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Abstract
Let S be the number of components in a finite discrete mixing distribution. We prove that
the number of waves of panel being greater than or equal to 2S is a sufficient condition
for global identification of a dynamic binary choice model in which all the parameters are
heterogeneous. This model results in a mixture of S binary first-order Markov Chains.

I. Introduction
When considering observed persistence in time-varying choices, Heckman (1981) empha-
sized the importance of distinguishing between unobserved heterogeneity and true-state
dependence.Apreeminent example in empirical work is the modeling of dynamic discrete
choice models, for example labour force participation. In allowing for heterogeneity, it is
important to capture unobserved heterogeneity in the state dependence parameter as well
as in the ‘intercept’; see Browning and Carro (2007). One convenient way to do this is to
employ finite mixture models. Here, we examine the identification of mixture model of S
binary first-order Markov Chains. This mixture model corresponds to a dynamic binary
choice model in which all the parameters are heterogeneous.
Discrete finite mixtures as a flexible (non-parametric) way to control for unobserved

heterogeneity have been widely used. It was popularized in economics by the work of
Heckman and Singer (1984) in duration models, but it is used in many other nonlinear
models, including discrete choice models. The question of identification of finite mixtures
has been studied for many decades in statistics and econometrics. Teicher (1961), Blischke
(1962), Blischke (1964) and Teicher (1963) are among the first examples. These studies
considered the identification of mixtures of normal, gamma or binomial distributions, but
they did not consider mixtures of first-order Markov Chains. A recent study in economet-
rics is Kasahara and Shimotsu (2009). They consider a more general problem that includes
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the model we consider here, as well as other models. For the model considered here, they
do not give identification conditions for an arbitrary number of periods. For the periods
their identification conditions can be applied, they require smaller number of periods than
our condition. However, their sufficient conditions include not only a condition in terms
of the number of periods but additional rank conditions that are very difficult to check in
actual data.1 In this article, we derive a explicit (and very simple) sufficient condition for
global identification in terms of the number of waves of a panel that is needed to identify
a mixture of S binary first-order Markov Chains.

II. Sufficient conditions for identification
Let Yi= (yi0, yi1, . . . yiT ) be a realization of a binary variable yit that follows a time-homo-
geneous first-order Markov process.2 The transition probabilities that define this process
are

Gs=Pr
(
yt =1 | yt−1=0, s

)
(1)

Hs=Pr
(
yt =1 | yt−1=1, s

)
, (2)

where s indexes the S distributions we are mixing, and we have T +1 realizations of this
process. We make all our analysis conditional on the initial observation. The distribution
of Y conditional on y0 is the following mixture:

Pr(Y | y0)=
S∑
s=1

�s |y0G
n01
s

(
1−Gs

)n00 Hn11
s

(
1−Hs

)n10 , (3)

where n01 is the number of 0→ 1 transitions in path Y, and similarly for the other three
transitions. �s | y0 gives the mixing probabilities of each value of (Gs,Hs) conditional on
the initial observation. That is, we have one mixing distribution for those Y that start with
y0=0, and another one, possibly different, for those with y0=1. The unconditional mix-
ing proportions can be easily recovered using the observed proportion of y0=1. Note that∑S

s=1 �s | y0 =1, and therefore �S | y0 =1− ∑S−1
s=1 �s | y0 . 0<�s | y0 ,Gs,Hs <1 for s=1, . . . ,S.

Also, both Gs and Hs take distinct values for different s.
The unknown parameters we want to identify are

{[
�s | y0=0,�s| y0=1

]S−1
s=1 , [Gs,Hs]

S
s=1

}
;

in all there are (4S − 2) parameters. We provide sufficient conditions for global iden-
tification of the mixture in (3). We say the mixture is identified if from the popula-
tion proportions of the mixed distribution we can recover only one distinct value of{[

�s | y0=0,�s | y0=1
]S−1
s=1 , [Gs,Hs]

S
s=1

}
that yields that mixed distribution. Also, any sets of

values of the unknowns that contain the same values but in different order (e.g. (G1,H1)
in one set is (G3,H3) on another set) are the same solution. If that solution is unique, we
say the model is identified regardless of the number of ways it could be ordered.
The possible realizations of Y are all the possible combination of zeros and ones

in the periods we have. To identify
{
�s |y0=1,Hs

}S
s=1, we take those realizations with

1Amore detailed comparison with Kasahara and Shimotsu (2009) is presented in section III.
2In the rest of this article, we omit subscript i for readability.
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y0=1, and construct moment conditions using the survivor function. That is, we take
the probability that in the u periods following the initial observation, we observe only
ones: SH (u)=

