit = d). We are interested in the identification of the

following AME :

AMEd(d) ≡
∫

∆d(αi, d) fα(αi) dαi =

∫
[π11(αi, d+ 1)− π11(αi, d)] fα(αi) dαi (33)

In this binary choice model with duration dependence, we need to slightly modify As-

sumption 1-BC to consider that the initial condition of a choice history includes not only yi1

but also the initial duration di1. Therefore, the density function of the initial condition is

p∗(yi1, di1|αi).

Proposition 6 establishes the identification of AMEd(d).

Proposition 6. Consider the binary choice model with duration dependence defined by equa-

tion (31) and Assumption 1-BC. For T ≥ 3 + d, the causal effect AMEd(d) is identified for
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any d ≥ 1. For instance, with T ≥ 4, the causal effect AMEd(1) is identified as:

AMEd(1) =
eβ+2δ − eβ+δ

2
[P0,0,1,0 + P0,1,0,0] +

eβ+2δ − eβ+δ

eβ+δ
P0,0,1,1

+

(
eβ+2δ

(
1− eβ+2δ

)
eβ+δ

+ eβ+2δ − 1

)
P0,1,1,0

+

(
1− eβ+δ

eβ+2δ

)
[P1,0,1,0 + P1,0,1,1] +

(
eβ+2δ − 1

eβ+δ
− 1 +

1

eβ+2δ

)
P1,1,0,0. �

(34)

Proof of Proposition 6. See Appendix A.9.

3 Multinomial and ordered choice models

EXAMPLE 2. Consider a dynamic panel data model of migration decisions. The set of

possible choices, denoted by Y = {0, 1, ..., J}, represents all the cities within a country where

an individual can choose to live and work. Individuals are indexed by i and locations by

j. Each individual selects the location that maximizes their intertemporal utility. For sim-

plicity, we do not distinguish between the components of utility derived from labor earnings

and those from non-pecuniary factors. Some characteristics of both the individual and the

location influence the utility of working in a given location j, and these are observable by the

researcher, denoted by xit. Other factors affecting utility are unobservable to the researcher,

with some being time-invariant, αi(j), and others varying over time, εit(j). The decision-

making is dynamic because relocating implies migration costs, which may include search

costs, transportation, and irreversible investments. In this model, the impact of migration

costs on the utility of choosing location j is captured by the term βj1{yi,t−1 = j}, where βj

is a parameter, and 1{yi,t−1 = j} is an indicator variable that equals one if j is the location

where the individual worked previous period, and zero otherwise.
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A researcher aims to estimate how an individual’s current location influences their choice

of location in the next period. Ideally, this would be done through a randomized experiment,

where individuals are randomly assigned to one of two groups. In one group, individuals

are assigned to work in location j, while in the other group, they are assigned to location

k. After one period, we compare the proportion of individuals in each group who work in

location j. The difference between these proportions provides an example of AME in this

multinomial model. This AME reflects the causal effect of exogenously assigning individuals

to a location. In the absence of migration costs, this causal effect would be zero. �

3.1 Multinomial choice model

Consider a panel dataset {yit,xit : i = 1, 2, ..., N ; t = 1, 2, ..., T} where yit can take J + 1

values: yit ∈ Y = {0, 1, ..., J}. We can interpret the dependent variable as the choice

alternative that maximizes a utility or payoff function. More specifically:

yit = arg max
j∈Y

{
αi(j) + βj 1{yi,t−1 = j}+ x′it γj + εit(j)

}
, (35)

where {βj : j ∈ Y} and {γj : j ∈ Y} are slope parameters, and αi ≡ {αi(j) : j ∈ Y}

are incidental parameters. The unobservables {εit(j) : j ∈ Y} are i.i.d. type 1 extreme

value. The explanatory variables in the K × 1 vector xit are strictly exogenous concerning

the transitory shocks εit(j).

Parameter βj represents the impact on the utility of staying in the same choice as in the

previous period. It can be interpreted as the effect of habits or as a negative switching cost.

The βj and γj parameters can be identified only relative to the value of these parameters

for a baseline choice alternative. We adopt the conventional normalization of β0 = 0 and

γ0 = 0, such that the identified parameters are actually βj − β0 and γj − γ0. The vec-

tor αi ≡ [αi(0), αi(1), ..., αi(J)] represents unobserved individual heterogeneity in payoffs.

Assumption 1-MNL summarizes the conditions in this model.
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Assumption 1-MNL. (A) (Logit) εit(j) is i.i.d. over (i, t, j) with type 1 extreme value

distribution; (B) (Strict exogeneity of xit) the variables εit(j) are independent of
(
αi,x

{1,T}
i

)
;

and (C) (Fixed effects) the density functions fα(αi), fα|x{1,T}(αi|x
{1,T}
i ), and p∗(yi1|αi,x{1,T}i )

are unrestricted. �

In this multinomial model, we can define individual-specific transition probabilities in the

same way as we did above in equation (2) for the binary choice model. For any j, k ∈ Y , and

any value x ∈ X , πkj(αi,x) ≡ P (yi,t+1 = j | αi, yit = k, xi,t+1 = x). For this multinomial

logit, the transition probability has the following form:

πkj(αi,x) =
exp{αi(j) + βj 1{j = k}+ x′γj}∑J
`=0 exp{αi(`) + β` 1{` = k}+ x′γ`}

(36)

We also define Πkj(x,x
{1,T}) as the Average Transition Probability (ATP) from k to j in

the same way as we did for the binary choice model in equation (23). For any j, k ∈

Y , any value x ∈ X , and any history of covariates x{1,T}, we have that Πkj(x,x
{1,T}) ≡∫

πkj(αi,x) fα|x{1,T}(αi | x
{1,T}
i = x{1,T}) dαi.

For any values j, k, ` ∈ Y with k 6= `, let ∆j,k→`(αi,x) be the individual-specific causal

effect on the probability of yit = j of a change in yi,t−1 from k to ` given that xit = x.

∆j,k→`(αi,x) ≡ E (1{yit = j} | αi,x, yi,t−1 = `)− E (1{yit = j} | αi,x, yi,t−1 = k)

= π`j(αi,x)− πkj(αi,x).
(37)

We are interested in the identification of the following AMEs:

AMEj,k→`(x,x
{1,T}) ≡

∫
∆j,k→`(αi,x) fα|x{1,T}(αi|x

{1,T}
i = x{1,T}) dαi

= Π`j(x,x
{1,T})− Πkj(x,x

{1,T})

(38)
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3.2 Identification in the multinomial model

To obtain our identification result for the multinomial model in Proposition 7, we apply the

following Lemma 3, which is an extension of Lemma 1 to the multinomial case.

Lemma 3. In the model defined by equation (35) and Assumption 1-MNL, for any triple of

choice alternatives j, k, `, with k 6= `, the following condition holds:

eβj [1−1{k=j}−1{`=j}] =
πk`(αi,x) πjj(αi,x)

πkj(αi,x) πj`(αi,x)
. � (39)

Proof of Lemma 3. See Appendix A.8.

Proposition 7 establishes the identification of the average transition probabilities Πjj(x,x
{1,T})

for covariate histories with x2 = ... = xT .

Proposition 7. In the model defined by equation (35) and Assumption 1-MNL, for any

choice alternative j, any x ∈ X , and covariate histories with x2 = ... = xT = x, if T ≥ 3,

the average transition probability Πjj(x,x
{1,T}) is identified. For instance, for T = 3:

Πjj(x,x
{1,3}) = Pjj|x{1,2} +

∑
k 6=j

[
Pkjj|x{1,3} +

∑
`6=j

eβj [1−1{k=j}−1{`=j}] Pkj`|x{1,3}

]
, (40)

where x{1,3} is such that x2 = x3 = x. �

Proof of Proposition 7. See Appendix A.10.

Unfortunately, the procedure described in the proof of Proposition 7 does not provide an

identification result for the parameters Πjk with j 6= k when the number of choice alternatives

is greater than two. Based on the necessary and sufficient conditions in Proposition 2, the

following Proposition 8 establishes that this identification is not possible when J + 1 ≥ 3.
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Proposition 8. In the multinomial model defined by equation (35) and Assumption 1-MNL,

with J + 1 ≥ 3 and θ known to the researcher, there is no function h
(
PY|X ,θ

)
that equal

the average transition probability Πkj for k 6= j. Consequently, no average causal effect

AMEj,k→` is identified. �

Proof of Proposition 8. See Appendix A.11.

