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Abstract

This paper presents estimation methods for dynamic nonlinear models with correlated ran-
dom effects (CRE) when having unbalanced panels. Unbalancedness is often encountered
in applied work and ignoring it in dynamic nonlinear models produces inconsistent esti-
mates even if the unbalancedness process is completely at random. We show that selecting a
balanced panel from the sample can produce efficiency losses or even inconsistent estimates
of the average marginal effects. We allow the process that determines the unbalancedness
structure of the data to be correlated with the permanent unobserved heterogeneity. We
discuss how to address the estimation by maximizing the likelihood function for the whole
sample and also propose a Minimum Distance approach, which is computationally simpler
and asymptotically equivalent to the Maximum Likelihood estimation. Our Monte Carlo
experiments and empirical illustration show that the issue is relevant. Our proposed solu-
tions perform better both in terms of bias and RMSE than the approaches that ignore the
unbalancedness or that balance the sample.

I. Introduction

The purpose of this paper is to present and evaluate estimation methods for dynamic non-
linear models with correlated random effects (CRE) when the panel data are unbalanced.1

Unbalanced panels are often encountered in applied work. For example, in large households
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1
The CRE approach has been found useful to estimate nonlinear dynamic models in many cases, because it is

not subject to the incidental parameters problem that the fixed-effects (FE) approach suffers and it does not require
a large number of periods. Examples of applications using CRE are Hyslop (1999), Contoyannis, Jones and Rice
(2004), Stewart (2007) and Akee et al. (2010).
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panel data sets like the PSID for the U.S. or the GSOEP for Germany, some individuals
drop out (potentially non-randomly) of the sample. At a firm level, Compustat and Datas-
tream International also have an unbalanced structure. In other cases, like in the so-called
‘rotating panels’, the unbalancedness is generated by the sample design (for instance, in the
Monthly Retail Trade Survey for the U.S., or in the Household Budget Continuous Survey
for Spain).

It is well-known how to estimate CRE dynamic nonlinear models with balanced panels.
However, the existing estimation methods cannot be in general directly implemented with
unbalanced panels. Ignoring the unbalancedness produces inconsistent estimates, as we will
discuss. Obtaining a balanced subsample from the unbalanced panel, so that the existing
CRE methods for balanced panels could then be used, is also problematic. If we balance
the sample by taking a subset of individuals that are observed over the same periods, we are
making an endogenous selection of the sample unless the unbalancedness is independent
of the individual effects. Another possibility to balance the sample is to take the subset
of periods at which all individuals are observed (see Wooldridge, 2005). But this is in
some cases infeasible because of the lack of a sufficient number of common periods across
individuals and, when feasible, it implies important efficiency losses.

In a dynamic setting under the CRE approach, the so-called ‘initial conditions problem’
arises. Heckman (1981) and Wooldridge (2005) propose solutions to deal with it, but
these are developed only for balanced panels. Furthermore, the initial conditions problem
is exacerbated when the panel is unbalanced because it affects each of the first period
of observation in the data set. This implies that, as we will show, even assuming that
unbalancedness is completely at random is not enough to allow us to ignore it in the
estimation.2

We propose methods to deal with the unbalancedness structure of the data in the esti-
mation of models with lags of the endogenous variable and other explanatory variables that
are strictly exogenous. We consider unbalancedness processes that are independent of the
time-varying shocks, but allow them to be correlated with the time-invariant unobserved
heterogeneity. Therefore, we are not restricted to the case of unbalancedness completely
at random. We first discuss how to address the unbalancedness problem by maximizing
the likelihood function for the whole sample. This can be computationally cumbersome
because specific parameters to each subpanel need to be estimated jointly with the com-
mon parameters of the model. We then propose to estimate the model for each subpanel
separately and then to obtain estimates of the common parameters across subpanels by
minimum distance (MD). This method allows us to use the same estimation routines that
we would use if we had a balanced panel, while keeping the good asymptotic properties of
the maximum likelihood (ML) estimator for the whole sample.

A simulation study shows that these methods perform well compared to other alterna-
tives both in terms of bias and RMSE. As an empirical illustration, we estimate an export
participation equation with dynamic effects using unbalanced data for Spanish manufac-
turing firms. Our results show that the unbalancedness issue is relevant in practice, and
there is evidence of unbalancedness correlated with the unobserved heterogeneity.

2
This problem also affects RE models assuming that the time invariant unobserved heterogeneity is independent

of the time-varying covariates. The CRE setting contains RE models as a particular case.
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To the best of our knowledge only Wooldridge (2019) addresses the issue of estimating
CRE models with unbalanced panels, but considering only static models. He proposes
several strategies for allowing the time invariant unobserved heterogeneity to be correlated
with the observed covariates and the selection mechanism for unbalanced panels. However,
the assumption of lack of dynamic effects is very restrictive, and the solutions inWooldridge
(2019) cannot be directly extended to dynamic models because the unbalancedness also
affects how to deal with the initial conditions problem.

