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a b s t r a c t

Most econometric schemes to allow for heterogeneity in micro behavior have two drawbacks: they do
not fit the data and they rule out interesting economic models. In this paper we consider the time
homogeneous first order Markov (HFOM) model that allows for maximal heterogeneity. That is, the
modeling of the heterogeneity does not impose anything on the data (except the HFOM assumption for
each agent) and it allows for any theory model (that gives a HFOM process for an individual observable
variable). ‘Maximal’ means that the joint distribution of initial values and the transition probabilities is
unrestricted.

We establish necessary and sufficient conditions for generic local point identification of our
heterogeneity structure that are very easy to check, and we show how it depends on the length of the
panel.

We apply our techniques to a long panel of Danish workers who are very homogeneous in terms of
observables. We show that individual unemployment dynamics are very heterogeneous, even for such a
homogeneous group. We also show that the impact of cyclical variables on individual unemployment
probabilities differs widely across workers. Some workers have unemployment dynamics that are
independent of the cycle whereas others are highly sensitive to macro shocks.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Models with a binary outcome that depends in part on previous
realizations of the outcome – dynamic binary outcome models
– are common in applied microeconometrics. Some examples
include: labor force participation (Heckman, 1981; Hyslop, 1999);
smoking (Becker et al., 1994); firms exporting (Bernard and Jensen,
2004); stock market participation (Alessie et al., 2004) and taking
up a welfare program (Gottschalk and Moffitt, 1994; Ham and
Shore-Sheppard, 2005). The usual time-homogeneous first order
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Markov model for unit i (=1, . . . ,N) in period t (t = 0, . . . , T ) is:

Pr

yit = 1 | yi,t−1, xit


= F (ηi + αyit−1 + βxit) (1.1)

where F (.) is a probability distribution function and yit is a
binary variable indicating, for example, that person i had some
unemployment in period t . This ‘linear index model’ which only
allows for a heterogeneous ‘intercept’ ηi is widely used but it does
have problems; Browning and Carro (2007) discuss these but it is
worth repeating the objections.

The first problem is that the imposition of common slope
parameters (α and β) restricts the class of structural models that
are consistent with the reduced form (1.1). For example, consider
two people, a and b, with the same value of the x variables (so we
can ignore them), and for whom a has a lower probability of being
unemployed if they were employed in the previous year:

F (ηa) < F (ηb) . (1.2)

For example, a might choose a ‘safer’ job than b. Now suppose we
impose the ‘same slope’ homogeneity assumption αa = αb = α.
This implies:

F (ηa + α) < F (ηb + α) . (1.3)

This rules out, for example, that a’s caution leads her to spendmore
time looking for a ‘safe’ job, so that her probability of remaining
unemployed is higher than b’s. Thus the choice of a statistical
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scheme for dealingwith heterogeneity has substantive restrictions
on the set of admissible structural models.

The second problem with the conventional approach is that
whenever we have long enough panels to estimate the model for
each unit individually with minimal bias, we do find substantial
heterogeneity in both the ‘intercept’ and ‘slope’ parameters in (1.1).
A situation where this is the case can be found in Browning and
Carro (2010). Additional evidencewill be provided in the empirical
illustration in this paper.

Model (1.1) with maximal heterogeneity has1:

Pr

yit = 1 | yi,t−1, xit


= F (ηi + αiyit−1 + βixit) . (1.4)

In addition to the homogeneity restrictions, model (1.1) is
imposing two kinds of parametric restrictions: the parametric
form implied by the linear index and the probability distribution
function F(.). In this paper, we consider not only a semiparametric
form but also the nonparametric case as well as having maximal
heterogeneity throughout the paper.2 The nonparametric time-
homogeneous first order Markov process (HFOM) with maximal
heterogeneity allowing that the transition probabilities can be
different for each individual can be written:

Pr (yit | yit−1 = y−1, yit−2, . . . , yi0, xit = x)

= Pr

yit = 1 | yi,t−1 = y−1, xit = x


= pi,x,y−1 (1.5)

where the first equality for all t is what characterizes a HFOM,
and we have one parameter to be estimated for each i and the
value of x and the lag of y. This does not impose any restrictions
on the structural model (except, of course, for the assumption of
time invariance and no effects higher than the first order that
define the model considered in this paper) and it will fit any
data that is generated by a time-homogeneous first order Markov
process. For the simpler case without x variables there is a one to
one correspondence between (1.4) and (1.5) and, therefore, any
F (.) will give the same transition probabilities. For the general
case with x variables, a semiparametric form assuming a function
F (.) in (1.4) will impose some parametric restrictions that are not
imposed in (1.5).

Identifying and estimating the whole set of transition probabil-
ities in (1.5) – the whole set of parameters if we consider (1.4) – or
their distribution over the population, allows us to obtain any pa-
rameter of interest in this problem, including the averagemarginal
effects (also known as average partial effects, APE) and the median
marginal effect of a explanatory variable over the outcome yit . Fur-
thermore, identifying and estimating the whole HFOM model will
allow to obtain the entire distribution in the population of the ef-
fect of a variable over the outcome. In a program evaluation con-
text, Heckman et al. (1997) present situations in which the entire
distribution, and not only the mean effect, is the policy parameter
of interest. In the IO literature it is also of interest to identify the en-
tire distribution of the individual price elasticitieswhen estimating
demand functions; see for example Nevo (2001).

Given the difficulties in estimating (1.1) with small and fixed
T (see Arellano and Honoré, 2001), tackling (1.5) or (1.4) is a
formidable task. In Browning and Carro (2010) we suggested two
estimation methods for the simple case without x variables, that

1 Model (1.4) can be seen as part of the larger literature on random coefficients
model. In that literature there are some cases whose identification and estimation
has been studied. An example is Gautier and Kitamura (2013) that considers
the estimation of random coefficient static models with continuous covariates.
Also, in contrast with us, they assume that the distribution of the unobserved
heterogeneous β coefficients is independent of the covariates.
2 Notice also that in (1.1) an extra homogeneity assumption is imposed by

assuming all i have the same F(.). In our nonparametric approach this homogeneity
assumption is not imposed either.
rely on reducing the bias or RMSE for estimates based on each
unit. This gives estimates for each unit and then the distribution for
(η, α) can be taken as the empirical distribution of these estimates
(or some smoothed version of it).

In Browning and Carro (2010), identification and estimation
of (1.5) without imposing any restriction on the distribution of
(η, α) nor on the initial condition, relies on the T dimension;
that is, it is only consistent when T → ∞. In this paper we
propose an alternative approach that relies on large N . In general
the model is not nonparametrically identified from a cross section
of observations of fixed length T .3 This negative result is our
starting point in this paper: identification from the cross section
is our goal since we typically do not have panels with a very
large number of periods. Nevertheless, this negative result on
identification does not imply that we cannot learn anything from a
cross section of paths with a fixed T . In general, some restrictions
will have to be imposed on the distribution of the heterogeneity to
achieve point identification. The interesting question is the nature
of the restrictions we have to impose, or how much information
about our model with maximal heterogeneity we can identify
from a cross section of length T . To answer this question we use
finite discrete mixture distributions for the joint set of unknown
heterogeneous parameters. We refer to this as the flexible discrete
scheme since no restriction is imposed other than there is a finite
and discrete number of points of support on this distribution.

An advantage of this discrete scheme is that it allows us to
go from the homogeneous case (one point of support) to the
totally unrestricted case (as many points of support as N) within
the same scheme. Also, given the discrete nature of problem and
the finite number of possible observations, it is clear that we
cannot nonparametrically identify a continuous distribution. So,
the flexible discrete scheme is our route to study nonparametric
point identification.4

The identification issue in this schemewill be: howmanypoints
of support can we take for a given T? A major gain from looking at
models identified from a cross section with fixed T is that there is
no incidental parameters problem nor finite sample bias problem
from not having a large number of periods.

Kasahara and Shimotsu (2009) take a different approach to
a more general problem that includes the model we consider
here, as well as other models. One of the examples included in
their paper to illustrate their results is model (1.4) without x
variables. However, for this case they do not give identification
conditions for an arbitrary number of periods. For example, their
most important result for this model (Proposition 7 in Kasahara
and Shimotsu (2009)) requires T ≥ 8. Also they give stronger
sufficient conditions than the conditions derived in this paper,
whereas here we derive sufficient and necessary conditions for
identification. Moreover, their conditions are nontrivial to check
in actual data, whereas our conditions are simple to check.

A different and interesting analysis is to look at set identification
for the cases that are not point identified. In particular to
derive bounds in the non-identified situation when no restriction
or distribution is assumed for the heterogeneous parameters.

3 In general, not even the restrictive model (1.1) with only one fixed effect is
identified; see Honorè and Tamer (2006).
4 We note that our use of a discrete distribution to capture heterogeneity is

different to that suggested by Heckman and Singer (1984). They show that the
distribution of a continuous latent variable is nonparametrically identified for
a particular parametric duration model. They then suggest that the continuous
distribution can be reasonably approximated by a discrete distribution with a small
number of support points. In contrast, in our scheme the continuous distribution is
not nonparametrically identified, and any continuous distribution can be perfectly
approximated by discrete finite mixtures (see Lemma A.1 in Ghosal and van der
Vaart (2001)).
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Chernozhukov et al. (2009) do this for the average marginal effect
in models such as the ones considered here; they derive results
showing that bounds can shrink and converge as T grows.

In Sections 2–4 we study in detail the simpler dynamic
HFOM model without x covariates. Studying the model without
x covariates helps understanding the problem, and all the results
derived for this case will be the base to the more interesting
case with covariates that is taken up in Section 5. Sections 2
and 3 consider restrictions from the model and identification
respectively. In Section 4 we consider estimation. In Section 6 we
apply the techniques we develop to a panel of Danish workers
who are very homogeneous in terms of observables. Section 7
concludes.

The principal contributions of paper are:

• We provide necessary nonparametric conditions for any panel
data set with binary outcomes to be consistent with a time-
homogeneous first order Markov (HFOM) process.

• Assuming the data has been generated by a HFOM process
(both with and without covariates), we study identification for
flexible discrete distributions of the unobserved heterogeneity.
It is shown that we can have a much richer distribution than
the two point distribution often used in applied work and still
keep unrestricted important features of the distribution of the
heterogeneity such as the initial condition or the correlation
between the transition probabilities. Our main result provide
necessary and sufficient conditions for generic local point
identification.

• We give exact results on how identification depends on the
length of the panel and on the covariates.

• We provide a framework that allows that macro variables have
different effects for different agents.

2. HFOMmodel restrictions

2.1. The research question

We consider first a dynamic discrete choice model with no co-
variates in order to more easily study and understand the prob-
lem. The results derived for this casewill be very useful for the case
with covariates. The data consist of paths {yi0, yi1, . . . , yiT }i=1,2,...,N
where yit is the value of a binary variable for unit i. We assume
a time-homogeneous first order Markov (HFOM) process for each
unit and define transition probabilities (1.5) in this case:

Gi = pr

yit = 1 | yi,t−1 = 0


(2.1)

Hi = pr

yit = 1 | yi,t−1 = 1


(2.2)

and the unconditional probability of a unit value for the initial ob-
servation:

Pi = pr (yi0 = 1) . (2.3)

This direct formulation ismuchmore convenient toworkwith than
the usual econometric specification given in (1.4) for two reasons.
The first reason is that we do not have to specify any probabil-
ity distribution function F (.), so we are nonparametric in model-
ing this HFOM. This reason does not have much consequences in
this simpler model because allowing for maximal heterogeneity is
enough to fit any data that is generated by a HFOM process when
there is no x covariates. There is a one to one correspondence be-
tween (αi, ηi) and (Gi,Hi) and, therefore, any F will give the same
(Gi,Hi) transition probabilities. However in case with covariates
the semiparametric form (1.4) will be imposing two kinds of para-
metric restrictions: the parametric form implied by the linear in-
dex and the probability distribution function F(.).