3.3 Ordered logit model

Consider the following ordered logit model with J + 1 choice alternatives.8

yit = j if y∗it ∈ (λj−1, λj] , with j = 0, 1, ..., J

y∗it = αi +
J−1∑
k=0

βk 1{yi,t−1 = k} − εit.
(41)

where λ’s are parameters with λj−1 < λj, λ−1 = −∞ and λJ+1 = +∞, and εit is i.i.d. with

Logistic distribution. This model implies the following transition probability function:

πkj(αi) = Λ (αi + βk − λj−1)− Λ (αi + βk − λj) (42)

Honoré, Muris, and Weidner (2021) establish the identification of the β and λ parameters.

The following proposition establishes the identification of the Average Transition Probabili-

ties Πkj and the causal effects AMEj,k→` = Π`j − Πkj for any values of k, `, and j.

Proposition 9. Consider the ordered logit model as defined in equation (41) with J + 1 = 3

and given the values of β and λ parameters. If T ≥ 3, the average transition probabilities
8For simplicity, we do not include covariates x. It is straightforward to extend the identification result in

Proposition 9 below to an AME conditional on x2 = x3, similarly as our results in Propositions and 1 and 7.
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{Πkj : k, j ∈ {0, 1, 2}} are identified. For instance, for j = 0:

Π00 =
J∑
k=0

Pk,0,0 +
J∑
k=0

J∑
`=1

eβk−β0 Pk,0,`

Π10 =
J∑
k=0

1∑
`=0

Pk,0,` +
1∑

k=0

eβk−β1 Pk,0,2 + P2,0,2 +
(
eβ2−β1 − 1

)
P2,2,0

+
J∑
k=0

(
eβ1−λ0 − eβk−λ1

) (
eβk − eβ1

)
(eβk−λ0 − eβk−λ1) eβ1

Pk,1,0

Π20 = P0,0,0 + P0,0,1 + eλ1−λ0 P0,0,2 +

(
1− eβ2−λ0

eβ1−λ1

)
P0,2,0

+
l∑

k=0

J∑
`=0

P1,k,` +

(
1− eβ2−λ0

eβ1−λ1

)
P1,2,0 +

J−1∑
k=0

P2,0,k

(43)

This implies the identification of AMEj,k→` = Π`j − Πkj. �

Proof of Proposition 9. See Appendix A.12.

4 Monte Carlo experiments

These Monte Carlo experiments serve two main purposes. First, we compare the bias and

variance of the FE estimator of AME to those from RE estimators imposing restrictions

that we typically find in applications of RE models. Second, we evaluate the power of two

testing procedures designed to reject a misspecified RE model: the standard Hausman test,

which relies on RE and FE estimators of slope parameters, and an alternative Hausman test

based on the RE and FE estimators of AMEs.

The DGP is the binary choice AR1 model described in equation (1) without exogenous

covariates. The model for the initial condition is yi1 = 1{αi + ui ≥ 0} where ui is i.i.d.

Logistic and independent of αi and εit. The number of periods is T = 4. We implement

experiments for two sample sizes N , 1, 000 and 2, 000. We consider six DGPs based on
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Table 1: DGPs and true value of AME

Distribution of αi
Value of β No αi Finite mixture Mixture of normals

β = −1
DGP NoUH(β = −1)
AME = −0.2311

DGP FinMix(β = −1)
AME = −0.2164

DGP MixNor(β = −1)
AME = −0.113

β = 1
DGP NoUH(β = 1)
AME = 0.2311

DGP FinMix(β = 1)
AME = 0.2059

DGP MixNor(β = 1)
AME = 0.1108

two values of parameter β (β = −1 and β = 1) and three distributions of the unobserved

heterogeneity αi: no heterogeneity, with αi = 0 for every i; finite mixture with two points of

support, αi = −1 with probability 0.3, and αi = 0.5 with probability 0.7; and a mixture of

two normal random variables: αi ∼ N (−1, 3) with probability 0.3, and αi ∼ N (0.5, 3) with

probability 0.7.

Table 1 summarizes the six DGPs, the labels we use to represent them, and the corre-

sponding value of AME in the population. When we change the distribution of the unob-

served heterogeneity, keeping the value of parameter β constant, the value of AME can vary

substantially. For instance, when β = 1, AME equals 0.23 in the DGP without unobserved

heterogeneity, 0.20 for the finite mixture, and 0.11 for a mixture of normal distributions.

For each DGP, we simulate 1, 000 random samples with N individuals (with N = 1, 000 or

N = 2, 000) and T = 4. For each sample, we calculate three estimators of β and AME: (1) a

FE estimator, that we denote FE-CMLE ;9 (2) a maximum likelihood estimator that assumes

that the distribution of αi is discrete with two mass points, that we denote RE-MLE ; and

(3) a maximum likelihood estimator that assumes there is no unobserved heterogeneity, that
9The FE estimator of β is the CMLE proposed by Chamberlain (1985). For the estimation of parameter

AME, we use a plug-in estimator based on the formula for the identified AME when T = 4, which we
present in Table 7 in the Appendix. In this formula, we replace parameter β with its CML estimate and the
probabilities of choice histories with frequency estimates.
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we denote NoUH-MLE.10 Table 2 presents results from experiments with N = 1000.11

(i) Bias of FE estimators relative to MLE. The mean bias of the FE estimator is very small:

between 0.1% and 0.7% of the true value for β, and between 0.2% and 1.4% for AME.

In this FE approach, the estimation of AME does not involve a substantially larger bias

than that of β. This bias is of a similar magnitude as the ones of NoUH-MLE and RE-MLE

estimators when these estimators are consistent (i.e., when the DGPs are NoUH and FinMix,

respectively).

(ii) Variance of FE estimators relative to RE-MLE. As a percentage of the true value, the

standard deviation of the FE estimator is between 10% and 20% for the estimator of β, and

between 7% and 30% for the estimator of AME. These ratios are substantially smaller for

the RE-MLE estimator: between 9% and 13% for the estimator of β, and between 8% and

23% for the estimator of AME. As expected, the FE estimators have a larger variance than

the RE-MLE estimators. The loss of precision associated with FE estimation is of a similar

magnitude when estimating AME than when estimating β.

The variance of the FE estimator is substantially larger when β is positive than when

it is negative, but this is not the case for the RE-MLE estimators. This result has a clear

explanation. The histories that contribute to the identification of the parameters β and

AME involve some alternation of the two choices over time, e.g., {0, 1, 0, 1} or {0, 0, 1, 1}.

These histories occur more frequently when β is negative than when it is positive. Identifying

negative state dependence is simpler than identifying positive state dependence because the
10For the DGPs without unobserved heterogeneity (i.e., NoUH(-1) and NoUH(+1)), we do not report

results for the RE MLE. The reason is that, for these DGPs, the finite mixture (two types) RE model is not
identified, and the estimates of β are extremely poor. As expected, the estimate of the mixing probability
in the mixture is close to zero, but the points in the support set of αi are poorly identified, and they take
extreme values. This problem also affects the estimation of β, which presents a huge bias and variance. For
this reason, we have preferred not to present results for this combination of estimator and DGP. However,
it is important to note that avoiding these numerical/identification problems in estimating the distribution
of α is a key advantage of FE estimation.