Although unbalanced panels could be seen as a particular case of missing data, the
problem we address cannot be solved using the existing literature on panel models with
missing data. One strand of this literature relies on missingness at random and on using
moment conditions that are valid both with complete and with missing data (e.g. Pacini and
Windmeijer, 2015). In our case, the sets of moment conditions (the first-order conditions
of the likelihood) under complete data are not valid. The reason is that the likelihood for
complete balanced panels does not account for the different initial conditions, or for the
potential relation between the unbalancedness and permanent unobserved heterogeneity,
as we will show. The other strand of the literature relies on having some variables upon
which you can condition to make the missing process conditionally independent of the
main model (e.g. Wooldridge, 2007), or on having additional information and assumptions
about the missing process (e.g. Bhattacharya, 2008). In contrast with that, we do not assume
anything about the relation of the missing process and observable variables, nor have any
additional information related to the missing process. Also, the moment conditions for
panel data models considered in this literature are based on the fixed effects approach so
they do not deal with the initial conditions problem, which is crucial in the unbalanced
case.

The rest of the paper is organized as follows. Section 2 presents the general model
and the likelihood functions that account for the unbalancedness. Section 3 formalizes the
existing approaches, that is, those ignoring the unbalancedness and making the sample
balanced, and discuss the restrictive conditions under which they could work. Section 4
presents the ML and MD estimators for the model that account for the unbalancedness.
In Section 5, we study the finite sample properties of the different estimators by means of
Monte Carlo simulations. In Section 6, as an empirical illustration, we estimate an export
market participation equation using firms’ level data. Finally, Section 7 concludes.

II. General framework

We present a general approach that can be applied to dynamic nonlinear panel data models.
Let us denote

Yi = (yi1,…, yiT )′, Xi = (X ′
i1,…, X ′

iT )′, Si = (si1,…, siT )′,

where i = 1,…, N represents cross-sectional units, yit is the (scalar) outcome, and Xit is a
row vector of dimension K of covariates. The possibility of having an unbalanced panel is
captured through a set of selection indicators, sit:

sit =
{

1 if yit and Xit are observed
0 otherwise.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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Notice that the balanced situation can be seen as a particular case of this setting, when
sit =1 for all i and t. We only consider cases in which either both yit and Xit are observed
or both are not observed. We define ti as the first period in which unit i is observed, i.e.

ti ={t : sit =1 and sij =0 ∀ j < t},
and Ti as the number of periods we observe for unit i, Ti =

∑T
t=1 sit . Another characteristic

of the panels considered is that all the observations for unit i are consecutive.3

Let Mi be the (Ti × T ) matrix that select the set of Xi that we observe, that is,
MiXi = (X ′

iti
,…, X ′

iTi
)′. The element (j, k) of Mi, mi,(jk), is

mi,(jk) =
{

1 if sik =1 and j = k − ti +1
0 otherwise.

If the panel is balanced, Mi is the identity matrix. Note that Si = �
′
Ti

Mi where �Ti is a vector of
ones with dimension Ti. We denote by J the number of different Si sequences that we have
in the total panel. We refer to the subset of units with the same sequence S (j) as ‘sub-panel’
j, j =1,…, J . Finally, we consider panels where N is large and T and J are small relative
to N.

The kind of models we consider in this paper are as follows. For all i and t, yit is
determined as

yit =g(yit−1, Xit ,�i, "it),

where g(.) is a nonlinear function, non-additively separable in its latent terms,whose form is
known up to a vector of parameters that characterized it. For simplicity, we focus on a model
with one lag of yit and contemporaneous values of X . However, our analysis could be ex-
tended to higher order chains, or to cases that include in Xit previous values of these strictly
exogenous covariates. �i denotes the vector of permanent unobserved heterogeneous char-
acteristics, and "it are period-specific disturbances that are assumed to be independent and
identically distributed across both i=1,…, N and t =1,…, T with known distribution. Also
"it are independent of �i and Xi. This means that we consider models where X are strictly
exogenous covariates with respect to the period-specific unobservables, ", but they can be
correlated with the time-constant unobservables, �i. The function g(.) together with the dis-
tribution of " give the conditional distribution F(yit | yit−1, Xi,�i) which is our primary object
of interest and whose parameters will be estimated. The previous assumptions imply that

F(yit | yt−1
i , Xi,�i)=F(yit | yit−1, Xit ,�i),

where yt−1
i = (yi1,…, yit−1).

So far this is a standard model in the (balanced) panel data literature. As in Wooldridge
(2019), with unbalanced panels, the key assumption that we maintain throughout this paper
is

3
Some other panels present unbalancedness structures that include individuals with non-consecutive observations.

In these cases, we could integrate out the holes using the conditional model of yit . But if the model for yit has X
covariates that are not observed when sit =0, as we consider in this paper, we would need to make further assumptions
about Xit that would never be made with balanced panels. This is out of the scope of this paper, which is to estimate
the model we would specify if having a balanced sample. Nonetheless, if those further assumptions about X are
made, the approach in this paper could still be adapted.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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"it ⊥Si | (�i, Xi) for all i and t. (1)

This implies that " is conditionally independent of the sample selection process Si that pro-
duces the unbalancedness. However, note that this assumption does not restrict the relation
between Si and (�i, Xi). This means that although we do not consider an endogenous selec-
tion process with respect to the period-specific disturbances, we allow Si to be correlated
with the unobserved permanent characteristics �i.

