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Outline

So far, we have estimated idiosyncratic earnings risk.

persistent shocks.

transitory shocks.

We want to understand what are the implications of this risk.

We will focus on persistent shocks and neglect transitory shocks.
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Why Persistent Shocks?

Consider Friedman’s permanent income model with finite life, T . The
household maximizes consumption starting its life with zero assets, a0, and
has to dye with zero assets. To keep the math simple, I simplify the
income process:

max
ct ,at+1

E0

{ T∑
t=0

βtu(ct)
}

(1)

s.t.

ct + at+1 = yt + (1 + r)at (2)

aT+1 = a0 = 0 (3)

yt+1 = zt+1 + ιt+1 (4)

zt+1 = zt + ϵt+1. (5)

Income follows a random walk with innovations ϵ and transitory shocks ι.
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Why Persistent Shocks? II

The Euler equation is given by:

(1 + r)βEtu
′(ct+1) = u′(ct). (6)

Assume β = 1
1+r and quadratic utility: u = ct − b

2c
2
t . Then

u′ = 1− bct (7)

Etu
′(ct+1) = 1− bEtct+1 (8)

ct = Etct+1 (9)

Consumption is a random walk responding to income shocks.
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Why Persistent Shocks? II

ct = Etct+1 (10)

In period T − 1,

ET−1cT = ET−1YT + (1 + r)aT = YT−1 + (1 + r)aT . (11)

For notation, suppose a household enters period T − 1 with a before shock
income ỸT−1 with YT−1 = ỸT−1 + ιT−1 + ϵT−1. Moreover, suppose
aT−1 = 0. Its remaining expected lifetime income is

YT−1 + ET−1YT = YT−1 + YT−1 − ιT−1 (12)

= ỸT−1 + ιT−1 + ϵT−1 + ỸT−1 + ϵT−1. (13)
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Why Persistent Shocks? III

A permanent shock, ϵT−1, changes lifetime income by 2ϵT−1. Hence, the
household

∆cT−1 = ET−1∆cT = ϵT−1. (14)

Now consider a transitory shock ιT−1. The flow budget constraints are:

ET−1cT = (1 + r)aT + ET−1YT (15)

cT−1 + aT = ỸT−1 + ιT−1 (16)

With cT−1 = ET−1cT and ỸT−1 = ET−1YT we have

cT−1 =
1 + r

2 + r

[
ỸT−1 + ιT−1

]
+

1

2 + r
ET−1YT . (17)

Hence, ∆cT−1 = ∆ET−1cT = 1+r
2+r ιT−1.
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Why Persistent Shocks? IV

We always have a full consumption response to a persistent shock and

cT−1 =
1 + r

2 + r

[
ỸT−1 + ιT−1

]
+

1

2 + r
ET−1YT . (18)

In general, one can show that

∆ct = ϵt +
r

1 + r

1

1− ((1 + r))−(T−t+1)
ιt (19)

which becomes small as t << T . The earlier in the life cycle a transitory
shock occurs, the more periods the household has to smooth this shock.

Hence, persistent shocks lead to much larger consumption responses than
transitory shocks making them more interesting to study.
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Idiosyncratic Uncertainty with
Incomplete Markets
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Idiosyncratic Uncertainty with Incomplete Markets

We look for a simple and tractable way to introduce heterogeneity.

Bewley/Huggett/Aiyagari world.

Agents face idiosyncratic shocks s to income. The shocks are
independent across agents.

There are market incompletenesses: No state contingent claims on
future income and a borrowing constrained.

Agents can trade a risk-free asset.
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Huggett (1993): exchange economy

A continuum of agents get an endowment s with a time-invariant
transition matrix Ω.

There is no production or storage.

Agents can trade one-period claims a ∈ [a,∞) of consumption goods
with price q.