The second reason for this direct formulation is that parameters
of (1.4) do not have any meaning on their own, apart from
being different from zero or their sign. In contrast, (Pi,Gi,Hi)
are probabilities and have a clear interpretation. Nevertheless the
values of the parameters (Pi,Gi,Hi) are not usually of primary
interest; rather they can be used to generate any other ‘outcomes
or parameters of interest’. There are several candidates but the
most widely considered for this model without covariates are the
marginal dynamic effects:

Mi = Pr

yit = 1 | yi,t−1 = 1


− Pr


yit = 1 | yi,t−1 = 0


= Hi − Gi (2.4)

and the long run proportion of unit values:

Li =
Pr

yit = 1 | yi,t−1 = 0


Pr

yit = 1 | yi,t−1 = 0


+ Pr


yit = 0 | yi,t−1 = 1


=

Gi

1 + Gi − Hi
. (2.5)

Given that these values are heterogeneous in i, their distribution
over the population or some moments of them are the parameters
of interest. An example, though not necessarily the most informa-
tive measure, is the average marginal dynamic effect:

E [Mi] =


(Hi − Gi) dF(G,H) (Gi,Hi) (2.6)

where F(G,H) (Gi,Hi) is the joint distribution of G and H we want
to identify. Another common object of interest is the probability
that yit = 1 in any given period t; this is given by the Chap-
man–Kolmogorov equations applied to the initial probability and
the transition probabilities.5 There is more than one parameter of
interest. Identifying the whole HFOM model will allow to obtain
any of them, including the entire distribution of Mi in the popula-
tion, as explained in Section 1.

Given this, our research question is: given a large-N , fixed-
T panel, what can we (point) identify about the distribution of
(P,G,H) over the population?

2.2. Enumerating paths

For themomentwe candrop the i subscript. There areΓ = 2T+1

possible paths. The probability of a path j is given by:

pj (P,G,H) = Pyj0 (1 − P)


1−yj0


Gnj01 (1 − G)n

j
00

×Hnj11 (1 − H)n
j
10 (2.7)

where nj
01 is the number of 0 → 1 transitions for path j and

similarly for the other three transitions.We shall often use the T =

2 case to illustrate general points; Table 2.1 gives the probabilities
for the eight possible paths. In all that followswe shall always order
paths using a binary representation for ordering the elements for
t = 0, 2, . . . , T . Thus the first path is always 00..00, the second
path is always 00..01 and the last path is always 11..11.

2.3. The general problem

To consider the restrictions from the model and identification
we assume that we are given population values for the probabili-
ties of each of the Γ outcomes. Denote the population values by πj

for j = 1, 2, . . . , Γ . Let (P,G,H) be distributed over [0, 1]3 with an

5 Making those calculations for our case, we obtain Pr (yit = 1) = (Hi − Gi)
t Pi +t−1

k=0 Gi (Hi − Gi)
k .
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Table 2.1
Outcomes for three periods (T = 2).

Case Path n00 n01 n10 n11 Probability of case j, pj

1 000 2 0 0 0 (1 − P) (1 − G) (1 − G)
2 001 1 1 0 0 (1 − P) (1 − G)G
3 010 0 1 1 0 (1 − P)G (1 − H)
4 011 0 1 0 1 (1 − P)GH
5 100 1 0 1 0 P (1 − H) (1 − G)
6 101 0 1 1 0 P (1 − H)G
7 110 0 0 1 1 PH (1 − H)
8 111 0 0 0 2 PHH

unknown density f (P,G,H). The population proportions are given
by the integral equations:

πj =

 1

0

 1

0

 1

0
pj (P,G,H) f (P,G,H) dPdGdH,

j = 1, 2, . . . , Γ . (2.8)

Since the p′

js and the πj’s sum to unity, f (.) will be a well defined
density:

1 =

Γ
j=1

πj =

 1

0

 1

0

 1

0

Γ
j=1

pj (P,G,H) f (p,G,H) dPdGdH

=

 1

0

 1

0

 1

0
f (P,G,H) dPdGdH. (2.9)

The econometric issues are:

1. Given a set of observed πj’s for j = 1, . . . , 2T+1, can we find a
density function f (P,G,H) such that (2.8) holds?

2. If we can find such a function for a given set of πj’s, is it unique?
3. If we can find a unique inverse function, is the inverse mapping

a continuous function of the values πj?

These are the usual set of conditions for a well posed inverse
problem. The first condition asks if the model choice (in this case
the form of the pj (P,G,H) functions due to theHFOMassumption)
imposes any restrictions on observables. The second is the classical
identification condition: given that the data are consistentwith the
model, can we recover unique estimates of the unknowns, in this
case, the density f (P,G,H). The final condition requires that the
estimate of the unknown is ‘stable’ in the sense that small changes
in the distribution of observables lead to small changes in the
inferred unknowns. The continuity of the inverse mapping is also
useful for estimation since we can recover consistent estimates of
the structural form (in this case, f (.)) from consistent estimates of
the reduced forms (the πj’s).

2.4. Restrictions

Turning to the first question, we ask whether any observed
πj’s that sum to unity could be generated by a HFOM process.
The answer is clearly negative, since the data might have been
generated by, for example, a time-homogeneous second order
Markov scheme or a time inhomogeneous first order process (or
evenmore generalmodels). Thus the time-homogeneity first order
assumption will usually impose restrictions. The restrictions are
a combination of equality restrictions and inequality restrictions.
Considering (2.7) and (2.8) we have the following equality
restrictions:

Lemma 2.1. Given two paths j and j′, if

yj0 = yj
′

0, nj
00 = nj′

00, nj
01 = nj′

01,

nj
10 = nj′

10, nj
11 = nj′

11

(2.10)

then πj = πj′ .
Thus two population proportions will be equal if they have the
initial value and the same number of transitions. For example, for
T = 3 (that is, four periods of observation) the two paths 0010
and 0100 have the same initial value and the same number of
transitions and hence the same probability,

π0010 = π0100 =

 1

0

 1

0

 1

0
((1 − P) (1 − G)

×HGf (P,G,H)) dPdGdH, j = 1, 2, . . . Γ . (2.11)

These are necessary conditions. There are further inequality
restrictions. Consider, for example, the case of T = 2; see Table 2.1.
There are no equality restrictions of the kind described in the
lemma. However, the restriction that G ∈ [0, 1] imposes that

p2 (P,G,H) = (1 − P) (1 − G)G ≤ 0.25. (2.12)

Thus we have:

π2 =

 1

0

 1

0

 1

0
p2 (P,G,H) f (P,G,H) dPdGdH ≤ 0.25. (2.13)

Moreover, if π2 is actually equal to 0.25 then P = 0 and G = 0.5
which in turn imposes π1 = 0.25. Although we are not able to
characterize the full set of necessary and sufficient conditions for
a given π vector to be generated by a HFOM process, we show
below how to write the likelihood of models that separate the
equality and inequality restrictions. These likelihoodsmay be used
for testing those restrictions.

Using the lemma above we can calculate the number of paths
that are the same for any T , without considering the distribution
f (.). For example, for T = 6 we have 128 equations and 84 re-
strictions (i.e. number of paths that are restricted to be the same).
This simply highlights that the first order and time-homogeneity
assumptions impose strong restrictions if we have several periods
of observations. For small T this calculation canbedoneby generat-
ing all the possible paths and counting with a computer. However,
the following proposition gives a simple analytic formula for the
number of different paths for any T , denoted by rT .

Proposition 2.2. The number of different paths in values of the vector
π = (π1, . . . , πΓ )′ whose πj elements are defined in (2.8) is

rT = T (T + 1) + 2. (2.14)

The proof is given in Appendix A.1.
It is convenient to partition paths into groups based on them

having the same probabilities. Define groups k = 1, 2, . . . , rT with
πj = πj′ implying that j and j′ are in the same group. Let nk denote
the number of members of group k and re-write (2.8) as:

πk = nk

 1

0

 1

0

 1

0
pk (P,G,H) f (P,G,H) dPdGdH,

k = 1, 2, . . . , rT . (2.15)

We turn now to identification.

3. Identification

Suppose the restrictions for the HFOM model developed in
the previous section are not rejected. It is clear that with a
finite set of path probabilities we cannot nonparametrically
identify a continuous density f (P,G,H) from the finite set of
equations (2.15). If we had a continuous covariate and allowed
that it had a homogeneous marginal effect on the parameters we
could potentially identify the continuous distribution.6 Since we

6 Subject to support restrictions that allowus to drive any probability to the limits
of zero and unity.
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Table 3.1
Rank of the Jacobian and minimum number of periods.

S 1 2 3 4 5 6 8 14 25 50 100 138
rT 4 8 14 22 22 32 32 58 112 212 422 544
min T + 1 2 3 4a 5a 5a 6a 6 8 11a 15a 21a 24
min T + 1 in Browning and Carro (2013) 2 4 6 8 10 12 16 28 30 50 200 276
a Over-identified.
are here interested in identification without imposing arbitrary
homogeneity schemes, this option is not open to us. Another option
could be identification when T is infinity. The idea is that, given
that we will be able to consider discrete distributions with larger
number of support points the larger the T , as T tends to infinity we
should be able to consider models with continuously distributed
unobserved heterogeneity. This option is not open to us either
since we are considering a situation with a finite T .

3.1. Identification for the flexible discrete scheme

We consider a discrete finite mixture distribution for (P,G,H);
we refer to this as the flexible discrete scheme. We take S
distinct points of support {(P1,G1,H1) , . . . , (PS,GS,HS)} with
probabilities given by the (S × 1) vector θ with non-negative
individual values, θs, that sum to unity. The discrete analogue to
(2.8) is:

πj =

S
s=1

pj (Ps,Gs,Hs) θs j = 1, 2, . . . , Γ . (3.1)

Define the (Γ × S) matrix A by:

Ajs = pj (Ps,Gs,Hs) , j = 1, 2, . . . , 2T+1, s = 1, 2, . . . , S (3.2)

so that (2.15) can be written in matrix form as:

π = Aθ. (3.3)

We take the support points and the probabilities to be unknown
so that we have to solve for the values of {P,G,H} (the vectors
of parameters) and θ . P = (P1, . . . , PS)′ ,G = (G1, . . . ,GS)

′, and
H = (H1, . . . ,HS)

′. The identification issue we pose is: how many
periodswe need to identify a distributionwith S points of support?

Certainly not any discrete distribution with finite points of
support will be identified fromπ . For example, it is easy to see that
there are many distributions of {P,G,H} with S = 8 that will give
the same proportions with T = 2.7 Therefore we cannot identify
the distribution of {P,G,H} with S = 8, from the π we observe
when T = 2. We need more periods to identify it.