Let f (yit | yit−1, Xit ,�i, Si;�) be the correctly specified density for the conditional distribu-
tion F(yit | yt−1

i , Xi,�i) under assumption (1), and h(�i|MiXi, Si;��Si ) the correctly specified
density of the distribution �i |MiXi, Si.4 Then, the density of (si1yi1,…, siT yiT ) for a given
individual is

f (si1yi1,…, siT yiT |MiXi, Si)=
T∏

t=1

f (yit | sit−1yit−1, MiXi, Si)sit sit−1 f (yit |MiXi, Si)sit (1−sit−1)

=
[

ti+Ti−1∏
t=ti+1

f (yit | yit−1, MiXi, Si)

]
f (yiti |MiXi, Si).

(2)

Previous equation can be written as∫
�i

[
ti+Ti−1∏
t=ti+1

f (yit | yit−1, MiXi, Si,�i;�)

]
f (yiti |MiXi, Si,�i;�Si )h(�i |MiXi, Si;��Si )d�i, (3)

or as[∫
�i

ti+Ti−1∏
t=ti+1

f
(
yit | yit−1, MiXi, Si,�i;�

)
h(�i | yiti , MiXi, Si;��Si )d�i

]
f
(
yiti |MiXi, Si

)
, (4)

depending on whether we integrate out the unobserved effect by specifying the density for
the first observation in each subpanel conditional on the unobserved effect and the density
of the unobserved effect, or we specify the density of the unobserved effect conditional on
the first observation.

Equations (3) and (4) reveal why it is not trivial to extend the static case considered by
Wooldridge (2019) to the dynamic case. With static models, one does not have to deal with
the initial conditions problem and the only problem is the potential correlation between
the unbalancedness process and the individual effect. In the dynamic case, one has to
add the initial conditions problem. This means that f (yiti |MiXi, Si,�i;�Si ) and h(�i |MiXi,
Si;��Si ) in equation (3) or h(�i | yiti , MiXi, Si;��Si ) in equation (4) are different for each
subpanel. Moreover, writing an equation for f (yi1 |Xi,�i) and h(�i |Xi), or for h(�i | yi1, Xi),
as Heckman (1981) and Wooldridge (2005) did respectively for the balanced case, is not
enough to solve the initial conditions problem for three reasons: (i) the conditioning set
of covariates is different for each Si; (ii) the initial observation is different for each Si,
thus, even in a model without X covariates, without further assumptions f (yiti |�i =�, Si) �=
f (yrtr |�r =�, Sr) for ti �= tr; and (iii) even if the starting period ti is the same, there may be
a correlation between Si and the individual characteristics making the distributions of �i

different for each Si.
4
In our notation for defining functions, the set of parameters of that function appear after a semicolon.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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III. Existing approaches

Ignoring the unbalancedness

We study under which conditions it is possible to ignore the unbalancedness and to treat
the data as if they were balanced. That is, we study when it is possible to use as density of
(si1yi1,…, siT yiT |MiXi) the following expression that ignores the unbalancedness,∫

�i

[
ti+Ti−1∏
t=ti+1

f (yit | yit−1, MiXi,�i;�)

]
f (yiti |MiXi,�i;�)h(�i|MiXi;��)d�i, (5)

instead of the density given by equation (3) and to have the equivalent Maximum Likelihood
Estimators (MLE). We need the following conditions:
1. Si must be independent of �i given X , so that h(�i |MiXi, Si) = h(�i |MiXi) for any set

of periods included in X .
2. h(�i |MiXi) must be a function common to all Si, so that its value changes only as the

values of X at which it is evaluated change (but not as a function of the specific periods
at which Xi is observed).

3. The process is in the steady state, or the initial observations yti come from the same
exogenous distribution or rule for all units and ti.

4. Si is independent from the shocks to the initial conditions.
Unless these four conditions are all satisfied, the estimates of � obtained by ignoring

the unbalancedness are inconsistent. Although very restrictive in general, there are some
cases in which condition 1 is satisfied, like rotating panels. Notice that even under this
condition 1 f (yiti |Xi,�i, Si) is different for each Si simply because the process has been
running a different number of periods until that first observation, unless we assume that
the process is in the steady state. Likewise, h(�i | yiti , Xi, Si) will be, in general, different for
each ti. In addition to that, condition 1 is not enough to guarantee that h(�i |MiXi, Si) is the
same for all Si because, even if Si is independent of �i given X , �i can still depend on X
and there will be a different conditioning set of observations in MiXi for each Si.

Condition 2 is very restrictive because, for example, in general Var(� |MiXi) will be
different if the number periods in which xit are observed is different.5 A case in which this
condition is trivially satisfied is when �i is independent of Xi.

Conditions 3 and 4 are needed to ensure that all units have the same distribution for the
initial condition regardless of the period ti at which they enter the panel.