Focus on steady states: the price q is constant.
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Household problem

The household’s problem can be written as:

V (s, a) = max
c,a′

{
u(c) + β

∑
s′

Ω(s, s ′)V
(
s ′, a′

)}

subject to

a′q + c = s + a

c ≥ 0 and a′ ≥ a

We are looking for decision rules a′ = ga (s, a) and c = g c (s, a).
A stationary distribution of households over productivities and asset
holdings: µ.
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Deterministic case

In the deterministic case (we get for sure s ′ = E [s]) the FOC is:

uc(c) =
β

q
uc(c

′)

An equilibrium with positive consumption will only exist for β
q = 1

if β
q > 1 ⇒ uc(c) > uc(c

′) ⇒ c < c ′ for all periods, so eventually we
will have infinite consumption. This is sustainable only if a goes to
infinity too.

if β
q < 1 ⇒ uc(c) < uc(c

′) ⇒ c > c ′ for all periods, so eventually we
will have zero consumption.
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Stochastic case

Let’s turn now to the stochastic problem. The FOC is:

uc(c) =
β

q

∑
s′

Ω(s, s ′)uc(c
′)

▷ Then we concentrate on β
q < 1,

Returns from savings are lower than the discount rate. In the absence
of uncertainty, households would like to bring consumption from the
future to the present.

However, with uncertainty there is a force that compensates for
β
q < 1: precautionary savings. Uncertainty gives assets an extra
return, that of insuring against bad shocks.
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Stochastic case II

Huggett (1997) contains a proof for β
q < 1 with very general utility

functions.

The proof is simple when consumers are prudent, i.e., uccc > 0.
Marginal utilities are a convex function.

if β
q ≥ 1 ⇒ uc(c) ≥

∑
s′ Ω(s, s

′)uc(c
′). Then,

uccc > 0 ⇒
∑
s′

Ω(s, s ′)uc(c
′) > uc(

∑
s′

Ω(s, s ′)c ′)

⇒ uc(c) > uc(
∑
s′

Ω(s, s ′)c ′)

which implies that c <
∑

s′ Ω(s, s
′)c ′.

So consumption grows to infinity and so does accumulation.

Hence the equilibrium must be characterized by β
q < 1.
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An upper bound for assets

The return on the insurance part decreases with wealth.
This is because, with higher wealth, income fluctuations translate less
into consumption fluctuations

Accumulation dominates depletion for low levels of assets. As the
household gets wealth-richer he is becoming better self-insured and
the intertemporal motive for savings gets more important.

There is a point in which depletion (low β
q ) starts dominating. We

call this point the endogenous upper bound for assets ā.
Hence, a ∈ a ≡ [a, ā]

Huggett (1993) provides a formal proof.
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Comparison to Friedman

Before continuing, lets compare this idea to Friedman’s life cycle model
that we started out with. In that case, we had with β = 1

1+r

u′(ct+1) = Etu
′(ct+1) (20)

ct = Etct+1, (21)

i.e., despite risk aversion, people do not engage in precautionary savings
which simplified the problem significantly. The reason is the particular
utility function that we had used:

u = ct −
b

2
c2t (22)

u′′′(ct) = 0. (23)
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Characterizing heterogeneity

Ex-ante identical households will differ in equilibrium in their earnings
position and asset holdings, {s, a} ∈ S × a

Let B ≡ S × a and let B be the σ-algebra generated in B by its open
intervals (think of B as a very comprehensive family of subsets of B)
In particular, B ∈ B ⇒ B ⊂ B

Then, µ : B → [0, 1] is a probability measure over B that exhaustively
describes the economy by stating how many households are of each
type.
Intuitively, µ gives the size of any subset of B
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Evolution of the probability measure

Let b = {s, a} ∈ B and B ⊂ B such that B ∈ B.
Then, the transition function Q (b,B) denotes the probability of an
agent of type b of becoming of any type b′ ∈ B.
The function Q describes how the economy evolves:

µ′(B) =

∫
B
Q (b,B) dµ

It can be shown that, if the Markov process for the idiosyncratic
shocks is well-behaved (monotone mixing condition), there is a
unique stationary distribution for this economy.

Being at any point b does not exclude me from ending up at any
other b′ somewhere in the future.
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Characterizing heterogeneity: an example

Imagine S = {s1, s2} and a = [0.0, 30.0]; B ≡ {s1, s2} × [0.0, 30.0]

Then, a particular example of B ⊂ B can be given by,

B ≡ {s, a | s = s1 and a ∈ [25.0, 30.0]}

And µ (B) tells us how many households there are in the set B

If we define b = {s2, 3.45}, then Q (b,B) tells us the probability that
an individual with the shock s2 and assets equal to 3.45 becomes of a
type in B in the next period.
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Stationary Equilibrium

A stationary equilibrium is a set of functions {g c , ga}, price q, and a
probability measure µ such that:

1 Given the price, {g c , ga} solve households’ optimization problem.

2 Asset and goods markets clear:∫
B
ga(s, a)dµ = 0

∫
B
g c(s, a)dµ =

∫
B
sdµ

3 The measure of households is stationary:

µ (B) =

∫
B
Q (b,B) dµ ∀B ∈ B.