11The results for sample size N = 2000 are qualitatively very similar except that, as one would expect,
all the estimators have a lower variance when the sample size increases. Therefore, we present only results
from experiments with N = 1000 here.
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Table 2: Monte Carlo Experiments with sample size N=1,000

Statistics
True Mean Std True Mean Std RMSE
β β̂ β̂ AME ÂME ÂME ÂME

DGP FE-CMLE -1.0 -1.0074 0.1310 -0.2311 -0.2314 0.0235 0.0235
NoUH(-1) RE-MLE -1.0 NA NA -0.2311 NA NA NA

NoUH-MLE -1.0 -0.9998 0.0798 -0.2311 -0.2309 0.0175 0.0175
DGP FE-CMLE -1.0 -1.0012 0.1338 -0.2164 -0.2160 0.0222 0.0221

FinMix(-1) RE-MLE -1.0 -1.0036 0.1214 -0.2164 -0.2165 0.0215 0.0214
NoUH-MLE -1.0 -0.5979 0.0781 -0.2164 -0.1430 0.0183 0.0757

DGP FE-CMLE -1.0 -1.0136 0.2160 -0.1113 -0.1110 0.0178 0.0176
MixNor(-1) RE-MLE -1.0 -0.3604 0.1825 -0.1113 -0.0470 0.0218 0.0679

NoUH-MLE -1.0 1.7190 0.1028 -0.1113 0.4022 0.0214 0.5139
DGP FE-CMLE 1.0 1.0013 0.1654 0.2311 0.2344 0.0526 0.0527

NoUH(+1) RE-MLE 1.0 NA NA 0.2311 NA NA NA
NoUH-MLE 1.0 0.9980 0.0778 0.2311 0.2305 0.0176 0.0176

DGP FE-CMLE 1.0 0.9982 0.1841 0.2059 0.2089 0.0539 0.0539
FinMix(+1) RE-MLE 1.0 0.9864 0.1296 0.2059 0.2034 0.0315 0.0316

NoUH-MLE 1.0 1.4100 0.0843 0.2059 0.3212 0.0183 0.1168
DGP FE-CMLE 1.0 1.0055 0.2873 0.1108 0.1169 0.0511 0.0515

MixNor(+1) RE-MLE 1.0 1.4863 0.1828 0.1108 0.2120 0.0367 0.1078
NoUH-MLE 1.0 3.2453 0.1194 0.1108 0.6645 0.0166 0.5541

latter has implications similar to unobserved heterogeneity, whereas negative state depen-

dence does not.

(iii) Bias of RE-MLE estimators due to misspecification. The biases due to the misspec-

ification of the RE model are substantial. The bias in the estimation of β from ignoring

unobserved heterogeneity, when present, is between 41% of the true value (with the finite

mixture DGP) and 270% (with the mixture of normals DGP). The bias is even more sig-

nificant in estimating AME: 60% of the true value in the finite mixture DGP and more

than 500% in the mixture of normals DGP. The bias is also substantial for the RE-MLE

that accounts for heterogeneity but misspecifies its distribution: between 50% and 65% in

the estimation of β; and between 58% and 93% for AME. As a result, the FE estimator

dominates the RE-MLE in terms of Root Mean Square Error (RMSE) in the cases where

the RE model is misspecified.
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(iv) Testing for misspecification of RE models. A common approach to test the validity of a

RE model consists of using a Hausman test that compares the FE estimator of β (consistent

under the null and the alternative) and the RE-MLE of β (efficient under the null but

inconsistent under the alternative). See Hausman (1978) and Hausman and Taylor (1981).

Given our identification results, we can define a similar Hausman test using the FE and RE

estimators of AME instead of β. Therefore, we have two different Hausman statistics to

test for the validity of a RE model. The statistic based on the estimators of β is:

HSβ =

(
β̂FE − β̂RE

)2
V̂ ar

(
β̂FE

)
− V̂ ar

(
β̂RE

) under H0 ∼ χ2
1 (44)

And the statistic based on the estimators of AME is:

HSAME =

(
ÂMEFE − ÂMERE

)2
V̂ ar

(
ÂMEFE

)
− V̂ ar

(
ÂMERE

) under H0 ∼ χ2
1 (45)

The Hausman test based on AME has several advantages over the test based on β. First,

the researcher can be particularly interested in the causal effect implied by the model and

not in the slope parameter itself. Second, and more substantially, the parameter β test may

suffer a scaling problem that does not affect the test on the AME. That is, the parameter

β depends on the variance of the transitory shock εit, which depends on the RE model’s

specification. For instance, a reason why the estimators β̂FE and β̂NoUH−MLE are different

is that, in the model ignoring unobserved heterogeneity, the actual error term is αi + εit,

and the variance of this variable is larger than the variance of εit. The estimation of AME

– using either FE or RE approaches – is not affected by this scaling problem.
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Figures 1 to 6: Empirical distribution of p-values of Hausman tests

Figure 1. Figure 2
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We compare the power of these two tests using our Monte Carlo experiments. Figures 1

to 6 summarize our results. Each figure corresponds to one DGP and presents the cumulative

distribution function of the p-value for the null hypothesis that the RE model is valid. More

specifically: Figure 1: DGP is FinMix(-1), and the null hypothesis is no unobserved hetero-

geneity; Figure 2: DGP is FinMix(+1) and the null hypothesis is no unobserved heterogene-

ity; Figure 3: DGP is MixNor(-1) and the null hypothesis is no unobserved heterogeneity;

Figure 4: DGP is MixNor(+1) and the null hypothesis is no unobserved heterogeneity; Fig-

ure 5: DGP is MixNor(-1) and the null hypothesis is the finite mixture model; Figure 6:

DGP is MixNor(+1) and the null hypothesis is the finite mixture model.

Figures 3 and 4 show that both tests have strong statistical power to reject the null of

no unobserved heterogeneity when the DGP is a mixture of normals. In Figures 1 and 5,

the two tests also have strong power when the true value of β is negative. The relevant

comparison appears in Figures 2 and 6. In the DGP with a mixture of normals (Figure 6),

the HSAME test has substantially larger power than the test HSβ. In particular, HSβ has a

low-power problem. For this test, with a 5% significance level, we do not reject the null for

more than half of the samples. In contrast, the HSAME test has reasonable power. With a

5% significance level for this test, we can reject the null for 80% of the samples. In Figure 2,

the HSβ test has more power than the HSAME test. However, the differences in power are

much smaller than in Figure 6, and neither of the two tests has a low power problem. Overall,

the HSAME test has more power than the HSβ. This test seems a valuable byproduct of

identifying AMEs in FE models.

5 State Dependence in Consumer Brand Choice

We apply our identification results to measure state dependence on consumer brand choices.

There is substantial literature on testing and measuring state dependence on consumer brand

choices, with seminal papers by Erdem (1996), Keane (1997), and Roy, Chintagunta, and
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Haldar (1996).12 These applications use consumer scanner panel data and estimate dynamic

discrete choice models with persistent unobserved heterogeneity in consumer brand prefer-

ences and state dependence generated by purchasing/consumption habits or brand switching

costs. The main goal is to determine the relative contribution of unobserved heterogeneity

and state dependence to explain the observed time persistence of consumer brand choices.

Disentangling the contribution of these two factors has important implications for demand

elasticities, competition, consumer welfare, and the evaluation of mergers.13

All these previous studies estimate Random Effects (RE) models. In this application, we

consider a FE model, estimate average transition probabilities Πjj and average treatment

effects ATEjj ≡ Πjj − E(1{yit = j}), and use them to measure the contribution of state

dependence to brand-choice persistence.

5.1 Data

The dataset comes from A.C. Nielsen scanner panel data for the ketchup product category

in the geographic market of Sioux Falls, South Dakota.14 It contains 996 households and

covers a 123-week period from mid-1986 to mid-1988.15 For our analysis, a period is a

household purchase occasion. Periods t = 1, 2, ... represent a household’s first, second, and

so on ketchup purchases during the sample period. This timing is common in this literature

(e.g., Erdem, 1996; Keane, 1997). Ti is the number of purchase occasions for household i.

The total number of observations or purchase occasions in this sample is
∑N

i=1 Ti = 9, 562.

Table 3 presents the distribution of Ti.
12Other contributions to this literature are Seetharaman, Ainslie, and Chintagunta (1999), Erdem, Imai,

and Keane (2003), Seetharaman (2004), Dubé, Hitsch, and Rossi (2010), and Osborne (2011), among others.
There is also a related literature on the implications of brand-choice state dependence on market competition
(see Viard, 2007, and Pakes, Porter, Shepard, and Calder-Wang 2021.

13See Erdem, Imai, and Keane (2003) for a detailed discussion of the important economic implications of
distinguishing between unobserved heterogeneity and state dependence on consumer demand.

14Our sample comes from Erdem, Imai, and Keane (2003). We thank the authors for sharing the data
with us.