From (3.3), for given S, we have a mapping from (4S − 1)
unobservables to observables given by:

π (P,G,H, θ1, . . . , θS) = A (P,G,H) θ (3.4)

where the S-vector θ is normalized to sum tounity. In Appendix B.1
we show that identification in this system is equivalent to studying
identification in the system conditional on the first observation.
We denote the Jacobian matrix of the system conditional on the
first observation by Jr (T , S). For local point identification we
require that the rank of Jr (T , S) is greater than or equal to the
number of parameters. In Appendix B we show that, in general
(that is, except on a set of measure zero), the rank of Jr is:

rank (Jr) = min (rT − 2, 4S − 2) . (3.5)

7 To see this, take two different sets of values of {P,G,H} with S = 8 such that A
is invertible. Then there is a θ = A−1π for each set that defines two different sets
of values of the parameters that imply the same π with T = 2.
The parameters of S support points and their probabilities can only
be point identified if the number of parameters is not greater than
the rank of Jr ; from (3.5), this requires:

S ≤
rT
4

=
T (T + 1) + 2

4
= ΥT . (3.6)

Note that themaximum S increases quadraticallywith T . From this
conditionwe can calculate theminimum T needed to point identify
a model with S number of points on support of the distribution of
{P,G,H}:

min T =


−

1
2

+


4S −

7
4


(3.7)

where ⌈x⌉ gives the smallest integer greater than or equal to x.
Table 3.1 presents that minimumnumber of periods, min T +1, for
some cases.8 As can be seen from Table 3.1, to identify a relatively
rich distribution with 14 different points of support we only need
a relatively short panel (T = 7). Even a short panel (T = 4, for
example) ismore thanweneed to identify a distributionwithmore
than the two points commonly used in applied work.

This condition based on the rank of the Jacobian is not only suf-
ficient for local identification but it is also necessary (almost ev-
erywhere) because they are regular points.9 The only non-regular
points are those in the set of measure zero at which rank (Jr) <
min (rT − 2, 4S − 2), because, as shown in Appendix B.5, the rank
is constant almost everywhere. All the previous results are sum-
marized in the following proposition that gives necessary and suf-
ficient conditions to locally identify ourmodel almost everywhere:

Proposition 3.1. The joint distribution of {P,G,H} with S points of
support in system (3.3) is locally identified almost everywhere if and
only if:

T ≥ −
1
2

+


4S −

7
4
. (3.8)

The proof is given in Appendix B.
The condition in this proposition is weaker than the condition

derived in Browning and Carro (2013), since we have shown that
smaller T is required in general.10 Furthermore, the number of
periods we need to identify the system in general here increases
at a square root rate with the number of points of support of the
distribution we seek to identify, as opposed to increasing our need
of periods linearly (that is, at the same rate) as in Browning and
Carro (2013). Numbers in the last row of Table 3.1 illustrate how
much stronger are the requirements of the condition in Browning
and Carro (2013). The reason for these differences is that Browning

8 The last row of the Table will be explained shortly.
9 A point is defined as regular when for all points in a sufficiently small

neighborhood of it the Jacobian has the same rank as in the point (see Definition
5.A.1 in Fisher, 1966).
10 The result in Browning and Carro (2013) states that T ≥ 2S − 1 is sufficient for
identification of the joint distribution of {P,G,H} with S points of support.



810 M. Browning, J.M. Carro / Journal of Econometrics 178 (2014) 805–823
and Carro (2013) do not use moment conditions in which both G
and H interact.11

Generic identification results such as these are useful in practice
because they mean that, if we take random values of {P,G,H, θ}

the probability of finding a value that is a non-regular point (so that
condition (3.8) is not necessary and sufficient for identification)
is zero. Nevertheless, we search for and study these non-regular
points in Appendix C.

3.1.1. Global identification
Even if we are usually interested in global identification, the

previous results are still useful because local identification is
necessary for global identification. However, it is not sufficient
in general and we still may want to obtain conditions that
guarantee global identification. The problem is that, as explained
in Rothenberg (1971), it is much more difficult to prove, and there
are few global identification results.

We have not been able to show global identification, even for
the simplest case with T = 2, S = 2. In that case, a computer
program using symbolic calculus is able to invert (3.3) for specific
values of π . For over 106 simulations we found that all the locally
identified points were also globally identified. Given this failure
to find a numerical counter-example, whether condition (3.8) in
Proposition 3.1 is also a condition for generic global identification
remains an open question. Thus the only global identification
sufficient conditions in this context are those given in Browning
and Carro (2013) that, as explained, require many more periods
than those given above.

4. Estimation

4.1. ML estimator

The identification analysis above suggests the following estima-
tion procedure. First, estimate the proportions for each path and
test for the model restrictions. If these are not rejected, then im-
pose the conditions and solve for the unknown parameters using
the identification conditions. In practice, it is better and more effi-
cient to combine the two steps in a maximum likelihood analysis.
This is particularly the case givenwe cannot derive analytically the
inequality constraints that the HFOM imposes (see the discussion
in Section 2.4).

Take the full heterogeneity model with S = ΥT so that we have
a just identified model. From (3.1), the structural model is:

πj =

S
s=1

pj (Ps,Gs,Hs) θs j = 1, 2, . . . , Γ . (4.1)

Define an indicator δij = 1 if unit i has path j and zero otherwise.
For given parameters, the likelihood of a sample {yi0, yi1, . . . ,
yiT }i=1,2,...,N is:

N
i=1

Γ
j=1


S

s=1

pj (Ps,Gs,Hs) θs

δij

=

Γ
j=1


S

s=1

pj (Ps,Gs,Hs) θs

nj

(4.2)

where nj is the number of times a sequence j appears in the sam-
ple (i.e., nj =

N
i=1 δij). Denote the sample proportions for path

11 On the other hand, the condition in Browning and Carro (2013) yields global
identification.
j cj = nj/N . The log-likelihood function for the mixture model is:

ℓmix =

N
i=1

Γ
j=1

δij log


S

s=1

pj (Ps,Gs,Hs) θs


(4.3)

= N
Γ
j=1

cj log


S

s=1

pj (Ps,Gs,Hs) θs


. (4.4)

Note that N is irrelevant for the maximization. With an i.i.d. ran-
dom sample cj → πj as N → ∞. The advantage of using the likeli-
hood framework for estimation is that we know how to use all the
information on the sample, its asymptotic properties and how to
make inference.

4.2. Asymptotic properties

Consistency.We showhow this estimator satisfies the conditions of
the unconditional ML version of Proposition 7.5 in Hayashi (2000),
so it is a consistent estimator. Let Yi = (yi0, yi1, . . . , yiT ) be a
realization of a (discrete) random variable with probability density
function given by

π (Yi; β0) =

Γ
j=1


πj
δij

where πj is defined in (4.1), β0 =

P0,G0,H0, θ01, . . . , θ0,S−1


de-

notes the true value of the parameters and β0 is in the interior of
the parameter space B = [0, 1]4S−1 so that the model is correctly
specified. Note that this parameter space is a compact subset of
R4S−1. π (Yi; β) is continuous in B for all Yi and it is measurable in
Yi for all β ∈ B. Let {yi0, yi1, . . . , yiT }i=1,2,...,N be a random sample
from that variable (that is, N i.i.d. realizations of that random vari-
able) and letβ =

Ps,Gs,Hs
S
s=1 ,

θsS−1
s=1


be the ML estimator,

which maximizes the average log-likelihood:

β = argmax
β∈B

1
N

N
i=1

logπ (Yi; β0)

= argmax
β∈B

1
N

N
i=1

Γ
j=1

δij log


S

s=1

pj (Ps,Gs,Hs) θs


.

It is trivial to see that E

supβ∈B |logπ (Yi; β0)|


< ∞ so that the

dominance condition is satisfied. Finally, the crucial assumption is
the identification assumption: Pr [π (Yi; β) ≠ π (Yi; β0)] > 0 for
all β ≠ β0 in B. This assumption is going to be satisfied only for
those cases for which we have shown in Proposition 3.1 in Sec-
tion 3.1 that they are identified. Then, given all these conditions,
Proposition 7.5 in Hayashi (2000) impliesβ →p β0 as N → ∞.
Asymptotic normality. For asymptotic normality we employ the
unconditional ML version of Proposition 7.9 in Hayashi (2000) to
show asymptotic normality ofβ . In addition to the conditions for
consistency, we require the following assumptions:

(i) π (Yi; β) is twice continuously differentiable in β for all Yi.
(ii) E [s (Yi; β0)] = 0 and E


s (Yi; β0) s (Yi; β0)

′


= −E [H (Yi; β)]
where

s (Yi; β) =
∂ (logπ (Yi; β))

∂β

H (Yi; β) =
∂2 (logπ (Yi; β))

∂β∂β ′

(iii) for some neighborhoodN ofβ0, E

supβ∈N ∥H (Yi; β)∥


< ∞.

(iv) E [H (Yi; β0)] is non-singular.
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These conditions hold generally in the case of ML estimators and
our case is not an exception to this. Again the crucial condition
to satisfy these assumptions is the identification condition we
have studied in previous sections. Then, given all these conditions,
Proposition 7.9 in Hayashi (2000) implies β is asymptotically
normal with Avar

β = {−E [H (Yi; β0)]}−1.
This asymptotic normal distribution can be used for testing,

along with the standard equivalent tests such as the LR test.
However, these asymptotic properties have been derived under
the assumption of a correctly specified model, including a correct
number of points S in the discrete mixture. Any test statistic of a
hypothesis that involves testing for the number of points S will
not have a standard asymptotic distribution because it will imply
testing a parameter on the boundary of the parameter space (for
example, testing that θs = 0 for a given s) and under the null some
parameters will not be identified (the (Ps,Gs,Hs) associated with
the extra points of support under the alternative).

4.3. Computation of the MLE

We compute theML estimates using standard constrained opti-
mization routines. To restrict probabilities going to the boundary,
we require that all probabilities be between 0.01 and 0.99. Aside
from the problem of hitting the boundaries, the principal compu-
tational issue is to find a global maximum. Alternatives to conven-
tional optimizers, such as EM algorithms (or extensions such as
Arcidiacono and Jones, 2003) share the same problem. In this com-
putationally intensive search for a global maxima, having a bench-
mark value for the log-likelihood is of some value. The benchmark
value we take is the likelihood of the unrestricted HFOM model,
which is easy to compute. First take the saturated model with as
many proportions to be estimated as different paths we can ob-
serve; this likelihood is:

ℓsat =

N
i=1

Γ
j=1

δij log

cj


= N
Γ
j=1

cj log

cj

. (4.5)

We then impose the HFOM equality restrictions from Section 2.4,
using Eq. (2.15). Let k(j) denote the group (running from k =

1, . . . , rT ) to which path j belongs. Then define predicted proba-
bilities for path j = 1, . . . , Γ by:

ĉj =
1

nk(j)


j∈k(j)

cj. (4.6)

That is, we replace the unrestricted proportions for each path by
the mean of the group.12 The likelihood function is then given by:

ℓres_sat =

N
i=1

Γ
j=1

δij log

ĉj


= N
Γ
j=1

cj log

ĉj

. (4.7)

If we take a mixture with the maximal number of components, ΥT
from Eq. (3.6), then it has a log likelihood value that is bounded
above by ℓres_sat. The mixture model will only attain this likelihood
value if the observed ĉ vector satisfies the inequality constraints
discussed in Section 2.4. Denote the likelihood value of thismixture
model by ℓΥ

mix. Now consider a model with fewer than the maxi-
mum number of points of support: S < ΥT . We have the following
ordering for the likelihood function values:

ℓsat ≥ ℓres_sat ≥ ℓΥ
mix ≥ ℓS

mix. (4.8)

12 To illustrate, consider the case T = 3. Paths 3 (0010) and 5 (0100) are restricted
in the HFOM model to have the same probability and so are paths 12 and 14.
Therefore, ĉ3 = ĉ5 =

c3+c5
2 ; ĉ12 = ĉ14 =

c12+c14
2 ; ĉj = cj , for all other j.
5. Allowing for covariates

In the presence of covariates in the model, our estimation is
conditional on the covariates, xit . The covariates are assumed to be
strictly exogenous; that is:

Pr

yit = 1 | yi,t−1, xi0, . . . , xit , . . . , xiT


= Pr


yit = 1 | yi,t−1, xit


. (5.1)

We consider directly the conditional probabilities:

Hxi = Pr

yit = 1 | yi,t−1 = 1, xit = x


Gxi = Pr


yit = 1 | yi,t−1 = 0, xit = x


where Hxi and Gxi are defined for each value x of xit , and at the
unconditional probability of a unit value for the initial observation:

Pxi = Pr (yi0 = 1|xi0 = x) . (5.2)

The number of periods needed to identify a model with S points
of support depends on the variation the covariates add to the data
(such aswhether the covariates are constant over time or they vary
exogenously in both i and t), and on the assumptions about the
relation between the probability of being of each unobserved type
and the covariates. These assumptions can go from independence
to arbitrary correlation with some middle ground cases that we
will cover too. We begin with the simplest case, a binary covariate
that is constant over time, as an introduction to the case with a
general xit . The special case of covariates that only vary with time
(that is, in each t they take a common value for all i) is explicitly
discussed, including the case with time dummies. A summarizing
table with numbers for representative cases can be found at the
end of this section.