Felix Wellschmied (UC3M) Idiosyncratic Uncertainty 20 / 57



Stationary Equilibrium II

It can be shown that the stationary distribution µ is unique.

This implies that in the steady state there is a unique price q.
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Aiyagari (1994): Production Economy

Now we are ready to see the economy with an aggregate production
technology. We will analyze it only in the steady state (aggregate
allocations and prices are constant).

The production side is standard.

There is a continuum of households facing uninsurable idiosyncratic
shocks to their labor endowment s ∈ S that follows a Markov process
with transition matrix Ω.

For simplicity, households do not value leisure and therefore work
their whole endowment of market time.

Households can save (and possibly borrow) by means of a risk free
asset k ∈ k ≡

[
k , k̄

]
paying return R = 1 + r .
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Household Problem

For given prices w and R = Rt = Rt+1 the household problem is:

V (s, k) = max
c,k ′

{
u(c) + β

∑
s′

Ω(s, s ′)V
(
s ′, k ′

)}

subject to

k ′ + c = sw + Rk

c ≥ 0 and k ′ ≥ k

which yields decision rules k ′ = gk(s, k) and c = g c(s, k).
The Euler equation is:

uc(c) = βR
∑
s′

Ω(s, s ′)uc(c
′)
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Equilibrium Interest Rate

if βR ≥ 1 ⇒ uc(c) ≥
∑

s′ Ω(s, s
′)uc(c

′). Then,

uccc > 0 ⇒
∑
s′

Ω(s, s ′)uc(c
′) > uc(

∑
s′

Ω(s, s ′)c ′)

which implies that c <
∑

s′ Ω(s, s
′)c ′.

So consumption grows to infinity and so does accumulation.

Hence the equilibrium must be characterized by βR < 1.

Instead, in the deterministic case we have,

uc (c) = βR uc
(
c ′
)

and to obtain c = c ′ we need βR = 1.
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Stationary Equilibrium

A stationary equilibrium is a set of functions {g c , gk}, allocations {K , L},
prices {w ,R}, and a probability measure µ such that:

1 Given the prices, {g c , gk} solve households’ optimization problem.
2 Given the prices, {K , L}, solve firms’ optimization problem:

FK (K , L) = R − 1 + δ, FL(K , L) = w

3 Capital, labor and goods markets clear:∫
B
gk(k , s)dµ = K ,

∫
B
sdµ = L∫

B
g c(k , s)dµ+ δK = F (K , L)

4 The measure of households is stationary:

µ (B) =

∫
B
Q (b,B) dµ ∀B ∈ B
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Stationary Equilibrium II

The distribution of households in this economy evolves as follows,

µ′(B) =

∫
B
Q (b,B) dµ

where B ≡ S × k. The transition function Q defines a mapping T from
the space of probability measures into itself such that

µ′ = T (µ)

It can be proved that:

1 there is unique fixed point µ∗, i.e., there exists a unique µ∗ such that
µ∗ = T (µ∗)

2 any initial distribution µ0 converges to µ∗, i.e.,

∀µ0, lim
n→∞

T n(µ0) = µ∗
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Solving the Aiyagari model
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Solving the Household Problem

V (s, k) = max
c,k ′

{
u(c) + β

∑
s′

Ω(s, s ′)V
(
s ′, k ′

)}
subject to

k ′ + c = sw + Rk

c ≥ 0 and k ′ ≥ k

The Euler equation is:

uc(c) = βR
∑
s′

Ω(s, s ′)uc(c
′)

Given prices, we can solve this model by using the value function, or the
first-order condition.
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Risk Transition

We need to parametrize the transition matrix on the discrete grid Ω(s, s ′).

We estimate risk in continuous form: zih = ρzih−1 + ϵih.

What is called the Tauchen Algorithm does exactly that.

Idea: Use a first-order Markov chain to approximate the continuous
AR(1) process.
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Markov Chains

A Markov-chain is characterized by a discrete grid si , i = 1 : N and a
transition probability matrix Ω giving the probability to move from
point i to j , pij .

Hence, St = ΩSt−1 gives the probability distribution over states in
recursive form.

The ergodic distribution of a Markov-chain occurs when it runs to
infinity: (I − Ω)π = 0.

An ergodic distribution exists iff being at any point i does not exclude
me ending up in any j somewhere in the future.