∑S
s=1 �s | y0=1Hu

s . For instance, for a given value Hs, the probability, condi-
tional on y0=1, of observing y1= y2=1 (i.e u=2) is, from equation (2), equal toH 2

s . Each
value of u will give a moment condition, so we have the following system of equations:

fH ,u=
S∑
s=1

�s | y0=1Hu
s ; (u=0, . . . ,T ) (4)

with SH (0) and fH ,0 being trivially equal to one. The value fH ,u is the population proportion
of realizations Y whose first u+1 elements are equal to one. To have at least as many
(informative) equations as unknowns in system (4), we need T ≥2S−1.
To show that T ≥2S−1 is a sufficient condition for global identification of the mixture

in (3), first note that equation (4) is the same equation as equation (6) on page 513 of
Blischke (1964), except for the different notation used. Therefore, from the same argu-
ments used in Blischke (1964), if T ≥2S−1 there is a unique solution to this system and{[

�s | y0=1
]S−1
s=1 , [Hs]

S
s=1

}
is identified from (4).

To identify
{[

�s | y0=0
]S−1
s=1 , [Gs]

S
s=1

}
, we do the same analysis taking those realizations

with y0=0, and use the survivor function with the number of consecutive zeros following
y0. This gives the following equations

fG,u=
S∑
s=1

�s | y0=0
(
1−Gs

)u ; (
u=0, . . . ,T)

, (5)

where fG,u is the population proportion of realizations Yi whose first u+1 elements are
equal to zero.Again, this is the same system of equations as equation (6) in Blischke (1964)
with pki in Blischke(1964) being

(
1−Gs

)u here. Therefore, if T ≥2S−1, there is a unique
solution to this system and

{[
�s |y0=0

]S−1
s=1 , [Gs]

S
s=1

}
is identified from (5). This complete

the identification of all the unknowns.

III. Concluding remarks
We have shown that T ≥2S−1 is a sufficient condition for global identification of a mix-
ture to S binary first-order Markov Chains. Since in our notation the first observation of
the process is 0 and T is the last observation, in terms of the number of periods observed
(=T +1), this condition is

number of periods≥2S. (6)

Three final remarks are important:

(i) Although we have made use of some results in Blischke (1964), the condition (6)
for identification of (3) is different than the condition for identification of the bino-
mial mixtures studied in Blischke (1964). Our mixture requires one more period to
satisfy the sufficient condition for identification. This comparison is relevant since
the binomial mixture is a special case of our model: the case in which Gs=Hs=ps
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for all s. This is the static version of our dynamic binary choicemodel. Kasahara and
Shimotsu (2009) also consider this static binary choice model without covariates
in their Remark 3 (p. 149) in section 2. Though using a very different procedure,
they obtain the same condition as Blischke (1964).

(ii) Kasahara and Shimotsu (2009) in section 3.2 consider dynamic discrete choice
models. This includes our first-order binary Markov Chain model in Example 5
and Proposition 7 of Kasahara and Shimotsu (2009, pp. 158–159), for which suffi-
cient, but not necessary, conditions for identification are derived. Three differences
between our result and their result should be noted. First, Proposition 7 in Kasahara
and Shimotsu (2009) only applies to cases with T ≥7, whereas condition (6) applies
to any T. Second, their set of sufficient conditions for identifying (3) requires check-
ing the rank of two matrices constructed from the transition probabilities, which
are non-trivial to check in actual data. In contrast with this, our condition is straight
forward to check. Last but not least, the main advantage of the sufficient conditions
in Kasahara and Shimotsu (2009) is that, for the periods Proposition 7 applies, the
required number of periods to identify S points of support is smaller than in (6).
Moreover, the number of identifiable components increases exponentially with T ,
whereas here it only increases linearly. For example, if the number of periods is
10, 12 and 14, then the maximum number of identifiable components by Propo-
sition 7 in Kasahara and Shimotsu (2009) is 10, 15 and 21, respectively, whereas
the maximum number of identifiable components by condition (6) is 5, 6 and 7,
respectively.

(iii)The condition derived in this article is sufficient but not necessary. At least it is not
necessary for all the values of the parameters. The moments we have constructed
are ignoring conditions in which bothGs andHs are combined. Browning and Carro
(2011) exploit all the possible conditions to derive, among other results, a necessary
and sufficient condition for (generic local) identification. This condition requires
a smaller number of periods than condition (6) for identification. In particular, it
requires T ≥ −1

2 +
√

−7
4 +4S. For example, if the number of periods is 10, 12 and

14, then the maximum number of identifiable components S according with the
latter condition is 23, 33 and 46, as opposed to 5, 6 and 7 identifiable according
to sufficient condition (6). However, the advantage of the condition derived here
[equation (6)] is that it is for global identification and holds everywhere. The con-
dition in Browning and Carro (2011) holds almost everywhere and, as such, it has
some exceptions. Moreover, though it is conjectured that it holds also for global
identification, the condition in Browning and Carro (2011) is proved in general
only for local identification.
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