5.1. A time invariant binary covariate

If we only have an x variable that is constant over time and only
varies across individuals (for example, year of birth or education), it
is straightforward to extend our identification result in Section 3.1.
For a binary xi, the time homogeneous first order Markov model is
fully characterized by:

P0i = Pr (yi0 = 1 | xi = 0) ; P1i = Pr (yi0 = 1 | xi = 1)
G0i = Pr


yit = 1 | yi,t−1 = 0, xi = 0


;

H0i = Pr

yit = 1 | yi,t−1 = 1, xi = 0


G1i = Pr


yit = 1 | yi,t−1 = 0, xi = 1


;

H1i = Pr

yit = 1 | yi,t−1 = 1, xi = 1


.

(5.3)

As before, we consider a flexible discrete distribution for (P0i,G0i,
H0i, P1i,G1i,H1i)with S distinct points of support {P0s,G0s,H0s, P1s,
G1s,H1s}

S
s=1.

Arbitrary correlation between θ and xi. Allowing here for arbitrary
correlation between types and covariates, the probabilities of each
point of support s are given by the (S × 1) vector θx:

θx =


(θ01, . . . , θ0S)

′ if x = 0
(θ11, . . . , θ1S)

′ if x = 1 (5.4)

where each vector sum one and all their elements take positive
values.13

13 The analysis and estimation is made conditional on X , and therefore we are
specifying and obtaining the distribution of the individual parameters conditional
on x. Nevertheless, the unconditional distribution can be calculated from this
conditional distribution and the distribution of x, which can be obtained from the
data.
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Table 5.1
Number of independent paths. Discrete covariate.

T 2 3 4 5 6 7 8

rxit (T , 2) 60 184 472 1056 2132 3976 6964
rxit (T , 4) 464 2656 12088 45888 151456 447648 1210032
rxit (T , 6) 1548 12984 84852 454104 2079840
Here we simply divide the observations into two groups (one
with xi = 0 and the other xi = 1) and do the identification analysis
and estimation for each group. Each group contains the same num-
ber of parameters to identify and the same moment conditions as
the problem without covariates. Therefore the number of periods
necessary and sufficient to identify (P0i,G0i,H0i, P1i,G1i,H1i) with
S points of support almost everywhere is the same as to identify
(Pi,Gi,Hi)with S points of support in the casewithout covariates in
Section 3.1. If xi takesNx valueswe stratify the sample based on the
value of xi and everything is the same as with a binary covariate.14

Assuming independence between θ and xi. If the probability of each
type is assumed to be independent of xi, that is θx = (θ1, . . . , θS)

′

for all values of x, the number of parameters is reduced, but not
the number of equations. There are (3SNx + (S − 1)) parameters
instead of (Nx(4S − 1)). Therefore, to identify S points of support
in this case we require:

S ≤
Nx (rT − 1) + 1

3Nx + 1
. (5.5)

This is greater than rT
4 which is the condition without covariates or

arbitrary correlation here.

5.2. Covariates that vary in both i and t

We now consider the case of xit covariates that have positive
probability of taking any value of their support at any i and t . For
each point of support s:

Px0s = Pr (yi0 = 1 | xi0 = x0, s)

Gxs = Pr

yit = 1 | yi,t−1 = 0, xit = x, s


Hxs = Pr


yit = 1 | yi,t−1 = 1, xit = x, s


. (5.6)

It is conceptually simple to extend our model if the additional
covariates are discrete. We denote the number of values that a
discrete xit can take by Nx. The probability of a path j given Xi = X
and (Pxs,Gxs,Hxs) is, where Xi ≡ (xi0, . . . , xiT ):

pjs|X = P
yj0
xi0s

1 − Pxi0s

1−yj0


×


x

G
nj01|x
xs (1 − Gxs)

nj00|x H
nj11|x
xs (1 − Hxs)

nj10|x (5.7)

where Xi ≡ (xi0, . . . , xiT ) , X is a vector of realization of Xi,


x

denotes the product over the Nx values xit can take, nj
01|x is the

number of yit−1 = 0 → yit = 1 transitions given xit = x
for path j, and so on. If, for example, Nx = 2, the number of
possible equations in our system is 22(T+1), because we have 2T+1

possible paths of {yit}T+1
t=0 given each one of the 2T+1 possible

observations of {xit}T+1
t=0 . As in other cases, some of those paths

will give the same equation. We denote the number of different
equations by rxit(T ,Nx) whose specific expression is in Eq. (A.2),

14 With a continuous nonparametric distribution, it is known that permanent
unobserved heterogeneity cannot be separated from covariates when covariates
do not vary over time. However, here the discrete scheme is imposing some
restrictions, so, in some cases, it is still possible to achieve point identification if
the necessary and sufficient conditions indicated above are satisfied.
given and proved in Appendix A. Table 5.1 shows this number for
some T and Nx. Notice that rxit(T ,Nx) grows very fast with Nx.
Assuming independence between θ and xit . Assume independence
between the probability of each type and xit : θsi = Pr(s|xi0,
. . . , xiT ) = Pr(s) = θs. Crawford and Shum (2005) is an example
of an analysis inwhich permanent unobserved heterogeneity is as-
sumed to be independent of the covariates. This case corresponds
alsowith the assumptionmade inmany papers using randomcoef-
ficients discrete choicemodels. For each point of support swe have
to estimate a θs parameter in addition to the (Pxs,Gxs,Hxs) parame-
ters. Thus, the number of parameters to identify is (3Nx + 1) S −1.
By the same arguments used in the case without covariates, the
number of periods needed to identify S points of support almost
everywhere is given by the following condition

S ≤
rxit(T ,Nx) − NT+1

x + 1
3Nx + 1

(5.8)

obtained from comparing the number of parameters with the rank
of the Jacobian of the system. Table 5.2 gives in each column the
highest value of S for which T in that column is min T for identifi-
cation of that S (that is, the maximum integer value of S such that
(5.8) is satisfied for each T ).
Assuming θ depends on the first observation xi0. If we assume that θsi
depends on the first observation xi0 but it is independent of the rest
observations of xit , then θsi = Pr (s|xi0, . . . , xiT ) = Pr (s|xi0). This
case corresponds with the assumptions made about permanent
unobserved heterogeneity in papers such as Keane and Wolpin
(1997) and Carro and Mira (2006). With a discrete xi0 variable that
can take Nx values, if we do not place any parametric restriction on
this probability there are Nx(S − 1) parameters θsi, plus the 3NxS
parameters (Pxs,Gxs,Hxs). Therefore, the number of periods needed
to identify S points of support almost everywhere is given by the
following condition:

S ≤
rxit(T ,Nx) − NT+1

x + Nx

4Nx
. (5.9)

Parametric dependence between θ and xit . Assume that θsi depends
on all the T + 1 observations of xit . Then, θsi = Pr (s|xi0, . . . , xiT ) =

Fθ (ds0 +
T

t=0 ds1txit) where Fθ is a known cdf. Hyslop (1999) is
an example where this is the assumption made about the relation
between unobserved heterogeneity and covariates. If we did not
place any restriction in the relation between θ and xit , we would
be allowing any new xiT+1 observation to unrestrictedly affect the
probability of i being type s even though the type s is a constant
characteristic of i. Furthermore, we would be treating differently
the same value of xit if it were observed in different periods.
This extreme flexibility would break solving the identification
problem by having T → ∞, because more periods would imply
more (incidental) parameters to be estimated, with the number of
parameters growing faster with T than the identifying equations.
The parametric restriction we have place through F () avoids that
problem. With one covariate, the number of θsi parameters is
(T + 2)(S − 1), which lead to a total of (3Nx + T + 2)S − (T +

2) parameters to be identified. Therefore, the number of periods
needed to identify S points of support almost everywhere is given
by the following condition:

S ≤
rxit(T ,Nx) − NT+1

x + T + 2
(3Nx + T + 2)

. (5.10)
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Table 5.2
Maximum number of points of support for some representative cases.

T 2 3 4 5 6 7 23

ΥT : No covariates 2 3 5 8 11 14 138

Covariate constant over time (xit = xi for all t)

Any Nx , free relation with θ 2 3 5 8 11 14 138
Nx = 10, independence of θ 2 4 6 10 13 18 178
Nx = 10, semiparametric 9 16 26 39 54 71 691

Covariates xit = xt for all i

Time dummies 1 1 2 2 3 3 11
2 continuous xt , semiparam. 1 1 2 4 5 7 69

Covariate that varies in both i and t

Nx = 2, independent of θ 7 24 63 141 286 531
Nx = 4, independent of θ 30 184 851 3214 10390 29393
Nx = 4, semiparametric 40 218 992 3215 9648 25474
Nx = 6, semiparametric 133 1063 6423 31342 128565

Nx is the number of possible values x can take. Where semiparametrically is not specifically mentioned, a flexible HFOM model with the indicated covariates is being
considered.
Covariates with large support. If xit is a covariate with large support,
like a continuous variable, we can have an arbitrary large num-
ber Nx of points and use the previous results. Since (5.8)–(5.10)
are increasingwithNx, this meanswe can potentially nonparamet-
rically identify as many points of support as we wish simply by
discretizing the continuous covariate in as many points as needed;
see Remark 2(iv) in Kasahara and Shimotsu (2009). Two caveats
should be made with respect to this result. The first is that there is
a numerical limit in the way we can discretize a continuous vari-
able. Each discrete group we create should contain enough obser-
vations for estimation. If we discretize too much, we may have
groups without any or only one observation. The second caveat is
that there is curse of dimensionality problem here. We are trying
to describe a higher dimensional distribution; and the same num-
ber of points of support are less informative about a higher dimen-
sional distribution. The same caveats may arise with the number
of values a discrete covariate takes and with the result on the in-
clusion of covariates independent of θ .