Felix Wellschmied (UC3M) Idiosyncratic Uncertainty 30 / 57



Markov Approximation of AR(1)

Consider the generalized AR(1) process:

zih = (1− ρ)µ+ ρzih−1 + ϵih ϵih ∼ N(0, σ2)

The process has a mean µ.

We impose normality for the shock distribution!

Ergodic distribution is N(µ, σ2
AR) with σ2

AR = σ2

1−ρ2
.
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Tauchen (1986) Algorithm

Idea: Partition ergodic distribution in N bins and choose points in
bins representing those bins.

Two natural ways to choose:

Equilikely: Choose N bins such that each is equally likely.

Equidistant: Choose N equally distant points.

In most cases, first option provides better approximation.

If interested in tail behavior, second option may be preferable.
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Graphical Representation
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Create Bins

Choose boundaries, bi , of bins, Si , according to:

Ω(s ∈ Si ) = Φ
(bi+1 − µ

σAR

)
− Φ

(bi − µ

σAR

)
=

1

N
.

Hence,

Φ
(bi+1 − µ

σAR

)
=

i

N
.

or

bi+1 = σARΦ
−1

( i

N

)
+ µ.
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Centers of Bins

Next is to choose a representative element, si , for each bin:

si = (s|s ∈ Si ).

One can show that with a normal distribution this is:

si = NσAR

[
ϕ
(bi − µ

σAR

)
− ϕ

(bi+1 − µ

σAR

)]
+ µ.
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Transition Probabilities

We need to know the transition matrix. E.g., what is the probability for
s ∈ Si to move to s ′ ∈ Sj?

We need

bj ≤ ρs + (1− ρ)µ+ ϵ

bj+1 ≥ ρs + (1− ρ)µ+ ϵ

Thus

ϵ ∈ [bj − ρs − (1− ρ)µ, bj+1 − ρs − (1− ρ)µ].
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Simplified Tauchen Algorithm

pi ,j = Ω(s ′ ∈ Sj |s ∈ Si ) =

Φ
(bj+1 − ρsi − (1− ρ)µ

σ

)
− Φ

(bj − ρsi − (1− ρ)µ

σ

)
.

There is a more accurate formulation where all points in Si are taken
into account, not only si .

This requires integrating over the relevant part of the distribution and
weighting by the probability of each occurrence.
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Value Function Iteration for Household Problem

Construct a grid for capital ki = {k1, k2, ...kNk
}.

Construct a grid for earnings sj = {s1, s2, ...sNs} and corresponding
transition matrix Ω.

1 Guess a continuous/increasing value function V 0(ki , sj) of dimension
Nk X Ns .

2 Solve V n(k , z) = max
c,k ′

{
u(c) + βΩ(s, s ′)V n−1(k ′, z ′)

}
.

3 Replace last iteration guess by new solution V n−1 = V n.

4 Iterate until |V n − V n−1| < crit.
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Compute the Distribution µ

Goal is to find µ∗ that solves: µ∗ = T (µ∗). Two possibilities:

1 Monte Carlo simulation of N households for P (large) periods:

Provide each household with initial asset k0 and productivity s0.

Compute next periods productivity through law of motion
and next periods capital through gk(k , s).

2 More accurate, iterate on a probability measure (distribution function
iteration).

Initialize µ0 on the grid Nk X Ns .

Compute the operator T .

For productivity using Ω.

For capital using gk(k , s).

Apply the operator until |µn − µn−1| < crit.
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Equilibrium Prices

So far, we have found µ for assumed prices r ,w .

This implies K =
∫
B gk(k , s)dµ a supply of capital.

Nothing assures that this supply matches demand:

FK (K , L) = R − 1 + δ, FL(K , L) = w

.

With CRS production, we only need to worry about correct interest
rate:

w = FL
(
F−1
K (r + δ)

)
.

We know an open interval in which equilibrium must lye:

r∗ ∈
(
−δ, 1

β − 1
)
.
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Algorithm to Find Equilibrium

1 Guess a feasible r .

2 Compute implied wages.

3 Solve the household problem.

4 Solve for the stationary distribution µ∗.

5 Compute implied interest rate rnew = FK − δ.

6 Stop if |rnew − r | < crit.

7 Update interest rate r = (1− λ)r + λrnew .

Comparison to the RBC model
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Key Insights from Aiyagary Model

Households save too much.

The capital stock is higher than in social planner solution.