Notice that most of these issues arise only in dynamic models, as opposed to what
happens in static models as the ones covered in Wooldridge (2019).

Using a subset of periods at which all individuals are observed

As Wooldridge (2005) for dynamic models and Wooldridge (2019) for static models point
out, under assumption (1), one could perform the estimation using a subset of data con-
stituting a balanced panel. In particular, he proposes using a subset of periods at which

5
The condition is not violated, however, if Var(� |MiXi) changes with the number of periods of xit observed in a

deterministic way, e.g. Var(� |MiXi)= �2
�

�
′
Ti

Mi�Ti

.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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all individuals are observed. Then, one could apply to that balanced sample the standard
solutions to the initial conditions problem. Nonetheless, this approach has two limitations:
(i) it discards useful information leading to an efficiency loss, and (ii) the balanced sample
may not contain a sufficient number of common periods across individuals, making the
estimation infeasible.

Suppose that the correct conditional density of si1yi1,…, siT yiT |MiXi, Si is given by
(4), excluding the term for the initial observations f (yiti |MiXi, Si). Instead, the following
likelihood function is maximized

∫
�i

[
Tm∏

t=tm

f
(
yit | yit−1, X Tm

itm
,�i

)]
h(�i | yi maxj∈[1, N ] tj , X Tm

itm
)d�i, (6)

where tm ≡maxj∈[1,N ] tj +1, and Tm ≡minj∈[1,N ](tj +Tj −1). UnderAssumption 1 f
(
yit|yit−1,

X Tm
itm , Si,�i

)= f
(
yit | yit−1, X Tm

itm ,�i

)
. Thus, to have a consistent ML Estimator of the param-

eters of the conditional distribution of yit | yit−1, MiXi,�i based on (6), we need

h(�i | yi maxj∈[1, N ] tj , X Tm
itm

)

=
J∑

j=1

h(�i | yi maxj∈[1, N ] tj , X Tm
itm

, Si =S (j)) Pr
(
Si =S (j) | yi maxj∈[1, N ] tj , X Tm

itm

)
,

(7)

where S (j) is the j-th element of the set of J different Si sequences that we have in the
panel, and X Tm

itm = (
X ′

itm
,…, X ′

i,Tm

)′
. So, as long as the h(�i | yi maxj∈[1, N ] tj , X Tm

itm ) we specify sat-
isfies this condition and we have enough periods in the balanced sample, the MLE based
on (6) will be consistent, though less efficient. However, depending on the nature of
h(�i | yi maxj∈[1, N ] tj , MiXi, Si) (i.e. depending on the nature of the relation between �i and Si

and the evolution of the distribution of yit across periods and subpanels) approximating
h(�i | yi maxj∈[1, N ] tj , X min(ti+Ti−1)

i max ti+1 ) may require a complex distribution even if h(�i | yi maxj∈[1, N ] tj ,
MiXi, Si) is the standard normal distribution.

Using a subset of individuals observed the same periods

Another possibility to deal with the unbalancedness, found in the applied literature using
both static and dynamic models, is to take one single subpanel from the total sample. In
many cases, this would be the subsample of individuals present in all the waves of the
original panel (as in Contoyannis et al., 2004). More generally, one can take the subset of
individuals observed only in some specific consecutive waves.

Although this way of obtaining a balanced sample produces an efficiency loss because
it discards a potentially high proportion of the sample, it avoids the infeasibility of the
previous balancing method and may consistently estimate the common parameters of the
model. However, the average marginal effects we estimate for this subsample are not a
consistent estimation of the average marginal effects for the entire sample. The reason is
that the conditional distribution of the heterogeneous individual effects will only be valid
for this particular subgroup of individuals, unless the unbalancedness is independent of �i

and of X .The distribution of �i for this balanced subsample is different from the distribution

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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of �i for the entire sample. And the marginal effects, which are the ultimate parameters of
interest, are a function of the distribution of �i.

IV. Estimation

Maximum likelihood estimation

The models that account for unbalancedness explained in Section 2 can be estimated by
Maximum Likelihood (ML). The log-likelihood, if the model specifies the terms in (3), is
given by

L=
N∑

i=1

log
∫

�i

[
ti+Ti−1∏
t=ti+1

f
(
yit|yit−1, MiXi, Si,�i;�

)
f
(
yiti |MiXi, Si,�i;�Si

)
h(�i|MiXi, Si;��Si )

]
d�i.

(8)
If the model instead specifies the terms in (4), the log-likelihood is given by

L=
N∑

i=1

log
∫

�i

[
ti+Ti−1∏
t=ti+1

f
(
yit | yit−1, MiXi, Si,�i;�

)
h(�i | yiti , MiXi, Si;��Si )

]
d�i. (9)

These log-likelihood functions will be maximized with respect to the vector of parameters
	 = (

�′, 
′)′
that can be partitioned into the set of common parameters � and the set of

subpanel specific parameters 
 = (

′

1,…, 
′
J

)′
. The specific parameters to subpanel j are


j = (�′
S(j) ,�′

�S(j) )′ in (8), or 
j =��S(j) in (9).
The properties of the MLE are well known, as well as the numerical procedures to obtain

it. The problem is that the optimization procedure is cumbersome. Our specific likelihood
must be optimized jointly with respect to a high number of parameters, because, due to the
unbalancedness, there is a different set of some parameters for each subpanel.This will typ-
ically preclude using standard estimation software and will increase the computation time.