5.3. Semiparametric model

In the previous analysis we have not only allowed for maximal
(flexible discrete) heterogeneity across i, but also we are not
restricting our HFOM model to have a particular functional form.
In particular we have not imposed any restriction on the way
different values of xit affects yit . Nevertheless, if xit is continuous, or
a cardinal discrete variable that takes many values, such as year of
birth, then the effect of different values of x is usually restricted
by a parametric form. The obvious example is a linear index
model:

Psi = F0(ps0 + ps1xi0)

Gsit = F(gs0 + gs1xit)

Hsit = F(hs0 + hs1xit)

θsi = Fθ


ds0 +

L
l=0

ds1lxil


(5.11)

F0, F and Fθ are known cdf functions, such as the standard normal
cdf or the standard logistic function. This is equivalent to the
representation

Pr

yit = 1 | yi,t−1, xit


= F (ηi + αiyit−1 + βixit + δixityit−1)

where (ηi, αi, βi, δi) follow a discrete distribution with S points of
support.
Eq. (5.11) allows for dependence between θ and x, and includes
the independent case (L = −1 and ds1l = 0 for l = 0, . . . , T ), a
casewith correlation onlywith the observation of the initial period
(L = 0 and ds1l = 0 for l = 1, . . . , T ) and the case of correlation
with all the observations of xit (L = T and ds1l ≠ 0 for l = 0, . . . , T ).

The number of parameters is now (8 + L)S − (L + 2). It does
not depend on the number of values xit can take. This reduces
the number of parameters to identify with respect to the non-
parametric case without altering the number of different moment
conditions, rxit(T ,Nx). The latter value still depends on Nx and it is
given by Eq. (A.2). This implies that themaximumnumber of points
of support for which T periods are required for identification is

rxit(T ,Nx) − NT+1
x + L + 2

8 + L
(5.12)

which is greater than (5.10). Assuming independence between θ

and x (L = −1), this number is rxit (T ,Nx)−NT+1
x +1

7 , which is also
greater than (5.8). These reflect the important gains due to the
semiparametric assumption.

5.4. Time dummies and common variables

Finally, we consider the situation in which we add a covariate
that it is common to all individuals and only varies across periods:
xit = xt for all i. For instance, this is the case with aggregate
variables being used in a micro study, or with time dummy
variables. Sincewe are studying identification over the ipopulation
for a fixed T , we are only going to observe a given and fixed
realization of {xt}Tt=1. This implies we only have the 2T+1 possible
paths given {xt}Tt=1 that arises from the possible combinations of
{yit}Tt=1 we can observe over the population of i. Then, the number
of equations in our system here is the same as in the case without
covariates and the rank of the Jacobian also depends on rT . For
the same reason, xt is not going to be an informative variable for
the probability of yi0, nor for the distribution of the heterogeneous
parameters over the i population, that is, θ is independent of xt
(Pr(s|{xt}Tt=1) = Pr(s) = θs). However, this covariate increases the
number of parameters to be identified. Therefore, in this case, in
contrast with the results in previous subsections, more periods are
required for identification than in the case without covariates.

A situation often found in practice is the use of time dummies.
These variables take deterministic values, and, while treated as
separate variables, the only meaningful situation is where one of
them takes value one and all the others take value zero. If we add
time dummies to the model, we have K = T variables xt that can
take Nx = 2 values each, but in a deterministic way. Thus we have
(2 + 2T )S − 1 parameters: one G and H for each time dummy.
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Table 6.1
Incidence of unemployment.

Number Proportion

No unemployment 936 36.4
At most 1 year with unemployment 1141 44.4
At most 2 years with unemployment 1291 50.2
At most 3 years with unemployment 1435 55.8
At most 5 years with unemployment 1710 66.5
At most 10 years with unemployment 2188 85.1
At most 20 years with unemployment 2519 98.0
Unemployment in all years 16 0.6
Total sample size 2571 –

Then,

S ≤
rT

2 + 2T
. (5.13)

This implies a much larger T to identify a given S. For example, we
need T ≥ 8 for the identification of a model with S = 4. Similarly,
the minimum T to identify with S = 11 is T = 23.

If, on the other hand, Xt contains K discrete variables
taking many values or continuous variables, then we can use a
semiparametric model to capture the effect of X . For each point
of support s:

Gst = F


gs0 +

K
k=1

gskxkt



Hst = F


hs0 +

K
k=1

hskxkt


(5.14)

where F is a known cdf, such as the logistic. In this case the number
of parameters is (2 + 2(K + 1)) S − 1, and

S ≤
rT

2 + 2(K + 1)
. (5.15)

For example, if K = 2 and S = 9, then min T = 8; or if K = 2 and
S = 69, then min T = 23. These and values for other cases can be
found in Table 5.2.

6. An empirical illustration

6.1. Sample selection

We consider the incidence of unemployment in a year for
workers in Denmark from 1980 to 2003 (so that T = 23). We
draw a sample of male workers with high school education who
were aged 25 at the beginning of 1980 and who are continuously
married to the same wife for all 24 years that we follow them. This
is thus a very homogeneous sample in terms of observables; we
do this so that our finding of considerable heterogeneity cannot be
attributed to insufficient allowance for observable heterogeneity.
In all, we have 2571 such workers.15 We create a dummy variable
yit which is set to unity if worker i has any unemployment in year t
(and zero otherwise). Table 6.1 gives some statistics for the sample.

6.2. The model without covariates

The indicator variable yit is unity if worker i had a spell of un-
employment in year t . We begin with the model without covari-
ates. The likelihood function value for the saturated model, ℓsat
(4.5), is −12,252. The value for the saturated HFOMmodel, ℓres_sat,

15 Denmark has an administrative panel that follows all of the population of about
five million from 1980 onwards. Consequently we can select very homogeneous
strata without compromising sample size. Indeed, the sample drawn here is, in fact,
the population of men who fulfilled the selection criteria.
Table 6.2
Fit for different numbers of support points.

S df LR stat #θ ’s = 0.01

2 547 1063 0
3 543 701 0
4 539 605 0
5 535 536 0
6 531 512 0
7 527 500 0
8 523 494 0
9 519 491 1

10 515 491 2

Table 6.3
Parameter estimates with five support points.

Group Probabilities (×100)
P G H M θ

p (y0 = U) p (U | E) p (U | U) H − G Proportion

1 26.9 0.3 86.8 86.5 33.9
(4.5) (0.1) (1.2) (1.3) (5.3)

2 63.9 9.8 68.8 59.0 28.4
(5.7) (1.1) (1.6) (1.7) (3.1)

3 0.8 2.7 48.3 45.6 23.4
(5.5) (0.9) (6.8) (6.8) (5.2)

4 73.4 35.8 81.6 45.8 7.8
(4.2) (3.1) (1.2) (2.7) (1.3)

5 25.1 18.6 34.5 15.9 6.5
(5.6) (1.8) (4.1) (4.6) (1.5)

Standard errors given in brackets.

(4.7), is −17,449. The likelihood ratio statistic, 2 (ℓsat − ℓres_sat), is
thus 10,395.16 When estimating the mixture model we restrict the
mixing probabilities θs ≥ 0.01 and we restrict Gs,Hs and Ps to be
between 0.01 and 0.99 to ensure that we do not assign zero prob-
ability to any path. The maximum number of support points we
could have for the HFOM model is 138 (see Table 3.1). In prac-
tice, we cannot find more than a much smaller number than this;
see Table 6.2. For ease of reading, we present all likelihood func-
tion values for mixture models in LR terms relative to the value for
ℓres_sat; that is, the LR statistic shown is 2


ℓres_sat − ℓS

mix


. We also

show how many mixing parameters are at the imposed minimum
of 0.01. As can be seen, it does not seem to be possible to estimate
with more than eight components; that is, ℓ10

mix ≃ ℓΥ
mix.

To illustrate the mechanics of our method, we take a value
of S = 5.17 Table 6.3 presents the estimates. These display a
number of features. First, most (but not all) of the probabilities
are precisely estimated. Second, the starting values fall into three
categories: high (groups 2 and 4); medium (groups 1 and 5) and
low (group 3). Third, all groups display positive state dependence
(Hs > Gs). Finally, the marginal dynamic effects (Ms = Hs − Gs)
are all significant and vary across groups. Finally we note that
the conventional ‘one fixed effect’ assumption imposes that the
correlation betweenG andH is positive. The (weighted) correlation
calculated from our estimates is −0.35 (with a standard error of
0.19); so that even the qualitative implication is wrong for the
standard model.

The substantive implications of the estimates are best seen
graphically. The left panel of Fig. 6.1 graphs the probabilities

16 In an earlier version of this paper we developed a parametric bootstrap test for
assessing whether the HFOM hypothesis is rejected and for choosing S if it is not.
Since this is controversial (see Feng andMcCulloch, 1996) and takes us too far from
themain theme of this paper, we do not present results here. In the next section we
develop a valid test against an HFOM with covariates.
17 This choice is partly motivated by statistical criteria for themodels without and
with covariates and partly for presentational clarity in the figures below.
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Fig. 6.1. Probabilities with 5 points of support.
implied by the Chapman–Kolmogorov equations for the five
groups against age (or year, since all the workers in the sample
are in the same birth cohort). The groups can be identified
from their initial values given in Table 6.3. The largest group
start with a relatively high probability of unemployment (26.9%)
but have a very low transition probability from employment to
unemployment; consequently members of this group have a very
low probability of unemployment after age 40. The second largest
group display a sharply declining probability but, in comparison
to group 1, they start from a much higher probability (63.9%) and
only fall to a level of 26% in later life. The third largest group rarely
experience unemployment (group 3) and when they do, they have
a high probability of being employed the next year. The fourth
group are very prone to unemployment. Finally, the smallest group
have an almost constant probability of about 0.25.

However, there is evidence that the HFOM model does not fit
the datawell. This is apparent in the right panel of the figurewhich
shows the data mean proportions of unemployed for each year
and the predicted mean from the model (along with confidence
intervals). The estimation imposes that the two coincide at age 25
but they are conspicuously different thereafter. A formal test for
parameter stability can be constructed by splitting the sample and
estimating with dummy shifters for Hs and Gs. If we do this with
a dummy variable that is unity for the last 11 periods we have an
LR statistic of 384; given that we have an extra parameter for each
Hs and Gs, this has a χ2(10) distribution. This formally confirms
the time inhomogeneity that we see in the right panel of Fig. 6.1.
To capture this time inhomogeneity we turn to estimation adding
covariates to the model.
Table 6.4
Tests for age and cyclical effects.

Test against SFOM

Model df χ2

Age and cycle 20 808
Age only 10 766
Cycle only 10 163

6.3. Model with covariates

The right panel of Fig. 6.1 suggests that we need to allow for
time inhomogeneity that is associated with age. There also seem
to be cyclical deviations from a smooth age profile. To capture
these we include age and the aggregate unemployment rate as
covariates and the semiparametric specification in (5.14).18,19 We
first present likelihood ratio statistics for including the extra sets
of variables. Since we have 5 points of support and we include
regressors in the Gs and Hs transition probabilities, we have 10

18 Note that aggregate unemployment rate is endogenous by definition, because
the endogenous variable in our model is part of this explanatory variable. A
solution to this is to construct an aggregate unemployment rate excluding from the
population the group we are using. Since our group of workers represents less than
0.0001% of theworking population, thiswill hardly have an impact on the estimates.
19 Other factors that we could take into account are other macro variables such as
changes in the unemployment insurance system; individual time invariant factors
such as parental background and individual time varying factors such as health
or the presence of children. Note that in this empirical illustration we have taken
account of the time invariant cohort factor by taking only one birth cohort.
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Fig. 6.2. Probabilities with age and cyclical effects.
extra parameters for each covariate. Table 6.4 presents the LR
statistics against the model with 5 points of support and no
covariates. As can be seen, age and the aggregate unemployment
rate are individually and jointly highly significant. The χ2(10)
statistic for the stability test used in the previous subsection
is 36; although formally this is a rejection, it is a considerable
improvement on the model without age and cyclical effects.