Output is higher than in social planner solution.
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Key Insights from Aiyagary Model II

Optimal consumption is given by{
uc(ct) = βR

∑
s′ Ω(s, s

′)uc(ct+1) if kt+1 > k̄

ct = Rat + st − k̄ else.

Constrained household: uc(ct) > βR
∑

s′ Ω(s, s
′)uc(ct+1).

MPC of constrained household is one.
∆ct
∆at

is high close to the constraint.

With mean reversion, particularly true for temporarily unproductive.
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Key Insights from Aiyagary Model II

Figure: Policy functions
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Life-Cycle model
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So Far

We have studied economies of the form

max
yt

E0

∞∑
t=0

βtu(yt , xt)

yt = f (xt , xt+1)

We have seen conditions when we could write it recursively and value
function is stationary:

V (x) = max
y

{u(y, x) + βEV (x′)}

Solution is the stationary value, V (x), and policy function, x′ = ϕ(x).
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Life-Cycle

We may also be interested in problems of the form

max
yt

E0

T∑
t=0

βtu(yt , xt)

yt = f (xt , xt+1)

Wealth accumulation over the life-cycle.

Longevity risk and bequests.

Earnings inequality over the life-cycle.

Age and labor market risk.

...
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Stochastic Death

We may formulate the problem with stochastic death (aging)

max
yt

E0

∞∑
t=0

βt(1− ξ)u(yt , xt)

yt = f (xt , xt+1)

Agent dies with probability ξ receiving utility 0 from there onwards.

Problem still stationary, x contains now state of living.

We can simulate the resulting agents from period 0, and call this age.
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Back to Finite Life

We may also solve the problem with finite life.

Value function, and policy function depend now on t.

Have to solve for T value and policy functions.

Importantly, with standard assumptions, the problem is still recursive!
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Recursive Formulation

V (x, t) = max
y

{u(y, x) + βEtV (x′, t + 1)}

Vt(x) = max
y

{u(y, x) + βEtVt+1(x
′)}

This is a sequence of static optimization problems:

VT = max
y

{u(y, x)}

VT−1 = max
y

{u(y, x) + βET−1VT (x
′)}

Assume a decision period is 1 year and agent lives 90 years. Need to
solve the maximization problem 90 times.

This may well be quicker than solving for a stationary policy rule with
infinite life.
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Example: Kaplan and Violante (2010)

Individuals work for T1 periods and live in retirement for T2 periods.

When working, earnings follow Markov process.

When retired, earnings are fixed, Ē .

They discount the future with rate β.

Self insurance with asset paying R = 1 + r .

Two reasons for asset accumulation:

Self-insurance.

Consumption in old age.
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A Simplified Model

Assume log earnings have a deterministic age-varying component and a
stochastic component:

eih = Hh + uih

uih = ρuih−1 + ϵih.

We discretize uih using the Tauchen method yielding a transition matrix
Ω(s, s ′).

In the US, retirement earnings depend on average life-time earnings. To
avoid an additional state, let us simplify the problem and assume it
depends only on the last realization of s:

SSi = SS(sT1)
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Appendix

Appendix
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Comparison to the RBC Model

Consider the social planner solution to a simplefied RBC model:

V (z ,K ) = max
C ,K ′

{
ln(C ) + β

∑
z ′

Ω(z , z ′)V
(
z ′,K ′)}

subject to

K ′ + c = Y + (1− δ)K

Y = exp(z)Kα
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Comparison to the RBC Model

In the RBC model, we also solve the value function for a state space,
K , z . However, these are points in the state space where the
representative household can be at any point in time.

Hence, there is an ergodic distribution of the representative household
over the state space in time. In the Aiyagary model, there is a
distribution across different households.

The representative household faces no borrowing constraint.
Moreover, because productivity shocks are small, the household would
never run into the borrowing constraint.

We know the equilibrium real interest rate r = MPK − δ at each grid
point. In the Aiyagary model, we have to solve for the real interest
rate.
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Solving the RBC model

1 Discretize a grid for the state K and z .

2 Guess the (continuous and concave) value function V 0(K , z).

3 Solve V n(K , z) = max
C ,K ′

{
ln(C ) + βEV n−1(K ′, z ′)

}
.

4 Replace last iteration guess by new solution V n−1 = V n.

5 Iterate until |V n − V n−1| < crit.

6 Given the optimal policy, simulate the economy for T periods by
drawing a random sequence of shocks.

Back
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