15The raw data contains 2797 households. Here we use the same working sample of 996 households as in
Erdem, Imai, and Keane (2003). This sample focuses on households who are regular ketchup users. See page
30 of that paper for a description of the selection of this working sample.
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Table 3: Distribution of the number of purchase occasions (Ti)

Minimum 5% 25% Median 75% 95% Maximum
3 4 5 8 12 21 52

Table 4: Matrix of Transition Probabilities of Brand Choices (%)

Brand choice at t+ 1 Total
Brand choice at t Heinz Hunt’s Del Monte Store

(j = 0) (j = 1) (j = 2) (j = 3)
Heinz (j = 0) 78.95 10.67 6.98 3.40 100.00
Hunt’s (j = 1) 45.16 32.30 15.76 6.78 100.00

Del Monte (j = 2) 41.11 18.98 34.07 5.83 100.00
Store (j = 3) 42.32 17.11 13.38 27.19 100.00

Market share (Pj) 66.65 15.63 12.19 5.53 100.00
Choice persistence (Pj|j − Pj) 12.30 16.67 21.88 21.66

There are four brands in this market: three national brands, Heinz, Hunt’s, and Del

Monte; and a store brand. We ignore the quantity purchased and focus on brand choice.

Table 4 presents brands’ market shares constructed using the number of purchasing events,

and the matrix of transition probabilities between the four brands. Heinz is the leading

brand, with 66% share of purchases, followed by Hunt’s at 16%, Del Monte at 12%, and

Store brands at 5%.

A measure of choice persistence for brand j is the difference between the transition prob-

ability Pr(yi,t+1 = j|yit = j) and the unconditional probability or market share Pr(yit = j).

This measure shows choice persistence for all the brands, with the largest for Del Monte and

Store brands with 21.88% and 21.66%, respectively, followed by Hunt’s with 16.67%, and

Heinz with 12.30%. The persistence observed may stem from consumer taste heterogeneity

and state dependence. Our main objective in this application is to distinguish the impact of

these two factors and examine how they differ across brands.
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5.2 Model

Let yit ∈ {0, 1, 2, 3} be the brand choice of household i at purchase occasion t. We consider

the following brand choice model with habit formation:

yit = arg max
j∈{0,1,2,3}

{ αi(j) + βjj 1{yi,t−1 = j}+ εit(j) } . (46)

Parameter βjj represents habits in purchasing brand j: the additional utility from buying

the same brand as in the previous purchase. Parameter β00 (for Heinz) is normalized to zero.

Variable αi(j) represents the household’s time-invariant taste for brand j. For simplicity, we

ignore duration dependence. We also omit prices.16

Following Aguirregabiria, Gu, and Luo (2021), we can interpret equation (46) as a model

where households are forward-looking. The fixed effects αi(j) can be interpreted as the

sum of two components: a fixed effect in the current utility of choosing brand j and the

continuation value (expected and discounted future utility) of choosing brand j today. In

this model, these continuation values depend on the current choice j but not on the state

variable yi,t−1 or the current εit.

5.3 Estimation

To illustrate our method using a short panel, we split the purchasing histories in the original

sample into sub-histories of length T , for T = 6 and T = 8. Table 5 presents our Fixed Effect

estimates of the brand habit parameters βjj. We use the Conditional Maximum Likelihood

estimator. We obtain standard errors using a bootstrap method that resamples the 996

purchasing histories in the original dataset.17 Parameter estimates with T = 6 and T = 8

16In this dataset, supermarkets follow High-Low pricing, and prices can stay at the high (regular) level for
relatively long periods. Omitting prices in our model can be interpreted using choice histories where prices
remain constant.

17Using the original sample of 996 purchasing histories, we resample independently and with replacement
996 histories. Then, we generate all the possible sub-histories of length T from these histories. We also
obtained asymptotic standard errors. Bootstrap standard errors are a bit larger (at the second or third
significant digit) than the asymptotic ones.
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Table 5: Conditional Maximum Likelihood Estimates

of Brand Habit (βjj) Parameters
Parameter T = 6 sub-histories T = 8 sub-histories

βjj Estimate (s.e.) Estimate (s.e.)
Heinz 0.00 (.) 0.00 (.)
Hunt’s 0.2312 (0.0590) 0.2566 (0.0570)

Del Monte 0.1155 (0.0718) 0.1191 (0.0722)
Store 0.3245 (0.1166) 0.4675 (0.1106)

# histories of length T 4, 764 3, 396

(1) Standard errors (s.e) are obtained using a bootstrap method. We generate
1,000 resamples (independent, with replacement, and with N = 996) from the
996 purchasing histories in the original dataset. Then, we split each history
of the bootstrap sample into all the possible sub-histories of length T .

are very similar. They are significantly greater than zero at a 5% significance level, showing

evidence of state dependence on brand choice. The magnitude of the parameter estimate

is not monotonically related to the brand’s market share or the degree of brand choice

persistence shown in Table 4. However, we need to consider that a larger value of βjj

does not imply a larger degree of state dependence as measured by the Average Transition

Probabilities or by ATEjj.

Table 6 presents Fixed Effect estimates of ATPs and a decomposition of brand choice

persistence into the contributions of state dependence and unobserved heterogeneity. The

estimation of the ATPs Πjj is based on equation (40) in Proposition 7. We plug the CML

estimates of βjj parameters and frequency estimates of probabilities of choice histories in

this equation and obtain standard errors using a bootstrap method.

In Table 6, the column labeled Pers provides brand choice persistence as measured by

the difference between the transition probability Pj|j and the unconditional probability Pj.

The estimates of ATPs (in the columns labeled ATP) are very precise and similar for T = 6

and T = 8. The column labelled AME presents ATEjj = Πjj − E(1{yit = j}). This

ATE is a measure of the contribution of state dependence to brand choice persistence.

This contribution is quite small for all the brands: between 1 and 2 percentage points.
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Table 6: Fixed Effects Estimates of ATPs and AMEs

T = 6 sub-histories T = 8 sub-histories
Pers ATP ATE UHet Pers ATP ATE UHet
( s.e.) (s.e.) ( s.e.) (s.e.) ( s.e.) (s.e.) ( s.e.) (s.e.)

Heinz 0.1230 0.6744 0.0079 0.1151 0.1230 0.6708 0.0043 0.1187
(0.0033) (0.0057) (0.0066) (0.0068) (0.0033) (0.0062) (0.0067) (0.0069)

Hunt’s 0.1667 0.1752 0.0189 0.1478 0.1667 0.1788 0.0225 0.1442
(0.0077) (0.0075) (0.0107) (0.0109) (0.0077) (0.0072) (0.0106) (0.0109)

Del Monte 0.2188 0.1324 0.0105 0.2183 0.2188 0.1345 0.0126 0.2062
(0.0090) (0.0067) (0.0112) (0.0115) (0.0090) (0.0062) (0.0110) (0.0113)

Store 0.2166 0.0736 0.0183 0.1983 0.2166 0.0805 0.0252 0.1914
(0.0062) (0.0071) (0.0094) (0.0099) (0.0062) (0.0072) (0.0094) (0.0099)

(1) Pers is brand choice persistence, Pj|j − Pj , as measured at the bottom line of Table 4.
(2) ATP is the brand’s Average Transition Probability, Πjj .
(3) ATE = ATEjj = Πjj − E(1{yit = j}).
(4) UHet is defined as Pj|j −Πjj . By construction, Pers = AME + UHet.
(5) Standard errors (s.e) are obtained using the same bootstrap method as for the estimates in Table 6.

In fact, for Heinz and Del Monte, we cannot reject the null hypothesis that this AME is

zero at a 5% significance level. The Store brand is the one with the largest contribution of

state dependence. The column labeled UHet presents the contribution of consumer taste

heterogeneity to brand choice persistence, as measured by the difference between brand

choice persistence and ATEjj. This heterogeneity accounts for most of the persistence of

brand choice. This finding contrasts with results found in studies using similar models and

data but with a Random Effects specification of consumer unobserved taste heterogeneity

(e.g., Keane, 1997).

6 Conclusion

Average marginal effects are informative parameters that represent causal effects. They de-

pend on the model’s structural parameters and the unobserved heterogeneity distribution.

In fixed effects nonlinear panel data models with short panels, the distribution of the unob-

served heterogeneity is not identified, and this problem has been associated with the common

belief that AMEs are not identified.
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In the context of dynamic logit models, we prove the identification of AMEs associated

with changes in lagged dependent variables and duration variables. Our proofs of the identi-

fication results are constructive and provide simple closed-form expressions for the AMEs in

terms of frequencies of choice histories that can be obtained from the data. We illustrate our

identification results using simulated and real-world consumer scanner data in a dynamic

demand model with state dependence.