As before, the implications of the estimates are most easily
seen in figures of the unemployment sequences. These are given
in Fig. 6.2. The right hand panel indicates that adding the age
effects remedies most of the misfit seen in the earlier figure. The
left hand panel shows that the impact of the business cycle is
very heterogeneous. For example, the groups which have very
low probabilities are hardly affected at all. However, the next
prone group (with a starting value of 0.22) displays considerable
cyclical variation. The group which have the highest propensity to
be unemployed (the highest curve after age 32) also seem to be
unaffected by the cycle. Thus the link between the propensity to be
unemployed and the impact of the business cycle is not monotone.
Estimates that did not allow for heterogeneous effects of covariates
would mask this effect.

6.4. Sample with small T

Since one of the main advantages of our estimator is that it is a
fixed-T consistent estimator, it makes sense to consider a situation
where T is relatively small. We use the same N = 2571 workers as
before but taking only the ages 35–40, giving six waves and T = 5.
The maximum number of support points we could have for the
HFOMmodel is 8 (see Table 3.1). We include age and the aggregate
Table 6.5
Fit for different numbers of support points.

S df LR stat #θ ’s = 0.01

1 56 419.7 0
2 48 79.5 0
3 40 56.4 0
4 32 36.4 0
5 24 24.4 0
6 16 19.9 0
7 8 13.5 1
8 0 12.8 2

unemployment rate as covariates and employ the semiparametric
specification in (5.14). Table 6.5 presents the likelihood function
values for mixture models in LR terms relative to the value for
ℓres_sat.

Given these results we take themodel with S = 4. This is an ex-
ample for which our identification result is very useful relative to
the result in Browning and Carro (2013), since we have more than
(T + 1) /2 types describing our data. The χ2(16) likelihood ratio
statistic for including the covariates is 67.2. Once again, it is most
convenient to show the implications using a figure; see Fig. 6.3. The
initial probabilities for the four groups are 0.01, 0.02, 0.57 and 0.99
with group proportions of 0.03, 0.77, 0.11 and 0.08, respectively.
The first group (which starts very low and then goes up dramati-
cally) catches the eye; this small group seems very sensitive to the
business cycle. The second group is the largest group and always
has a lowprobabilitywith no apparent responsiveness to the cycle.
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Probabilities – allowing for covariates Mean probabilities – allowing for covariates
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Fig. 6.3. Probabilities with six waves.
An additional remark20 from this small-T illustration is that the
Fig. 6.3 does not seem to be a subplot of Fig. 6.2. This is an indica-
tion of parameter instability in the data with large T that cannot be
captured only by the time trends. Slicing the large T sample in sev-
eral small-T samples could be a very flexible solution. This provides
an additional motivation for having small-T identification results.
Turning to the mean fit (the right hand side panel) we see that the
mean prediction tracks the data well, albeit with wide confidence
intervals, reflecting the loss of precision from using only six waves.

7. Conclusions

This paper studies identification from a panel with given T of
a non-parametric and a semiparametric dynamic binary choice
model with maximal heterogeneity. The more traditional linear-
index specification where only the constant term is individual
specific is extended since the latter imposes undesired restrictions
on the economic model and it does not generally fit the data. In
contrast, our model allows variation in all of the parameters (and
even the distribution function) across individuals. These models
are not generally identified from a cross section of fixed-T periods.

In our specification the joint distribution of the initial observa-
tion and the transition probabilities is unrestricted, using flexible
discrete mixture distributions. We establish necessary and suffi-
cient conditions for point identification of our heterogeneity struc-
ture that are very easy to check and show how it depends on the
length of the panel.

20 For which we thank a referee.
A conclusion from this study is that a model with a very
flexible distribution of the heterogeneity can be identified from
a cross section of T periods, even for T as small as 3. So a
model that allows for maximal heterogeneity with a very rich and
flexible distribution can be point identified. With such flexibility,
important features of the distribution of the heterogeneity such
as dependencies of transition probabilities on initial condition are
unrestricted.

We show how to estimate using Maximum Likelihood. The
asymptotic properties of the estimator in sample sizes with fixed
panel length are well known: it is consistent and efficient. We
apply the techniques we study to a panel of Danish workers
who are very homogeneous in terms of observables. One of our
principal findings is that the impact of cyclical variations on
unemployment for individual workers are heterogeneous with
non-obvious relations. Findings in this application seems to us very
illustrative of the potential usefulness of our approach for applied
work.

Appendix A. Proof of the number of different equations

A.1. Number of ‘independent’ equations

Here we prove Eq. (2.14), that is, that the number of ‘indepen-
dent’ equations in system (2.8) is

rT = T (T + 1) + 2.

By Lemma 2.1, all we have to do is to count the number of differ-
ent sets


yj0, n

j
00, n

j
01, n

j
10, n

j
11


that the j = 1, . . . , 2T+1 possible
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paths can generate. Before counting, note that half of the rT pos-
sible different paths have y0 = 0 and the other half have y0 = 1
and these two halves are symmetric, so we can count only paths
with y0 = 0 and multiply its number by two. Notice also that, for
y0 = 0 cases, n00 + n01 > 0, n10 + n11 > 0 only if n01 > 0, and
that n10 ∈ {n01 − 1, n01}. We set n00 to count, starting with the
maximum value it can take:

– If n00 = T , then there is only one possibility: {(y0, n00, n01, n10,
n11)} = {(0, T , 0, 0, 0)}.

– If n00 = T − 1, then there is only 1 possibility: {(0, T − 1, 1,
0, 0)}.

– If n00 = T − 2, then there are 2 possibilities: {(0, T − 2, 1, 1,
0) , (0, T − 2, 1, 0, 1)}.

– If n00 = T − 3, then there are 3 possibilities: {(0, T − 3, 2, 1,
0) , (0, T − 3, 1, 1, 1) , (0, T − 3, 1, 0, 2)}.

– If n00 = T − m, then there are m possibilities, which are:
0, T − m,


m − q

2


,


m − q

2


, q
m−1

q=0
(A.1)

where ⌈x⌉ gives the smallest integer greater than or equal to x
and ⌊x⌋ gives the largest integer less than or equal to x.

This goes untilm = T . Therefore,

rT = 2


1 +

T
m=1

m


= 2


1 +

T (T + 1)
2


= T (T + 1) + 2

where the 1 in

1 +

T
m=1 m


is accounting for the one case with

m = 0, that is, {(0, T , 0, 0, 0)}. Note that for this proof it is not
necessary to write all the possible different


yj0, n

j
00, n

j
01, n

j
10, n

j
11


sets. We only wanted to count them. However, knowing (A.1) is
going to be useful for the next proof.

A.2. Number of ‘independent’ equations with covariates: rxit(T ,Nx)

Here we prove Eq. (A.2), that is, that the number of different
equations in the case with xit covariate that takes Nx values and
varies both in i and t is

rxit(T ,Nx) = 2Nx
(T + Nx − 1)!
T ! (Nx − 1)!

+ 2Nx

T
m=1

m−1
q=0

(T − m + Nx − 1)!
(T − m)! (Nx − 1)!

×

m−q
2


+ Nx − 1


!m−q

2


! (Nx − 1)!

×

m−q
2


+ Nx − 1


!m−q

2


! (Nx − 1)!

(q + Nx − 1)!
q! (Nx − 1)!

. (A.2)

It can be seen in (5.7) that now we have to count the number
of different sets {yj0, x

j
0, n

j
00|1, . . . , n

j
00|Nx

, nj
01|1, . . . , n

j
01|Nx

, nj
10|1,

. . . , nj
10|Nx

, nj
11|1, . . . , n

j
11|Nx

} that the j = 1, . . . , 2Nx(T+1) possible
paths can generate. nj

01|l is the number of yt−1 = 0 → yt =

1 transitions for path j given xit takes the l-th value. Note thatNx
l=1 n00|l = n00, so the number of 00 transitions we have for the

yt are being divided between nj
00|1, . . . , and nj

00|Nx
depending on

the value of xit for each particular path. Therefore, we first count
the number of ways n00 can be arranged into those Nx possible
transitions without any other restriction than that (this includes
that n00 transitions can be arranged in a way that some of the Nx
new transition counters are zero). For any given value of n00 = n
this number is:

(n + Nx − 1)!
n! (Nx − 1)!

. (A.3)

(A.3) gives the number for a given set with n00 = n. We now
have to add this for all the possible values of n00. The problem
and formula (A.3) are the same for n01, n10, and n11. The number
of possible sets of {y0, n00, n01, n10, n11} and the sets have being
derived in previous appendix. There are rT possible sets and, from
Eq. (A.1), the first half of the rT sets of {y0, n00, n01, n10, n11} are (0, T , 0, 0, 0) ,


0, T − m,


m − q

2


,


m − q

2


, q
m−1

q=0

T

m=1

 . (A.4)

The other half with y0 = 1 can be obtained similarly, and the total
number will be the number for y0 = 0 multiplied by two.

Therefore, combining (A.3) and (A.4) we have that the number
rxit(T ,Nx) of possible sets of {y0, x0, n00|1, . . . , n00|Nx , n01|1, . . . ,
n01|Nx , n10|1, . . . , n10|Nx , n11|1, . . . , n11|Nx} is given by Eq. (A.2) that
has been written again in this appendix. The Nx comes from the
number of possible values of x0 that will give other different
combinations with everything else being equal.

Appendix B. Proof of Proposition 3.1: conditions for local
identification

Proving the local identification result in Proposition 3.1 is a
direct implication of the rank of Jacobian of the system. The first
section here shows that studying identification of the distribution
of (P,G,H) in (3.3) is equivalent to study identification of (G,H)
conditional on the first observation. Then we present several steps
that simplify the system and matrices we need to analyze. This
is done in order to obtain a tractable form of the Jacobian of the
system. Then, we present the result and its proof about the rank of
the system conditional on the first observation. Finally, using that
result, we prove Proposition 3.1.