Minimum distance estimation

We propose an estimation method that keeps the good asymptotic properties of the MLE
but reduces its computational burden. Moreover, it allows us to use the same routine or
estimation programme as when having a balanced panel.

The proposal has two steps. The first step is to estimate the model for each subpanel
separately. This implies that we can use the same standard software as in balanced panels
and accommodate very easily different distributions of �i for each subpanel Si.

The second step is to obtain estimates of the parameters 	 = (�′, 
′)′ by Minimum
Distance (MD). Let �̂= (�̂

′
1, �̂

′
2,…, �̂

′
J )′ be the vector of estimated coefficients of the model

after the first step. Each �̂
′
j includes two types of parameters: �̂

[c]

j , the estimates of the

parameters � that are common across subpanels, and �̂
[nc]

j , the estimates of the non-common
parameters 
j.

In order to recover a unique estimate of �, we set the vector � to be equal to a known

function of the structural parameters 	 : � = h(	) where h(.) restricts all the �̂
[c]

j to be

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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estimates of the same � parameters. The structural parameters 	 can be consistently and
efficiently estimated by minimizing the following quadratic form:

	̂
MD = arg min

	
Q(	)=

[
�̂−h(	)

]′
V −1

[
�̂−h(	)

]
, (10)

whereV is the var-cov matrix of �̂, which is a block diagonal matrix since different subpanels
have no observations in common. See Appendix S1 for further details on the MD estimator
and its algebraic expressions for our case.

This procedure is known to be asymptotically equivalent to maximizing the log likeli-
hood L on the entire set of parameters 	 (see Chamberlain, 1982 and 1984 and references
there in). If N →∞ but T and J are fixed, then the asymptotic properties derived in those
references are applicable to our case. These are the relevant conditions for us since we are

interested in situations in which N is large relative to T and J. Then 	̂
MD

is asymptotically

equivalent to 	̂
MLE

.

Average marginal effects

Once we have estimated the parameters of the model and of the distribution of the unob-
served heterogeneity, either by ML or by MD, we use them to obtain estimates of Average
Marginal Effects (AMEs), which are the ultimate parameters of interest. The crucial as-
pect of this paper is that the average and the distribution of the unobserved heterogeneity
used to estimate the AMEs are conditional on the unbalancedness structure that we have.
Failing to account for it and, especially, for the potential correlation between the unbal-
ancedness and the individual effect, will result in biases in the estimates of the AMEs as
well.

In Albarran, Carrasco and Carro (2018), we show how to implement the estimators
presented in previous sections, as well as the AMEs, with specific assumptions about
parametric distributions.

V. Simulations: Finite sample performance

We use Monte Carlo techniques to study the finite sample performance of the estimators
under different degrees of unbalancedness. In this section, we consider a dynamic model
without other covariates. The next section presents simulation results with exogenous co-
variates based on the data used in the empirical application.

The subpanels may vary in both the period the individuals enter and when they leave the
sample. The degree of unbalancedness in the sample is governed by J , which, as defined
in Section 2, indicates the number of subpanels. In our baseline DGP, J = 2 indicates
that there are two subpanels: the first half of units ( N

2 ) are observed from 1 to T − 1 and
the second half of units are observed from 2 to T. When J = 4 the first quarter of units
are observed from 1 to T − 1, the second from 1 to T − 2, the third from 2 to T , and
the last quarter is observed from 3 to T. The same for higher values of J. Given this way
of generating the unbalancedness, J can only take even values. We impose the following
restrictions on the values of J : (i) the maximum value is Jmax =min{2 * T −3, N

30}, where

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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2 * T −3 guarantees that all subpanels have at least 3 periods and N
30 guarantees that there

is at least 30 units in all subpanels, and (ii) the minimum value is Jmin = max{2 * T −
15, 0}, where the restriction 2 * T − 15 is to have at least one subpanel with less than
8 periods.6

Our baseline Data Generating Process (DGP) is as follows:

yit =1{�yit−1 +�i + "it �0}, (11)

where "it and �i follow normal distributions of the form:

"it ∼
iid

N (0, 1), �i |Si ∈ j ∼
iid

N (��j,�2
�j), (12)

��j =�� + (
1.3 * J/ (J −1)

)
*
(
(j/J )− (J +1)/ (2*J )

)
, (13)

��j =0.25+ (j −1) *
(
(�� −0.2)/ (J −1)

)
, (14)

yi0 =1{�0 + ((
j/J

)− (
J +1

)
/
(
2 * J

))+�1�i + vi0 �0}, vi0 ∼
iid

N (0, 1), (15)

where �=0.75, �� =0, �2
� =1, �0 =−1.25, and �1 =0.5, so the initial condition and �i are

both correlated with the unbalancedness process. Moreover, Ej(��j)=�� =0, Ej(��j)=0.6,
��j ∈ [−1, 1], ��j ∈ [0.2, 1], and ��j and ��j are increasing in S, so that the value of �i is
more likely to be greater the greater the value of j, i.e. for the last subpanels.7 We consider
unbalancedness to the right and to the left (that is, subpanels differ in both the period
individuals enter and leave the sample) and we have run 1,000 replications for each DGP
with N =1, 000.