In this paper, we have derived identification results only for logit models, but the proce-

dure that arises from necessary and sufficient conditions may work beyond the logistic. In

particular, it may work for any function that shares with the logistic the property of having

terms in which the fixed effect appears multiplicatively separated from other parameters of

the model so that it is feasible to form polynomials of functions of the fixed effect. We leave

this for future research.
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A Appendix

A.1 Proof of Lemma 1

For notational simplicity, define αi,x ≡ αi + x′γ. Using the definition of ∆(αi,x), we have:

∆(αi,x) =
eαi,x+β

1 + eαi,x+β
− eαi,x

1 + eαi,x
=

eαi,x
[
eβ − 1

]
[1 + eαi,x ] [1 + eαi,x+β]

=
[
eβ − 1

]
π01(αi,x) π10(αi,x).

(47)

that give us equation (10) in Lemma 1. We also have that:

π11(αi,x)

π10(αi,x)

π00(αi,x)

π01(αi,x)
=

eαi,x+β/[1 + eαi,x+β]

1/[1 + eαi,x+β]

1/[1 + eαi,x

eαi,x/[1 + eαi,x ]

=
eαi,x+β

eαi,x
= eβ.

(48)

that corresponds to equation (11) in Lemma 1. �

A.2 Proof of Proposition 1

W.l.o.g., we consider T = 3.18 For any choice sequence (y1, y2, y3) and any sequence of
covariates x{1,3} with x2 = x3 = x:, we have:

Py1y2y3 | x{1,3} =

∫
p∗(y1|αi,x{1,3}) πy1y2(αi,x) πy2y3(αi,x) fα|x{1,T}(αi|x{1,3}) dαi (49)

Applying equation (10) in Lemma 1 to equation (49) for P010 | x{1,3} and P101 | x{1,3} :
P010 | x{1,3} =

1

eβ − 1

∫
p∗(0|αi,x{1,3}) ∆(αi,x) fα|x{1,T}(αi|x{1,3}) dαi

P101 | x{1,3} =
1

eβ − 1

∫
p∗(1|αi,x{1,3}) ∆(αi,x) fα|x{1,T}(αi|x{1,3}) dαi

(50)

Adding up these two equations, multiplying the resulting equation times eβ − 1, and taking
into account that p∗(0|αi,x{1,3}) + p∗(1|αi,x{1,3}) = 1, we have that AME(x) = [eβ − 1]

[P010 | (x1,x,x) +P101 | (x1,x,x)] such that AME(x,x{1,3}) is identified. �

18Given identification with T = 3, it is obvious that there is also identification for any value of T greater
than 3, as we can take sub-histories with three periods.
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A.3 Proof of Proposition 2

In this proof, for notational simplicity but w.l.o.g., we omit x{1,T} and θ as arguments in all
the functions. Remember equation (17) in Proposition 2:∑

y{2,T}∈YT−1

wy1,y{2,T} G
(
y{2,T}|y1, αi

)
= ∆(αi). (51)

(A) Sufficient condition. Multiplying (51) times p∗(y1|α) fα(α), integrating over α, and
taking into account that, as defined in (15),

∫
G(y{2,T}|y1, α) p∗(y1|α) fα(α) dα is equal to

Py{1,T} , we obtain:

∑
y{2,T}∈YT−1

wy1,y{2,T} Py{1,T} =

∫
∆(α) p∗(y1|α) fα(α) dα. (52)

We can sum equation (52) over all the possible values of y1 in Y . Given that the sum of
p∗(y1|α) over all values of y1 in Y is equal to 1, the right-hand-side becomes

∫
∆(α) fα(α)

dα, which is the definition of AME. Furthermore, the sum of the equation (52) over all the
possible values of y1 implies the following equation:∑

y∈D×YT
wy Py{1,T} = AME, (53)

which is equation (18) in Proposition 2.

(B) Necessary condition. The proof has two parts. In part (i), we prove that function
h(PY|X ) should be linear in PY|X . Then, in part (ii), we show that the linearity of the function
h(PY|X ) implies that equation (51) should hold.

Necessary – Part (i). Equality h(PY|X ) = AME should hold for every distribution fα.
Consequently, it should hold for the following three specific cases: (Case 1) a degenerate
distribution where αi = c with probability one, where c is constant; (Case 2) a degenerate
distribution where αi = c′ with probability one, where c′ is a constant different to c; and
(Case 3) a distribution with c and c′ as the only two points of support, with q ≡ fα(c).
For each of these three cases, AME has the following form: AME = ∆(c) in Case 1;
AME = ∆(c′) in Case 2; and AME = q ∆(c) + (1− q) ∆(c′) in Case 3. Therefore, function
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h(PY|X ) should satisfy the following three restrictions:
Case 1 : h

(
P Y|X

)
= ∆(c)

Case 2 : h
(
P

(2)
Y|X

)
= ∆(c′)

Case 3 : h
(
P

(3)
Y|X

)
= q ∆(c) + (1− q) text∆(c′)

(54)

Where PY|X , P
(2)
Y|X , and P

(3)
Y|X represent the distributions of y{1,T} conditional on x{1,T} under

the DGPs of cases 1, 2, and 3, respectively. Note that, by construction:

P
(3)
Y|X = q PY|X + (1− q) P

(2)
Y|X (55)

This condition should hold for any arbitrary values of the constants c, c′, and q ∈ [0, 1].
Multiplying equation (54)(Case 1) times q, multiplying equation (54)(Case 2) times (1− q),
adding up these two results, and then subtracting equation (54)(Case 3), we get that function
h
(
P Y|X

)
should satisfy the following equation:

q h
(
P Y|X

)
+ (1− q) h

(
P

(2)
Y|X

)
= h

(
q P Y|X + (1− q) P (2)

Y|X

)
. (56)

The only possibility that equation (56) holds for any arbitrary value of c, c′, and q ∈ [0, 1] is
that function h

(
P Y|X

)
is linear in PY|X , such that h

(
P Y|X

)
=
∑

y{1,T} wy{1,T} Py{1,T} .

Necessary – Part (ii).We need to prove that, if equation
∑

y{1,T} wy{1,T} Py{1,T} = AME

holds, then equation (51) should hold for every value α. The proof is by contradiction.
Suppose that: (a) equation

∑
y{1,T} wy{1,T} Py{1,T} = AME holds for any distribution fα in

the DGP; and (b) there is a value α = c and a value y1) of the initial condition such that
equation (51) does not hold:

∑
y{2,T} wy1,y{2,T} G

(
y{2,T}|y1, c

)
6= ∆(c). We show below

that condition (b) implies that there is a density function fα (in fact, a continuum of density
functions) such that condition (a) does not hold.

W.l.o.g., consider distributions of α with only two points support, c and c′ with fα(c) = q.
Define the following function d(y1, α) that measures the extent in which equation (51) is not
satisfied:

d(y1, α) ≡
∑
y{2,T}

wy1,y{2,T} G
(
y{2,T}|y1, α

)
− ∆(α) (57)

Condition (b) implies that d(y1, c) 6= 0. For notational simplicity but w.l.o.g., consider that
the initial condition y1) has binary support {0, 1}. Applying the same operations as in the
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proof of the sufficient condition, we get:∑
y{1,T}

wy{1,T} Py{1,T} − AME =

q [p∗(0|c) d(0, c) + p∗(1|c) d(1, c)] + (1− q) [p∗(0|c′) d(0, c′) + p∗(1|c′) d(1, c′)]

(58)

By definition, each value d(y1, α) is for a particular value of α, and therefore, it does not
depend on the distribution fα. More specifically, d(y1, α) does not depend on the value of q.
Therefore, there always exists (a continuum of) values of q such that the right-hand side of
(58) is different from zero, and condition (a) does not hold. �

A.4 Proof of Proposition 3

A.4.1 Part A: Polynomial in eα

In this proof, for notational simplicity but w.l.o.g., we omit x and θ as arguments in all the
functions. Using the structure of the function G in the binary choice model, as presented
in equation (16), and the expression for ∆(α) in Lemma 1, we can rewrite equation (17) as
follows: ∑

y{2,T}

wy1,y{2,T}

T∏
t=2

eyt[α+βyt−1]

1 + eα+βyt−1
=
(
eβ − 1

) eα

1 + eα
1

1 + eα+β
(59)

Multiplying this equation times [1 + eα]T−1[1 + eα+β]T−1 to eliminate the denominators, and

using the Binomial Theorem to expand the terms [1 + eα]n as
∑n

k=0

(
n

k

)
[eα]k, and the terms[

1 + eα+β
]n as

∑n
k=0

(
n

k

)
[eβ]k [eα]k, we can represent this equation as a polynomial in eα.