B.1. Breaking the problem in two: focusing on the process conditional
on the first observation

The system of equations that defines our problem (3.3) can
be expressed in terms of that system conditional on the initial
observation times the distribution of the initial observation. That
is π = πy0 ∗ Pr(y0), where πy0 contains the probability of each of
theΓ = 2T+1 paths conditional on the initial observation being y0.
The first Γ

2 rows ofπy0 are the probabilities of the paths that start at
y0 = 0, given that y0 = 0, and the last Γ

2 rows are the probabilities
of the paths that start at y0 = 1 conditional on y0 = 1. 21 The
system is, then:

πy0 =


πy0=0
πy0=1


= Ay0θy0 =


Ay0=0 0
0 Ay0=1

 
θy0=0
θy0=1


(B.1)

where πy0=0 and πy0=1 are vectors of dimension Γ

2 × 1,Ay0 is a
Γ ×2S matrix, θy0 is a vector of dimension 2S,Ay0=0 and Ay0=0 are

21 Notice that the probability of the first Γ

2 paths given y0 = 1 is zero because
these are the paths that start at y0 = 0. For the same reason the probability of the
last Γ

2 paths given y0 = 0 is zero.
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Γ

2 × S matrices, 0 are Γ

2 × S matrices whose elements are all zero,
and θy0=1 and θy0=0 are vectors of dimension S × 1. System (B.1)
is simply a compact expression for two separate processes: one for
those observation that start with 0 and those that start with 1. The
jth elements of πy0=0 and πy0=1 are respectively:

πj|y0=0 =
πj

2T
k=1

πk

, j = 1, . . . , 2T

πj−2T |y0=1 =
πj

2T+1
k=2T+1

πk

, j = 2T
+ 1, . . . , 2T+1

where πj and πk are the elements of π in (3.3), that is, the
unconditional proportions of each path. The elements of θy0=0 and
θy0=1 give the probability of each type conditional on y0 = 0 and
y0 = 1 respectively:

θy0=0 =


θ1|y0=0, . . . , θS−1|y0=0, 1 −

S−1
s=1

θs|y0=0

′

θy0=1 =


θ1|y0=1, . . . , θS−1|y0=1, 1 −

S−1
s=1

θs|y0=1

′

where

θs|y0=0 =
Pr (s, y0 = 0)
Pr (y0 = 0)

=
Pr (y0 = 0|s) ∗ Pr(s)
S

k=1
Pr (y0 = 0|s) ∗ Pr(k)

=
(1 − Ps) ∗ θs

S
k=1

(1 − Pk) ∗ θk

for s = 1, . . . , S − 1 (B.2)

θs|y0=1 =
Ps ∗ θs

S
k=1

Pk ∗ θk

, for s = 1, . . . , S − 1. (B.3)

The system (B.1) contains all the informationwe can use to identify
the distribution of (Gs,Hs) conditional on the initial observation.
Once we have recovered θy0=0 and θy0=1 from that system, the
distribution of Ps and theunconditional probability of each type (θs)
can be uniquely recovered from (B.2), (B.3), and the unconditional
probability of the initial observation (which is a proportion of ones
that we observe):

Pr (y0 = 1) =

S
k=1

Pk ∗ θk. (B.4)

Once we have θy0=0 and θy0=1 and Pr (y0 = 1), (B.2)–(B.4) from
a system of 2S − 1 equations that uniquely identify the 2S − 1
unknowns (P1, P2, . . . , PS, θ1, . . . , θS−1) for possible values of the
parameters that are in the open interval (0, 1). Furthermore, these
solutions have close forms. Substituting (B.4) in (B.2) and (B.3)
implies
(1 − Pr (y0 = 1)) θs|y0=0 = θs − Ps ∗ θs (B.5)

Ps ∗ θs = Pr (y0 = 1) θs|y0=1. (B.6)
Then, substituting (B.6) in (B.5), and doing somemanipulations we
obtain the solution for θs

θs = θs|y0=0 ∗ (1 − Pr (y0 = 1)) + θs|y0=1 ∗ Pr (y0 = 1) ,

for s = 1, . . . , S − 1. (B.7)
Replacing θs with its solution in (B.6) we obtain the solution

Ps =
θs|y0=1 ∗ Pr (y0 = 1)

θs|y0=0 ∗ (1 − Pr (y0 = 1)) + θs|y0=1 ∗ Pr (y0 = 1)
,

for s = 1, . . . , S − 1. (B.8)
Finally, (B.4) can be written as Pr (y0 = 1) =
S−1

k=1 Pk ∗ θk + PS ∗
1 −

S−1
k=1 θk


. Substituting (B.7) and (B.8) here we can recover

the solution for PS :

PS =

Pr (y0 = 1)

1 −

S−1
k=1

θk|y0=1


1 − (1 − Pr (y0 = 1))

S−1
k=1

θk|y0=0 − Pr (y0 = 1)
S−1
k=1

θk|y0=1

. (B.9)

This uniqueness or global invertibility in (B.2), (B.3), and (B.4)
means that any non-identification problem is going to be only in
(B.1). That is, if we are able to identify the distribution of (G,H)
conditional on the first observation, we are also able to identify the
unconditional distribution of (P,G,H).

That one-to-one map from


θs|y0=0, θs|y0=1
S−1
s=1 , Pr(y0 = 1)


to

{θs}

S−1
s=1 , {Ps}Ss=1


, also shows that we can identify different

values of Ps, that is, an underlying distribution of the heterogeneity
in the probability of the initial observation, due to its relation
with the distribution of the heterogeneity in (G,H). If they were
independent, then θs|y0=0 = θs|y0=1, and we could not identify
different values of Ps but the proportions of ones we observe in the
first period. That is, θs|y0=0 = θs|y0=1 imply in (B.8) and (B.9) that
Ps = Pr (y0 = 1) for all s = 1, . . . , S.22 On the other hand we most
often only care about the distribution of the initial condition as long
as it is correlated with the distribution of the rest of the periods
and ignoring it leads to misleading conclusions. In such a situation
we are only interested in the distribution of the heterogeneity in
(G,H).

B.2. Decomposition of matrix Ay0

From Eqs. (2.7) and (3.2), without the probability of the
initial observation since we have conditioned on it, any el-
ement of a row j of matrices Ay0=0 and Ay0=1 is given by

Gnj01 (1 − G)n
j
00 Hnj11 (1 − H)n

j
10 . From the binomial theorem we

have that

Gnj01 (1 − G)n
j
00 Hnj11 (1 − H)n

j
10

=

nj10
z=0

nj00
x=0

(−1)x(−1)z

nj
00

x


nj
10

z


G(x+nj01)H(z+nj11). (B.10)

Based on this we can decompose matrix Ay0 as the product of two
matrices:

Ay0 =


C0 0
0 C1

 
E1 · · · ES 0 · · · 0
0 · · · 0 E1 · · · ES


(B.11)

where C =


C0 0
0 C1


will contain the coefficients


(−1)x(−1)z

nj00
x

 
nj10
z


of (B.10) and E will contain the corresponding G,H

and P terms. The matrix C does not depend on the value of the
parameters and, therefore, it will be unique for a given T .

Es is the following vector

E′

s =

1 Gs .. GT

s Hs GsHs .. GT−1
s Hs H2

s

.. GT−2
s H2

s . . . HT−1
s GsHT−1

s HT
s


(B.12)

22 Another way of seeing this is to notice the following. If the initial condition
is independent of the transition probabilities, the observations subsequent to the
initial observation contain no informationwhatsoever about P . Therefore,wewould
have only one observation (the initial observation) to identify the distribution of
P . With only one observation, only one proportion (Ps = Pr (y0 = 1) for all s =

1, . . . , S) can be identified.
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of dimension

eT =
(T + 1)(T + 2)

2
. (B.13)

Notice that eT is the triangular number (T + 1). For instance, with
T = 2

Es =

1 Gs G2

s Hs GsHs H2
s

′
.

Define C0 as Γ

2 × eT matrix whose row j has the binomial
coefficients from the path (the binary number with T + 1 digits)
that correspond with the decimal number (j − 1) : j = 1, . . . , Γ

2 .
For instance, the third row with T = 2 corresponds with the path
010, which is the three-digit binary number that represents the
decimal number 2. This way of using the corresponding decimal
numbers to order the paths and rows ofC0, also implies the order of
the elements of vector Es. Each row j in C0 contains the coefficients
of the different terms of (B.10) plus the zeros needed to fill the
rest of the cells for those elements in Es that do not appear in the

probability of path j. A coefficient

(−1)x(−1)z


nj00
x

 
nj10
z


is

completely defined by j, x and z, and it is in row j and column

(Z + nj
11)(T + 2) −

(z + nj
11)(z + nj

11 + 1)
2

+ x + 1 + nj
01 (B.14)

of matrix C0.
Define C1 in the same way as C0, but j =

Γ

2 + 1, . . . , T . Each
coefficient of (B.10) is in the column given by (B.14) and row j− Γ

2 .
Then,

C =


C0 0
0 C1


. (B.15)

ThedimensionofC isΓ ×2eT and thedimensionof each sub-matrix
C0 and C1 is Γ

2 × eT . From (B.10) and (B.14) matrix C can be easily
computed for any given T . For example, with T = 2

C =



1 −2 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 −1 1 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 1


(B.16)

with dimension 8 × 12.

B.3. Eliminating redundancies in Ay0

As stated in Proposition 2.2 only rT (=T (T + 1) + 2) of the
Γ (=2T+1) possible paths are distinct paths. Therefore, Ay0 cannot
have a rank bigger than rT sinceΓ −rT rows inAy0 are repetitions of
rowswhose paths are the same.Here eliminate those redundancies
in Ay0 since it is the rank of it which will define the rank of the
system and the rank of its Jacobian will be the rank of J . Let us
denote the matrix without redundancies with the subscript r .

First we take from C those rows j that correspond to a path j that
is not different from a previous path. This means that the number
of rows of Cr is rT . Secondly we reduce the number of columns in
C that are zero or can be expressed as linear combinations of other
columns. Thismeans thatwe are eliminating 2T columns (T in each
sub-matrixC0 andC1) so that the number of columns ofCr equals rT
too. This column reduction requires the corresponding adjustment
in Es.

In C0 this only requires to eliminate the T columns that are zero.
These columns correspond to the T elements in Es that are only a
function of Hs. That is, we eliminate Hs,H2

s , . . . , and HT
s from Es
when using it in the part of the system that gives the probability
for those paths startingwith 0. These elements are part of (B.10) for
the paths that start at y0 = 1 but Hs cannot be alone an element of
(B.10) when y0 = 0. Then,

E′

s,0r =

1 Gs .. GT

s GsHs .. GT−1
s Hs GsH2

s

.. GT−2
s H2

s . . . GsHT−1
s


. (B.17)

In C1, in addition to a column that is zero and corresponds
to element GT

s in vector Es, there are T − 1 columns that are
linear combinations of other columns. These T − 1 columns
to be eliminated from C1 correspond to


GT−i
s H i

T−1
i=1 in Es. We

eliminate

GT−i
s H i

s

T−1
i=1 from Es and replace


GT−i
s H j

s

i−1

j=0

T−1

i=1
by

GT−i
s H j

s


1 − H i−j

s

i−1

j=0

T−1

i=1
. This reflects the fact that, for paths

starting at y0 = 1,GT
s cannot be part of (B.10), and Gs with any

exponent will only appear in (B.10) if there is at least a (1 − H),
given that G is Pr (yt = 1|yt−1 = 0). Thus, the vector Es1r is of
dimension rT

2 , its typical element is GT−i
s H j

s


1 − H i−j

s


for i =

1, . . . , T − 1 and j = 0, . . . , i − 1, which is in position T + i +

1 + 1 {j > 0}
j−1

k=0 (T − k) in the vector. That is,

E′

s,1r =

1 Gs


1 − HT−1

s


.. GT−1

s (1 − Hs) Hs

GsHs

1 − HT−2

s


.. GT−2

s Hs (1 − Hs) H2
s

GsH2
s


1 − HT−3

s


.. GT−3

s H2
s (1 − Hs) . . .

. HT−2
s GsHT−2

s (1 − Hs) HT−1
s HT

s


. (B.18)

For example, with T = 2 and S = 2:



π1|y0=0

π2|y0=0

π3|y0=0

π4|y0=0

π5|y0=1

π6|y0=1

π7|y0=1

π8|y0=1



=



1 −2 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 −1 1 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 1



∗



1 1 0 0
G1 G2 0 0
G2
1 G2

2 0 0
H1 H2 0 0

G1H1 G2H2 0 0
H2

1 H2
2 0 0

0 0 1 1
0 0 G1 G2

0 0 G2
1 G2

2
0 0 H1 H2

0 0 G1H1 G2H2

0 0 H2
1 H2

2




θ1|y0=0

1 − θ1|y0=0

θ1|y0=1

1 − θ1|y0=1


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=



1 −2 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 −1 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1



×



1 1 0 0
G1 G2 0 0

G2
1 G2

2 0 0
G1H1 G2H2 0 0
0 0 1 1
0 0 G1 (1 − H1) G2 (1 − H2)

0 0 H1 H2

0 0 H2
1 H2

2



×


θ1|y0=0

1 − θ1|y0=0

θ1|y0=1

1 − θ1|y0=1

 (B.19)

where the three matrices in the last line are respectively denoted
by Cr


=


C0r 0
0 C1r


, Ey0r


=


E1,0r E2,0r 0 0
0 0 E1,1r E2,1r


, and θy0 .