For the sake of brevity not all estimators are used in all the simulation exercises. Except
for the highly used solution of selecting the longest subpanel, our general criteria has been
to avoid simulating and/or reporting estimators that are not correct given the assumptions
made in each DGP. Nevertheless, Table 5 reports the incorrect estimator that ignores the
unbalancedness too, so the problem of ignoring the unbalancedness can be evaluated in a
realistic context.

Tables 1 and 2 report means and root mean squared errors (RMSE) for the � parameter
and the AME, respectively. Since the true AME (slightly) varies with the sample drawn in
each Monte Carlo simulation, Table 2 also reports the true expected AME. We deal with the
initial conditions problem by specifying the density of the unobserved effect conditional
on the first observation.

We report results for the ML estimator making the panel balanced using the subset of
periods at which all individuals are observed (labelled ‘Bal. Periods’), for the ML estimator
making the panel balanced using the subset of individuals that are observed in the same
period (labelled ‘Bal. Units’), and for the MD and ML estimators that account for the
unbalancedness and for its correlation with �i (labelled as ‘Unbal. MD’ and ‘Unbal. ML’,
respectively).

6
When the time length is long, the fixed effects approaches may be preferable. For example, simulations in Carro

(2007) show cases where a modified MLE fixed effects estimator performs well with 8 periods.
7
Further details about the DGP and on how the unbalancedness structure of the data has been generated can be

found in Appendix S2.
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In Table 1, we observe that the four approaches considered provide estimated values of
the parameter � very close to its true value. However, there exists some relevant points that
are worth noting. The ‘Bal. Periods’ solution has two important drawbacks compared to
the approaches that account for the unbalancedness. First, it cannot be used in many cases,
including some for which the unbalancedness is moderate. Second, it implies an important
loss of efficiency when it can be employed, even for moderate unbalancedness. Regarding
the ‘Bal. Units’ estimator, the RMSE is much higher than in the case of any other estimator
due to the loss of observations when using this estimator. Furthermore, in the estimation
of the AME, it not only presents an efficiency loss but also a bias problem: the RMSE is
twice to five times larger than the ‘Unbal. MD’ and the ‘Unbal. ML’ .

The comparison between ‘Unbal. MD’ and ‘Unbal. ML’ shows that, as expected, their
behaviour is very similar. Nonetheless, estimating the model by ML is computationally
cumbersome: it takes between 150 and 1, 600 times more computing time than the MD,
depending on the number of periods and subpanels. On the other hand, we can face a
potential problem of lack of variability in certain subpanels when estimating by MD. In
our simulations, the percentage of failures due to lack of variability is below 1%. Higher
failure rates only appear in a few cases when considering a very high degree of state
dependence.

For completeness, Tables 1 and 2 report simulations using a Fixed Effects estimator
without bias correction, and using the Split Panel Jackknife (SPJ) proposed by Dhaene and
Jochmans (2015) and also used in Fernandez-Val and Weidner (2016) to correct the bias.
Even with the bias correction, the bias is very large when compared with the MD estimator,
probably due to many subpanels having a small number of periods. Taking only the longest
subpanel to try to reduce the incidental parameters problem introduces a sample selection
bias in the estimation of the AMEs. This leads to a bias and RMSE on the SPJ estimates
of the AME three to six times higher than those of the MD. This reinforces the CRE as an
useful alternative to estimate the models considered in this paper with unbalanced panels.

Appendix S3 presents a number of simulation results where we have sequentially
changed different parameters of the baseline DGP. In subsection C.I we have simulated
the baseline DGP with left-side unbalancedness (i.e., subpanels differ only in the period
they start but all are observed until T ). We have reduced the sample size to N = 500 in
subsection C.II and changed the degree of state dependence in subsection C.III. Finally
subsection C.IV presents results in which the initial condition and/or the unbalancedness
are uncorrelated with �i and estimators that deal with the initial conditions problem by
specifying the density of the first observation conditional on �i and the density of �i. In-
dependence of the unbalancedness from �i leads to some simplification in the estimators
when taken into account, although the estimator presented in section 4.2 is still valid be-
cause it does not assume anything about the relation between Si and �i. Apart from the
RMSE of all estimators increasing as the sample size decreases, the results presented so
far remain basically unchanged.