Therefore, this system of equations holds for every value α ∈ R if and only if the coefficients
multiplying each monomial term in the polynomial are equal to zero. This result defines
a finite system of equations. More specifically, the coefficients multiplying each monomial
term are linear functions of the weights wy1,y{2,T} . The finite system of equations that makes
the monomial coefficients equal to zero is linear in the weights wy1,y{2,T} . �

A.4.2 Part B: Identification – Model with covariates

W.l.o.g. we consider T = 3 and t = 3. In this case, equation (17) takes the following form:

∑
y2,y3

wy1,y2,y3|x{1,3}
ey2[α+βy1+x′2γ]

1 + eα+βy1+x′2γ

ey3[α+βy2+x′3γ]

1 + eα+βy2+x′3γ
=

(
eβ − 1

)
eα+x′3γ(

1 + eα+x′3γ
) (

1 + eα+β+x′3γ
) (60)
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Multiplying this equation by the factor that eliminates the denominators, we get the following
equality of polynomials in eα:

w000 + w000 e
x′3γeβ eα + w001 e

x′3γ eα + w001 (ex
′
3γ)2eβ (eα)2

+ w010 e
x′2γ eα + w010 e

x′2γex
′
3γ (eα)2

+ w011 e
x′2γex

′
3γeβ (eα)2 + w011 e

x′2γ(ex
′
3γ)2eβ (eα)3

= ex
′
3γ(eβ − 1) eα + ex

′
2γex

′
3γ(eβ − 1) (eα)2

(61)

To ensure that a solution to this condition holds for every α, the coefficients of each monomial
term must be equal on both sides of the equation. Therefore, the solution implies the
following four equations:

w000 = 0

w000 e
x′3γeβ + w001 e

x′3γ + w010 e
x′2γ = ex

′
3γ(eβ − 1)

w001 (ex
′
3γ)2eβ + w010 e

x′2γex
′
3γ + w011 e

x′2γex
′
3γeβ = ex

′
2γex

′
3γ(eβ − 1)

w011 e
x′2γ(ex

′
3γ)2eβ = 0

(62)

The unique solution to this system is w000 = w011 = 0, w001 = e[x2−x3]′γ − 1, and w010 =

e[x3−x2]′γeβ − 1.
We can proceed in the same way for the case of y1 = 1 to obtain the following unique

solution for the weights: w100 = w111 = 0, w101 = e[x2−x3]′γeβ − 1, and w110 = e[x3−x2]′γ − 1.
Putting these pieces together, we have that:

AME(x3,x
{1,3}) =

w0,0,1,x{1,3} P0,0,1|x{1,3} + w0,1,0,x{1,3} P0,1,0|x{1,3}

+ w1,0,1,x{1,3} P1,0,1|x{1,3} + w1,1,0,x{1,3} P1,1,0|x{1,3}
(63)

with
w0,0,1,x{1,3} = −1 + e[x2−x3]′γ ; w0,1,0,x{1,3} = −1 + eβ+[x3−x2]′γ ;

w1,0,1,x{1,3} = −1 + eβ+[x2−x3]′γ ; w1,1,0,x{1,3} = −1 + e[x3−x2]′γ .
(64)

In the model without covariates, the vector of parameters γ equals zero. Consequently,
the weights w001 and w110 are also zero, and we get AME =

[
eβ − 1

]
[P0,1,0 + P1,0,1]. �

A.4.3 Over-identification when T is greater than three

The identification result using only 3 periods proves identification for any T ≥ 3 because,
with more than 3 periods, we can always take 3 periods. Nonetheless, it is possible to obtain
close form expression for higher values of T using the same procedure based on Proposition 2.
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This expression will use all T periods without having to combine several 3-periods estimates.
For T > 3, as said, there is overidentification, so more than one combination of the

probability of histories exists. One way to choose one of them is to focus on the probabilities
of the sufficient statistics used to identify β in the CMLE. Specifically, for this model and
other logit models, the log-probability of a choice history has the following structure:

lnP (yi|αi, β) = s(yi)
′ g(αi) + c(yi)

′ β (65)

where s(yi) and c(yi) are vectors of statistics (functions of yi), and g(αi) is a vector of
functions αi. s(y) is a sufficient statistic for αi because P (yi|αi, β, si) = P (yi|β, si).19 Let
ST be the set of possible values of s(y), let Ps be the probability of a value s of s(y), and let
Ps ≡ {Ps : s ∈ ST} be the probability distribution of this statistic. Given θ, the empirical
distribution Ps contains all the information in the data about the distribution of αi, and
therefore, about AMEs. Taking into account the structure of the probability of a choice
history in the equation (65), the model implies:

Ps =
∑

y: s(y)=s

[∫
es
′ g(αi)+c(y)′ θ fα(αi) dαi

]
(66)

If two sequences, say k and l, have the same s(yj), the ratio of the probabilities of these
two sequences is equal to ec(yk)′ β−c(yl)′ β, which is not a function of αi. This includes the
case in which P (yj |β, αi) is the same for both sequences. Therefore, the set of sequences
with the same or proportional P (yj |β, αi) is the set of sequences with the same value of
the sufficient statistic s(yj). This result leads to an infinite number of combinations of these
sequences, with the only restriction being that all the combinations have to sum up to the
same number (overall weight). We choose the combination in which all these sequences have
the same weight w, and, therefore, look for combinations of Ps instead of Py.

In the BC-AR1 model the sufficient statistics s(yi) is the vector
(
yi1, yiT ,

T∑
t=2

yit

)′
–see

Aguirregabiria, Gu, and Luo (2021)– and it can take 4T − 4 different values, 2T − 2 values
with yi1 = 0 and 2T − 2 values with yi1 = 1. The conditions from Proposition 2 are:

2T−2∑
j=1

wj P (sj | yj1 = 0, β, αi) = ∆(αi)

4T−4∑
j=2T−2+1

wj P (sj | yj1 = 1, β, αi) = ∆(αi)

 for every αi ∈ R, (67)

19See Aguirregabiria, Gu, and Luo (2021) for further details on this decomposition of the probability choice
and sufficient statistics for discrete choice logit models.
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Table 7: Weights for histories with y1 = 0

(y1, yT ,
T∑
t=2

yt) T = 4 T = 5 T = 6 T = 7

(0, 0, 0) 0 0 0 0

(0, 0, 1) eβ−1
2

eβ−1
3

eβ−1
4

eβ−1
5

(0, 1, 1) 0 0 0 0

(0, 0, 2) 0 eβ−1
1+2eβ

2(eβ−1)
3+3eβ

3(eβ−1)
6+4eβ

(0, 1, 2) eβ−1
1+eβ

eβ−1
2+eβ

eβ−1
3+eβ

eβ−1
4+eβ

(0, 0, 3) Not possible 0 eβ−1
2+2eβ

(eβ−1)(1+2eβ)
1+6eβ+3e2β

(0, 1, 3) 0 eβ−1
2+eβ

(eβ−1)(1+eβ)
1+4eβ+e2β

(eβ−1)(2+eβ)
3+6eβ+e2β

(0, 0, 4) Not possible Not possible 0 eβ−1
3+2eβ

(0, 1, 4) Not possible 0 eβ−1
3+eβ

(eβ−1)(2+eβ)
3+6eβ+e2β

(0, 0, 5) Not possible Not possible Not possible 0

(0, 1, 5) Not possible Not possible 0 eβ−1
4+eβ

(0, 1, 6) Not possible Not possible Not possible 0

where P (sj | yj1 = 0, β, αi) =
∑

y:s(y)=sj
P
(
y{2,T}|y1 = 0, β, αi

)
Proceeding similarly, we obtain the weights for AME in the binary choice AR(1) model

for different values of T . These are in Tables 7 and 8.

A.5 Proof of Proposition 4

We omit x as an argument throughout this proof for notational simplicity. However, one
should understand that the probability of the initial conditions p∗, the density function of
αi, the empirical probabilities of choice histories and the average transition probabilities are
all conditional on x

{1,3}
i = [x1,x,x].