B.4. Isolating the unknown parameters

It is important to note that C and Cr do not depend on unknown
parameters. We can construct C and Cr and calculate the rank of C
for any given T , using (B.10), (B.14) and indications inAppendix B.3.
Obviously, the rank of C is equal to the rank of Cr . Table 3.1 reports
rank(C), for T = 2, . . . , 23. For all those values of T , the rank of C
is the number of equations that are different in the system, rT :

rT = T (T + 1) + 2 = rank(C) = rank(Cr). (B.20)

The value rT is also the dimension of the square matrix Cr . That is,
Cr is a matrix of full rank and we can invert it. Then, our system
conditional in the first observation:

πy0r = CrEy0rθy0

is equivalent to

C−1
r πy0r = Ey0rθy0 (B.21)

where C−1
r =


C−1
0r 0
0 C−1

1r


andπy0r are the proportions, conditional

on y0, for the rT paths that are different. The advantage of (B.21) is
that the right hand side contains only unknown values. The two
subsystems in (B.21), one conditional on y0 = 0 and the other
conditional on y0 = 1, are

C−1
0r πy0=0r =



1 · · · 1
G1 · · · GS

. · · · .

GT−i
1 H j

1 · · · GT−i
S H j

S
. · · · .

G1HT−1
1 · · · GSHT−1

S



×


θ1|y0=0

.

θS−1|y0=0

1 −

S−1
s=1

θs|y0=0

 (B.22)
C−1
1r πy0=1r

=



1 · · · 1
G1

1 − HT−1

1


· · · GS


1 − HT−1

S


. · · · .

GT−i
1 H j

1


1 − H i−j

1


· · · GT−i

S H j
S


1 − H i−j

S


. · · · .

HT
1 · · · HT

S



×


θ1|y0=1

.
θS−1|y0=1

1 −

S−1
s=1

θs|y0=1

 . (B.23)

It is clear from a direct inspection of (B.22) and (B.23) that the
first equation in each of these two systems is trivially satisfied for
any value of the parameters since it is the sum of the probability
of point of support s which by definition is always equal to one.
Therefore, although (B.21) contains rT different equations, only rT−
2 equations restrict the value of the unknowns. This correspond to
the fact that elements in πy0=0 and πy0=1 sum one, so one of them
can be expressed as a linear combination of all the other elements
inside each subsystem.Given this, inwhat followswhenwe refer to
the these systems (B.21)–(B.23), and tomatrix Ey0r we are referring
to their formulation without the first elements that trivially sum
one. Then the dimension of Ey0r is (rT − 2) × S.

B.5. The rank of Jr matrix

The identification result that we try to prove is based on J
(the Jacobian matrix of system (3.3)) having rank greater than
or equal to the number of unknowns. This is equivalent to the
Jacobian of (B.21) having rank greater than or equal to the number
of unknowns in this system.Wedenote the latter by Jr . Jr is amatrix
of dimension (rT − 2)×(4S − 2) composed of the following parts:

– First S columns that contain the derivatives with respect to
G1, . . . ,GS , whose general form is

θs|y0=0
.

(T − i)GT−i−1
s H j

sθs|y0=0
.

HT−1
s θs|y0=0

1 − HT−1
s


θs|y0=1

.

(T − i)GT−i−1
s H j

s


1 − H i−j

1


θs|y0=1

.
0


. (B.24)

– Next S columns that contain the derivatives with respect to
H1, . . . ,HS , whose general form is

0
.

jGT−i
s H j−1

s θs|y0=0
.

(T − 1)GsHT−2
s θs|y0=0

− (T − 1)GsHT−2
s θs|y0=1

.

GT−i
s


jH j−1

s


1 − H i−j

s


− (i − j)H i−1

s


θs|y0=1

.

THT−1
s θs|y0=1


. (B.25)
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7)

8)
Jr =


θ1|y0=0


1 − θ1|y0=0


0 0 G1 − G2 0

2G1θ1|y0=0 2G2

1 − θ1|y0=0


0 0 G2

1 − G2
2 0

H1θ1|y0=0 H2

1 − θ1|y0=0


G1θ1|y0=0 G2


1 − θ1|y0=0


G1H1 − G2H2 0

(1 − H1) θ1|y0=1 (1 − H2)

1 − θ1|y0=1


−G1θ1|y0=1 −G2


1 − θ1|y0=1


0 ∗

0 0 θ1|y0=1

1 − θ1|y0=1


0 H1 − H2

0 0 2H1θ1|y0=1 2H2

1 − θ1|y0=1


0 H2

1 − H2
2

 (B.2

∗ = G1 (1 − H1) − G2 (1 − H2) . (B.2

Box I.
– Last 2 (S − 1) columns that contain the derivativeswith respect
to θ1|y0=0, . . . , θS−1|y0=0, θ1|y0=1, . . . , θS−1|y0=1, whose general
form is:

Gs − GS
.

GT−i
s H j

s − GT−i
S H j

S
.

GsHT−1
s − GSHT−1

S
G1

1 − HT−1

1


− GS


1 − HT−1

S


.

GT−i
s H j

s


1 − H i−j

s


− GT−i

S H j
S


1 − H i−j

S


.

HT
s − HT

S


. (B.26)

For example, with T = 2 and S = 2, we have Jr given in Box I
Since we are trying to derive the minimum number of periods

needed for identifying a distribution with S points of support, we
first look at the case where S is not limiting the rank of the matrix.
Therefore, we consider here a case where Jr is a squared matrix:
4S −2 = rT −2. If squared Jr matrix has full rank, this will give the
identification condition.

Jr depends on the value of the unknown parameters, and so
does the determinant of it det (Jr). Therefore, by simply looking at
its general form we cannot conclude whether det (Jr) is different
from zero for all the possible values of the parameters. However,
it is not difficult to see that if we evaluate det (Jr) at values
of the parameters where there is no special relations between
the different parameters and points of support all the rows and
columns in Jr are linearly independent and, therefore det (Jr) ≠ 0
when evaluated at those values. Furthermore, simulating many
times the matrix Jr with random draws for the Ps’s, Gs’s and Hs’s
we found for all those values that squared Jr has det (Jr) ≠ 0 that
is, full rank and, therefore the rank of Jr is given by: rT −2. Of course
this only shows that Jr has full rank for those particular numbers
tried on the simulations. However finding even only one point for
which det (Jr) ≠ 0 is going to be crucial to prove a result about the
rank of Jr in general. The argument is as follows.

Firstly, it is important to note that the equations in system
(B.21) are polynomial functions and, therefore det (Jr) is also a
polynomial function R4S−2

−→ R. A polynomial function is either
identically zero; that is, it is zero for all values at which that
function is evaluated, or the set of values at which is zero (its
roots), is of measure zero in R4S−2. This result is proved in Lemma
1.1 of Eisenfeld (1986). According to this result, if the polynomial
function is not identically zero, then it is different from zero almost
everywhere. Therefore, using Lemma 1.1 of Eisenfeld (1986), it is
enough tohave found a value of theparameters such that det (Jr) ≠

0 at that particular point to conclude that the det (Jr) ≠ 0 almost
everywhere. Putting it in different words, given that there are
points at which Jr has full rank, the set of values of the unknown
parameters for which squared Jr does not have full rank is a set of
measure zero.
Thus, we can conclude that for any given S,

rank(Jr) = min (rT − 2, 4S − 2)

almost everywhere.

B.6. Proof of Proposition 3.1

That (3.8) in Proposition 3.1 is a sufficient condition for
identification is a direct application of the general inverse function
theorem and the result about the rank of the Jacobian we have
shown above. For local point identification of (G,H) |y0 the inverse
function theorem requires that the rank of Jr be equal to the
number of unknown parameters. As shown in B.5, the rank of
Jr is equal to min (rT − 2, number of unknown parameters of
the distribution conditional on the first observation). Therefore,
the requirement for this case is that the number of unknowns be
smaller than or equal to rT − 2, that is 4S − 2 ≤ T (T + 1). From
here we obtain the sufficient condition to identify a distribution of
(G,H) |y0 in Eq. (3.8). To prove that this condition is also sufficient
for identification of the distribution of (P,G,H) with S points of
support, it is enough to recall that (G,H) |y0 and the observed
probability of the initial observation define a unique value for the
parameters of the unconditional distribution of (P,G,H), as shown
in B.1.

To prove the necessity of condition (3.8) we use Theorem 5.A.1
in Appendix to Chapter 5 in Fisher (1966). That theorem states
that having the rank being equal to the number of unknowns is
a necessary condition for a local identification of a solution if that
solution is a regular point. A point is defined as regular when for
all points in a sufficiently small neighborhood of it the Jacobian has
the same rank as in the point (see Definition 5.A.1 in Appendix to
Chapter 5 in Fisher (1966)). As shown in B.5 the rank of the Jacobian
is constant for all points for which (3.8) is a sufficient condition
(that is, all points except a set of points of zeromeasure). Therefore,
for those points it is also a necessary condition for identification.

Appendix C. Non-regular points

When a point is not regular, the condition on the rank of the
Jacobian is sufficient but it is not necessary. Thus points that are
in the zero measure set of non-regular points may also be locally
identified. As it turns out, all of the non-regular points we have
found are not locally identified. Moreover, it is potentially fruitful
to investigate the properties of non-regular points.

Given there is no explicit solution to system (3.3) and it contains
many non-linear equation and unknowns, we have worked with
the simpler case T = 2, S = 2 to locate non-regular points and
study identification. Recall that non-identification means that if
we have a π (P,G,H, θ1, . . . , θS) in (3.4) that is generated from
one of these points, then we will not be able to recover a unique
value of (P,G,H, θ1, . . . , θS) from those π ′s. The most interesting
cases in terms of its economic interpretation are straightforward
to generalize to higher T and S. Some of the other points we have
located are only for that simpler case. These other cases usually
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do not have an economic interpretation in our model but impose
very particular restrictions between the different points of support
of the unobserved heterogeneity.23 In practical terms we are not
generally interested in such cases and they have measure zero.
Aside for the obvious cases where any of the parameters is at the
boundaries of the parameters’ space (that is, it is zero or unity), the
following is the list of the interesting non-regular points we have
found24:

1. Ps = Gs = Hs for all s = 1, . . . , S. In this case the model is not
a Markov chain but a static model where each period, including
the initial observation, are independent realizations ofmixtures
of identical Bernoulli distributions.

2. Ps is from the steady state. That is: Ps =
Gs

1+Gs−Hs
, for all

s = 1, . . . , S. If we knew that our initial observation is from
the steady state and incorporated this to the model we try
to identify, then (3.8) will again be a sufficient condition for
identification.

3. G1 = G2 = · · · = GS , or H1 = H2 = · · · = HS , or P1 = P2 =

· · · = PS . Here, the S points of support are not distinct points in
all the three dimensions. This is a violation of the assumption
that the model we tried to identify has S points of support. In
practice, this is the non-identified case with probably easier
solution becausewe only need to adjust S to the actual (smaller)
number of distinct points of support. Theproblems coming from
not having distinct points in Ps are particularly easy to avoid
since we can focus on identifying G and H conditioning on the
first observation, as done in Appendix B.
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