VI. An application to export market participation

We illustrate previous methods by estimating a model for firms’export market participation
decision. We use data for Spanish manufacturing firms, the Business Strategies Survey
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(Encuesta sobre Estrategias Empresariales, ESEE) for the period 1990–1999.
Our sample consists of an unbalanced panel with 14 different subpanels of 1,807 firms

and 12,683 observations.8 The starting point for estimation is an equation of the form

yit =1(�yit−1 +X ′
it�+�i + vit �0), (16)

where yit =1 if the i − th firm exported in year t. Our empirical model is based on a simple
model of optimization for a firm facing the export decision (see Roberts and Tybout, 1997).
The choice of variables included in the vector X largely follows the previous literature on
the determinants of firm’s export decisions.

Tables 3 and 4 present the AMEs for the lagged export status variable.9 With this
data set, we cannot perform the estimates using the ‘Bal. Periods’ solution due to lack
of observations. Column labelled ‘Bal. Units’ presents the estimates using the balanced
sample in which firms are observed all periods (subpanel S =8). Column labelled ‘Ignore
Unbal.’presents the estimates that ignore the unbalancedness. The last column presents the
results from the model that accounts for the unbalancedness and allows for its correlation
with the unobserved effect. We model the unobserved heterogeneity conditional on the
initial condition and the time average of the exogenous variables.

First row in Table 3 presents the AME’s for the entire sample. Coincidentally the ‘Ig-
nore Unbal.’ and the ‘Bal. Units’ estimators provide similar results, probably because the
observations in the balanced sample are 56% of the sample used to estimate the model
ignoring unbalancedness. This is an example where comparing these two estimators might
lead to the incorrect conclusion about the possibility of ignoring the unbalancedness.10

Regarding the ‘Unbal. MD’ estimator, we find that the estimated AME for the entire
sample is around 4 percentage points greater than the one from the ‘Ignore Unbal.’ estima-
tor. This difference is statistically significant even though the AME for the entire sample
tends to mask biases in opposite directions in different subsamples.11 This can be seen in
more detail if we analyse the AMEs by subgroups (see Table 3) and by subpanels (see Table
4). In particular, we find statistically different results for younger firms and for firms that
do not export in the first period. Last row in Table 3 presents the estimates excluding the
largest subpanel (S =8) to show that if we had a data set without a subpanel that dominates
so much, the differences between ‘Ignore Unbal.’ and ‘Unbal. MD.’ are more significant.

If we look at the AMEs by subpanel, there are five in which the MD gives statistically
significantAMEs and the differences are even larger than for the total sample. Furthermore,
while the MD estimates range between 0.1095 and 0.4399, the corresponding estimates
for the model ignoring the unbalancedness only range from 0.2108 to 0.2689. Thus, there

8
See Appendix S4 for further details, including definition and descriptive statistics of variables used in the appli-

cation.
9
Table D.3 in Appendix S4 presents the estimates of the common parameters of the model.

10
If normality about the distribution of �i is incorrectly assumed in both cases, these two estimators will tend to

produce similar biased estimates. Therefore, the comparison between them may lead to the incorrect conclusion that
the unbalancedness can be ignored (see Albarran, Carrasco and Carro, 2018).

11
Last column of Tables 3 and 4 presents a Hausman-type test of the difference between the ‘Unbal. MD’ and

the ‘Ignore Unbal.’ estimators using the variance–covariance matrix of the MD estimates only instead of subtracting
from it the variance of the ‘Ignore Unbal.’ estimator. Under correct specification, this represents a lower bound for
this test and a rejection here will also be a rejection when using the well-defined variance–covariance matrix of the
difference.
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TABLE 3

Estimated Average marginal effects of Lagged Export.

Bal. Units Ignore Unbal. Unbal. MD Test of Diff.
(1) (2) (3) (2) vs (3)

Total sample 0.2423 0.2351 0.2776 *
(0.0290) (0.0234) (0.0254)

Subsample, by age‡

Age < 12 0.2590 0.2528 0.3181 **
(0.0313) (0.0251) (0.0290)

Age 12–24 0.2735 0.2573 0.2994
(0.0314) (0.0250) (0.0266)

Age > 24 0.2121 0.2032 0.2307
(0.0268) (0.0212) (0.0234)

Subsample, by I.C.
Exportti =1 0.1640 0.1808 0.2064

(0.0257) (0.0209) (0.0234)
Exportti =0 0.2811 0.2811 0.3391 **

(0.0269) (0.0269) (0.0287)
Subpanels S �=8 0.2358 0.3267 ***

(0.0236) (0.0328)

Note: Standard errors are reported in parentheses. The implementation of the test
of difference is discussed in footnote 6. Asterisks indicate the difference is signif-
icantly different from zero at *10%; **5%; ***1%.‡ Approximately one third of
the firms are younger than 12 and around 40% are 24 or older.

is a great deal of variation on the marginal effect of lagged export across subpanels that
is not captured by the ‘Ignore Unbal’. estimator. These results indicate that the model that
ignores the unbalancedness incorrectly imposes, among other restrictions, independence
between the distribution of the unobserved heterogeneity and the unbalancedness.

Simulation evidence on the properties of the estimators We simulated data calibrated
to the ESEE sample to study the properties of the estimators in the empirical application.
This also has the additional interest of exhibiting some Monte Carlo results with covariates
in the dynamic model, which complement those reported in Section 5.