By definition of Π00, and taking into account that p∗(0|αi) + p∗(1|αi) = 1, we have that:

Π00 =

∫
[p∗(0|αi) + p∗(1|αi)] π00(αi) fα(αi) dαi (68)

This expression includes the term
∫
p∗(0|αi) π00(αi) fα(αi) dαi, which is equal to the choice

history probability P00. However, it also includes the "counterfactual"
∫
p∗(1|αi) π00(αi)

fα(αi) dαi. Denote this counterfactual as δ100. Given that π10(αi) + π11(αi) = 1, we can
represent this counterfactual as:

δ100 =

∫
p∗(1|αi) [π10(αi) + π11(αi)] π00(αi) fα(αi) (69)
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Table 8: Weights for histories with y1 = 1

(y1, yT ,
T∑
t=2

yt) T = 4 T = 5 T = 6 T = 7

(1, 0, 0) 0 0 0 0

(1, 0, 1) eβ−1
1+eβ

eβ−1
2+eβ

eβ−1
3+eβ

eβ−1
4+eβ

(1, 1, 1) 0 0 0 0

(1, 0, 2) 0 eβ−1
2+eβ

(eβ−1)(1+eβ)
1+4eβ+e2β

(eβ−1)(2+eβ)
3+6eβ+e2β

(1, 1, 2) eβ−1
2

eβ−1
1+2eβ

eβ−1
2+2eβ

eβ−1
3+2eβ

(1, 0, 3) Not possible 0 eβ−1
3+eβ

(eβ−1)(2+eβ)
3+6eβ+e2β

(1, 1, 3) 0 eβ−1
3

2(eβ−1)
3+eβ

(eβ−1)(1+2eβ)
1+6eβ+3e2β

(1, 0, 4) Not possible Not possible 0 eβ−1
4+eβ

(1, 1, 4) Not possible 0 eβ−1
4

3(eβ−1)
6+4eβ

(1, 0, 5) Not possible Not possible Not possible 0

(1, 1, 5) Not possible Not possible 0 eβ−1
5

(1, 1, 6) Not possible Not possible Not possible 0

This equation shows that δ100 is the sum of two terms. The first term is
∫
p∗(1|αi) π10(αi)

π00(αi) fα(αi), which is equal to the choice history probability P100. The second term is∫
p∗(1|αi) π11(αi) π00(αi) fα(αi), which in principle is a counterfactual. However, by Lemma

1, we have that π11(αi)π00(αi) is equal to eβ π10(αi)π01(αi). Therefore, the counterfactual∫
p∗(1|αi) π11(αi) π00(αi) fα(αi) is equal to eβ

∫
p∗(1|αi) π10(αi) π01(αi) fα(αi), and in turn

this is equal to eβ P101.
Putting all the pieces together, we have that:

Π00 = P00 + P100 + eβ P101 (70)

Using the same procedure, we can show that Π11 = P11 + P011 + eβ P010. �

A.6 Proof of Lemma 2

For clarity in notation, we refrain from explicitly including x as an argument throughout
this proof. It is important to note, however, that all probabilities and expectations in this
proof are conditioned on x

{1,T}
i = [x1,x, ...,x], where x1 is free, and x2 = ... = xT = x.

53



Using the Markov structure of the model and the chain rule, we have that:

E(yi,t+n | αi, yit) = P (yi,t+n−1 = 0 | αi, yit) π01(αi) + P (yi,t+n−1 = 1 | αi, yit) π11(αi)

= π01(αi) + E (yi,t+n−1 | αi, yit) [π11(αi)− π01(αi)]
(71)

Given the definition of ∆(n)(αi) as E(yi,t+n | αi, yit = 1)− E(yi,t+n|αi, yit = 0), and applying
equation (71), we have that:

∆(n)(αi) = [E (yi,t+n−1 | αi, yit = 1)− E (yi,t+n−1 | αi, yit = 0)] [π11(αi)− π01(αi)]

= ∆(n−1)(αi) [π11(αi)− π01(αi)]
(72)

Applying this expression recursively, we obtain that ∆(n)(αi) = [π11(αi) − π01(αi)]
n =

[∆(αi)]
n. Finally, as established in Lemma 1, is that ∆(αi) =

[
eβ − 1

]
π10(αi) π01(αi).

Thus, we have that ∆(n)(αi) =
[
eβ − 1

]n
[π10(αi)]

n [π01(αi)]
n. �

A.7 Proof of Proposition 5

Similarly as in the proof of Lemma 2 above, we omit x as an argument, but one should
understand that all the probabilities in this proof are conditioned on x

{1,T}
i = [x,x, ...,x].

W.l.o.g., we consider that T = 2n+ 1. Given the definition of histories (0, 1̃0
n
) and (1̃0

n
, 1),

it is straightforward to see that:
P0,1̃0

n =

∫
p∗(0|αi) [π10(αi)]

n [π01(αi)]
n fα(αi) dαi

P1̃0
n
,1 =

∫
p∗(1|αi) [π10(αi)]

n [π01(αi)]
n fα(αi) dαi

(73)

Applying equation (29) from Lemma 2, we have that:
P0,1̃0

n =
1

[eβ − 1]n

∫
p∗(0|αi) ∆(n)(αi) fα(αi) dαi

P1̃0
n
,1 =

1

[eβ − 1]n

∫
p∗(1|αi) ∆(n)(αi) fα(αi) dαi

(74)

Adding up these two equations, multiplying the resulting equation times
[
eβ − 1

]n, and
taking into account that p∗(0|αi) + p∗(1|αi) = 1, we have that AME(n) = [eβ − 1]n [P0,1̃0

n +
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P1̃0
n
,1] such that AME(n) is identified. �

A.8 Proof of Lemma 3

Given the expression for the choice probabilities in the logit model, it is simple to verify
that:

πk`(αi,x)

πkj(αi,x)
= exp{αi(`)− αi(j) + x′ (γ` − γj)− βj1{k = j}} (75)

and
πjj(αi,x)

πj`(αi,x)
= exp{αi(j)− αi(`) + x′ (γj − γ`) + βj − βj1{` = j}} (76)

The product of these two expressions is equation (39). �

A.9 Proof of Proposition 6 – Model with duration dependence

Here, we prove the identification of AMEd(1). Using a similar argument, we can establish the
identification of AMEd(d) for any d ≥ 1. First, we write the expression of the probabilities
of choice histories conditional on αi, Py1,y2,y3,y4 | αi , implied by the model. Second, for each
of these probabilities, we multiply the equation times the weights wy1,y2,y3,y4 in the enunciate
of Proposition 6. For the probabilities with non-zero weights, we have:

eβ+δ − 1

2

[
P0,0,1,0 | αi + P0,1,0,0 | αi

]
= p∗(0|αi)

(
eβ+δ − 1

)
eαi

(1 + eαi+β+δ) (1 + eαi)2

eβ+δ − 1

eβ+δ
P0,0,1,1 | αi = p∗(0|αi)

(
eβ+δ − 1

)
eαieαi

(1 + eαi+β+δ) (1 + eαi)2

(
eβ+δ − 1

) [
P1,0,1,0 | αi + P1,0,1,1 | αi

]
= p∗(1|αi)

(
eβ+δ − 1

)
eαi
(
eαi+β+δ + 1

)
(1 + eαi+β+δ)2 (1 + eαi)

(77)

Third, we sum up these three equations. Simplifying factors and taking into account that
p∗(0|αi)+ p∗(1|αi) = 1, we get:

eβ+δ − 1

2

[
P0,0,1,0 | αi + P0,1,0,0 | αi

]
+
eβ+δ − 1

eβ+δ
P0,0,1,1 | αi +

(
eβ+δ − 1

) [
P1,0,1,0 | αi + P1,0,1,1 | αi

]
=

(
eβ+δ − 1

)
eαi

(1 + eαi+β+δ) (1 + eαi)
=

eαi+β+δ

(1 + eαi+β+δ)
− eαi

(1 + eαi)
= ∆d(αi, 1)

(78)
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Finally, we integrate the two sides of this equation over the distribution of αi to obtain

eβ+δ − 1

2
[P0,0,1,0 + P0,1,0,0]+

eβ+δ − 1

eβ+δ
P0,0,1,1+

(
eβ+δ − 1

)
[P1,0,1,0 + P1,0,1,1] = AMEd(1) (79)

such that AMEd(1) is identified.
We can proceed similarly to prove the identification of AMEd(d) for any value d ≥ 1.