The DGP is extended here to incorporate exogenous covariates.Thus, the main equation
becomes

yit =1{�yit−1 +X ′
it�+�i + "it �0}, t = ti +1,…, ti +Ti, (17)

"it | yiti , Xi, Si ∈ j ∼
iid

N (0, 1), �i | yiti , Xi, Si ∈ j ∼N
(
�0j +�1jyiti +Xi

′
�2j,�2

�j

)
, (18)

where Xit denotes the vector of exogenous regressors, Xi contains the within-means (from
period ti +1 to ti +Ti) of the time-varying explanatory regressors and yiti is the first observed
value of the endogenous variable for the individual i.

Table 5 contains the simulation results. The results confirm that the ‘Unbal. MD’ out-
performs both ‘Bal. Units’ and ‘Ignore Unbal’. estimators. In part B of Table 3, we check
the extent to which each estimator is able to capture heterogeneity in the AME across
subgroups. As expected, the ‘Bal. Units’ estimator does a nice work in the only subpanel
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TABLE 4

Estimated Average marginal effects of Lagged Export. By
Subpanels

Bal. Units Ignore Unbal. Unbal. MD Test of Diff.
(1) (2) (3) (2) vs (3)

Subpanels
S =1 0.2414 0.2903

(0.0245) (0.0904)
S =2 0.2338 0.4380 ***

(0.0239) (0.0442)
S =3 0.2470 0.4144 **

(0.0247) (0.0776)
S =4 0.2108 0.2539

(0.0218) (0.1033)
S =5 0.2340 0.3477

(0.0239) (0.0732)
S =6 0.2230 0.1095 ***

(0.0222) (0.0209)
S =7 0.2182 0.3441 ***

(0.0223) (0.0477)
S =8 0.2423 0.2336 0.2413

(0.0290) (0.0233) (0.0245)
S =9 0.2195 0.2758

(0.0221) (0.0793)
S =10 0.2612 0.2634

(0.0257) (0.1403)
S =11 0.2689 0.3256

(0.0260) (0.0830)
S =12 0.2674 0.3144

(0.0251) (0.1175)
S =13 0.2563 0.4399 ***

(0.0250) (0.0393)
S =14 0.2374 0.3765

(0.0239) (0.0877)

Note: See note in Table 3.

that uses, but it neglects the other ones. On the other hand the ‘Ignore Unbal’. estimator is
able to provide different AMEs across subgroups, but they are substantially biased in some
of them. By contrast, the ‘Unbal. MD’ estimator performs reasonably well overall.

VII. Conclusion

In this paper, we consider the estimation of dynamic nonlinear CRE models when using
unbalanced panel data. We identify two types of problems: (i) an inconsistency in the
estimates of the coefficients when the unbalancedness is ignored; and (ii) an efficiency
loss and/or an inconsistency in the estimates when using different balanced versions of
the unbalanced original data. These problems are especially severe when the unbalanced
process is correlated with the individual effect.
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TABLE 5

Simulation results based on the MD results obtained in the empirical application

True parameter Bal. Units Ignore Unbal. Unbal. MD

Estimated RMSE Estimated RMSE Estimated RMSE

A. Total Sample
�=1.5153 1.5145 0.0962 1.4651 0.0900 1.5413 0.0796
AME =0.2721 0.2332 0.0483 0.2449 0.0358 0.2539 0.0305

True AME Bal. Units Ignore Unbal. Unbal. MD

̂AME RMSE ̂AME RMSE ̂AME RMSE

B. By Subgroups
By Age

< 12 0.3055 0.2495 0.0639 0.2606 0.0513 0.2698 0.0463
12−24 0.2895 0.2606 0.0425 0.2647 0.0352 0.2761 0.0292
> 24 0.2310 0.2065 0.0363 0.2172 0.0258 0.2249 0.0245

By Initial Conditions
yti =1 0.2167 0.1644 0.0580 0.1974 0.0287 0.2041 0.0281

yti =0 0.3200 0.2962 0.0412 0.2857 0.0430 0.2970 0.0364
By Subpanels

S =8 0.2334 0.2332 0.0280 0.2442 0.0255 0.2387 0.0266
S �=8 0.3196 0.2456 0.0778 0.2726 0.0576

We propose a general model that accounts for the unbalancedness that can be arbitrarily
correlated with the permanent unobserved heterogeneity. We show that this model can be
estimated by ML and also by MD. Monte Carlo experiments and an empirical illustration
show that our proposed estimation approaches perform better both in terms of bias and
RMSE than the approaches that ignore the unbalancedness or that balance the sample.
Both the ML and the MD estimators have comparative advantages and disadvantages. Its
computational simplicity leads us to favour the MD approach.

The comparison between the sets of estimates presented in the empirical application
emphasizes the point that different individuals behave differently due to the heterogeneity
in the distribution of the unobservables across subpanels. It also reveals the importance
of accounting for it to give a proper estimate of the marginal effect of the explanatory
variables in a dynamic nonlinear model.

Final Manuscript Received: May 2018
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