For instance, we can prove that:

AMEd(2) =
eβ+2δ − 1

2
[P0,0,1,0 + P0,1,0,0] +

eβ+2δ − 1

eβ+δ
P0,0,1,1

+

(
eβ+2δ

(
1− eβ+2δ

)
eβ+δ

+ eβ+2δ − 1

)
P0,1,1,0

+

(
eβ+δ − eβ+δ

eβ+2δ

)
[P1,0,1,0 + P1,0,1,1] +

(
eβ+2δ − 1

eβ+δ
− 1 +

1

eβ+2δ

)
P1,1,0,0 �

(80)

A.10 Proof of Proposition 7

We omit x as an argument throughout this proof for notational simplicity. However, one
should understand that the probability of the initial conditions p∗, the density function of
αi, the empirical probabilities of choice histories and the average transition probabilities are
all conditional on x

{1,3}
i = [x,x,x]. We can write Πjj as:

Πjj =

∫
[p∗(0|αi) + p∗(1|αi)...+ p∗(J |αi)] πjj(αi) fα(αi) dαi (81)

This expression includes the term
∫
p∗(j|αi) πjj(αi) fα(αi) dαi that is equal to the choice

history probability Pj,j. However, it also includes the "counterfactuals" δk,j,j ≡
∫
p∗(k|αi)

πjj(αi) fα(αi) dαi for k 6= j. We can represent each of these counterfactuals as:

δk,j,j =

∫
p∗(k|αi) [πk0(αi) + πk1(αi) + ...+ πkJ(αi)] πjj(αi) fα(αi) (82)

That is, we have that δk,j,j =
∑J

`=0 δ
(2)
k,`,j,j, with δ

(2)
k,`,j,j ≡

∫
p∗(k|αi) πk`(αi) πjj(αi) fα(αi).

For ` = j, we have that δ(2)k,j,j,j corresponds to the choice history probability Pk,j,j. For the
rest of the terms δ(2)k,`,j,j, we apply Lemma 3. According to Lemma 3, we have that πk`(αi)
πjj(αi) = exp{βk` − βkj − βj`} πkj(αi) πj`(αi). Finally, note that

∫
p∗(k|αi) πkj(αi) πj`(αi)

fα(αi) is the choice history probability Pk,j,`. Putting all the pieces together, we have the
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expression in equation (40). �

A.11 Proof of Proposition 8

We omit x as an argument throughout this proof for notational simplicity. Equation (17),
from Proposition 2, provides the necessary and sufficient condition for identifying an AME.
Applying this condition to the model defined by equation (35) and Assumption 1-MNL, with
J + 1 = 3, T = 3, and y1 = 0, we get:

w0,0,0 P0,0,0 | (y1=0,αi) + w0,0,1 P0,0,1 | (y1=0,αi) + w0,0,2 P0,0,2 | (y1=0,αi)

+ w0,1,0 P0,1,0 | (y1=0,αi) + w0,1,1 P0,1,1 | (y1=0,αi) + w0,1,2 P0,1,2 | (y1=0,αi)

+ w0,2,0 P0,2,0 | (y1=0,αi) + w0,2,1 P0,2,1 | (y1=0,αi) + w0,2,2 P0,2,2 | (y1=0,αi) = π10(αi)

(83)

Let’s denote dj ≡ 1 + eβj 1{j=1}+αi(1) + eβj 1{j=2}+αi(2), for j = 0, 1, 2. Replacing the
probabilities by their expression based on the logistic CDF:

w0,0,0
1

d20
+ w0,0,1

eαi(1)

d20
+ w0,0,2

eαi(2)

d20

+ w0,1,0
eαi(1)

d0d1
+ w0,1,1

eαi(1) eβ1+αi(1)

d0d1
+ w0,1,2

eαi(1) eαi(2)

d0d1

+ w0,2,0
eαi(2)

d0d2
+ w0,2,1

eαi(1) eαi(2)

d0d2
+ w0,2,2

eαi(2) eβ2+αi(2)

d0d2
=

1

d1

(84)

After some algebra to undo the fractions on both sides:

w0,0,0 d1d2 + w0,0,1 e
αi(1)d1d2 + w0,0,2 e

αi(2)d1d2

+ w0,1,0 e
αi(1)d0d2 + w0,1,1 e

αi(1)eβ1+αi(1)d0d2 + w0,1,2 e
αi(1)eαi(2)d0d2

+ w0,2,0 e
αi(2)d0d1 + w0,2,1 e

αi(1)eαi(2)d0d1 + w0,2,2 e
β2+αi(2)eαi(2)d0d1 = d20d2

(85)

Expanding this equation by doing the products of dj and of the exponential, we obtain
on both sides of the equality a polynomial in (eαi(1))h (eαi(2))`, where the minimum value
of h and ` is 0, and the maximum value is 4. Following Lemma 3, equating the coefficient
of each monomial in both sides of the equality, we get a system of linear equation whose
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unknowns are the weights w0,0,0, ..., w0,2,2. This condition on the monomials of (eαi(1))2 and
(eαi(1))3 imply, respectively:

w0,0,1 + w0,1,0 + w0,0,1 e
β1 + w0,1,0 = 1

w0,0,1 e
β1 + w0,1,0 = 0

(86)

which leads to
w0,0,1 + w0,1,0 = 1. (87)

At the same time, the condition on the monomial of (eαi(1))1 implies:

w0,0,1 + w0,1,0 = 2, (88)

which is incompatible with the condition w0,0,1 +w0,1,0 = 1. Therefore, no weights can solve
the system of equations in 83. By Proposition 2, this implies that Π10 is not point identified.
�

A.12 Proof of Proposition 9 – Ordered Logit

The weights in the statement of Proposition 9 were obtained using the general procedure
established in Proposition 2. Here, we present the proof for Π20, but it proceeds the same

for other Πkj. By definition, Π20 =

∫
π20(αi) fα(αi) dαi, and according to equation (42),

π20(αi) =
1

1 + eβ2−λ0+αi
. We start with the probabilities of choice histories conditional on

αi, that is, P(y1,y2,y3) | αi . We write the expression for these model probabilities as functions
of parameters β, λ, and αi. For each of these probabilities, we multiply the equation times
the weights wy1,y2,y3 that appear in the statement of Proposition 9. For the probabilities
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with non-zero weights for Π20, we have:

P0,0,0 | αi + P0,0,1 | αi = p∗(0|αi)
1

(1 + eβ0−λ1+αi) (1 + eβ0−λ0+αi)

eλ1−λ0 P0,0,2 | αi = p∗(0|αi)
eβ0−λ0+αi

(1 + eβ0−λ1+αi) (1 + eβ0−λ0+αi)(
1− eβ2−λ0

eβ0−λ1

)
P0,2,0 | αi = p∗(0|αi)

eβ0−λ1+αi − eβ2−λ0+αi
(1 + eβ0−λ1+αi) (1 + eβ2−λ0+αi)

l∑
k=0

J−1∑
`=0

P1,k,` | αi = p∗(1|αi)
(

1

1 + eβ2−λ0+αi
− 1− eβ2−λ0+αi

(1 + eβ1−λ1+αi) (1 + eβ2−λ0+αi)

)
(

1− eβ2−λ0

eβ1−λ1

)
P1,2,0 | αi = p∗(1|αi)

1− eβ2−λ0+αi
(1 + eβ1−λ1+αi) (1 + eβ2−λ0+αi)

J−1∑
k=0

P2,0,k | αi = p∗(2|αi)
1

1 + eβ2−λ0+αi

(89)
Summing up these equations, simplifying factors, and taking into account that p∗(0|αi)+
p∗(1|αi) + p∗(2|αi) = 1, we get:

P0,0,0 | αi + P0,0,1 | αi + eλ1−λ0P0,0,2 | αi +

(
1− eβ2−λ0

eβ0−λ1

)
P0,2,0 | αi

+
l∑

k=0

J∑
`=0

P1,k,` | αi +

(
1− eβ2−λ0

eβ1−λ1

)
P1,2,0 | αi +

J∑
k=0

P2,0,k | αi = π20(αi)
(90)

Finally, we integrate the two sides of this equation over the distribution of αi to obtain the
expression for Π20 in equation (43). �
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