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Abstract 
 

We study how changes in the information available to the players of a symmetric common-value 

Tullock contest with incomplete information affect their payoffs and their incentives to exert 

effort. For the class of contests where players' state dependent cost of effort is multiplicative, we 

show that if the players' Arrow-Pratt measure of relative risk aversion is increasing (decreasing), 

then the value of public information is positive (negative). Moreover, if players' cost of effort 

(value) is state independent, then players' effort decreases (increases) with the level of 

information. 
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1 Introduction

We study how changes in the information available to the players of a symmetric

common-value Tullock contest with incomplete information a¤ect their incentives to

exert e¤ort and their payo¤s. In a Tullock contest �see Tullock (1980) �a player�s

probability of winning the prize is the ratio of the e¤ort he exerts and the total e¤ort

exerted by all players. In a symmetric common-value contest with incomplete infor-

mation players have a common state dependent value for the object and a common

state dependent cost of e¤ort, and all players have the same information.

There are a variety of economic settings (rent-seeking, innovation tournaments,

patent races) in which agents face a game strategically equivalent to a Tullock contest

�see Baye and Hoppe (2003). Tullock contests may also arise by design, e.g., in sport

competition, internal labor markets �see Konrad (2008) for a general survey; also,

see Skaperdas (1996) and Clark and Riis (1998) for alternative axiomatizations of

Tullock contests.

In our model, players�uncertainty about their value and cost is described by a

probability space, and players�information is described by a sub�eld of the �eld on

which players� common prior is de�ned. We show that if players� cost of e¤ort is

a twice di¤erentiable, strictly increasing and convex function in every state, then

the contest has a unique equilibrium, which is symmetric. Einy et al. (2013) have

recently established a general existence theorem for Tullock contests with incomplete

information when the probability space describing player information is �nite, and

have provided conditions for uniqueness of equilibrium �see also Wasser (2013) on the

issue of existence of equilibrium, and Ewerhart and Quartieri (2013) on the issue of

uniqueness of equilibrium. These results do not apply to our setting, in which both

the set of the states of nature and the players� information �eld are unrestricted.

Moreover, we show that the unique equilibrium is symmetric, a property that greatly

simpli�es our analysis.

For the class of contests on which the cost function has the properties required for

our existence theorem to apply, in which equilibrium is unique and symmetric, the

question �how the players�e¤orts and payo¤s change when the information available

1



to them changes� is well posed. We are able to provide an answer to this question

when the players�cost of e¤ort is a multiplicative function, that is, when the players

cost of e¤ort is the product of a random variable and a real valued function d on the

player�s e¤ort. A function d identi�es a class of symmetric common-value Tullock

contest with incomplete information that di¤er on the two random variables identify-

ing the players�value for the prize and the random component of their cost of e¤ort,

and on the sub�eld identifying the information available to the players. Changes

in the level of information are represented as changes in the sub�eld describing the

players�information.

Following Einy, Moreno and Shitovitz (2003), given a function d and any two

random variables describing the players�common value (v) and common cost (w),

which are the uncertain elements of the contest, we de�ne a binary relation that ranks

information �elds according to the level of information they contain: an information

�eld H is more informative than some other information �eld G if the predictions of

the value and cost are the same whether players information is given by H or it is

given by the aggregate information in G and H.

We de�ne two auxiliary real-value functions (S and U) that for any pair of random

variables (v; w) provide the players�expected e¤ort and payo¤, respectively, in the

unique equilibrium (which we show is symmetric) of the corresponding contest when

players�information �eld is that where the common prior is de�ned. The restrictions

of the functions S and U to the subset of positive constant random variables (which we

denote by D and F ) may be regarded as functions de�ned on R2++. The curvature of

these functions determine the e¤ect on incentives and payo¤s of the added �exibility

(commitment) that more (less) information introduces in the game: ifD (respectively,

F ) is convex, then the players�e¤ort (payo¤) increases with the level of information,

whereas ifD (F ) is concave, then the players�e¤ort (payo¤) decreases with the level of

information. Einy, Moreno and Shitovitz (2003)�s prove this result as an application

of Jensen�s inequality.

In our setting, the curvatures of the functions D and F are determined by the

function d. Moreover, the function d also determines player�s Arrow-Pratt relative
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measure of risk aversion. Using our results relating the curvature of the auxiliary

functions mentioned above and the e¤ect of changes of information in e¤orts and

payo¤s, we show that when the players�Arrow-Pratt measure of relative risk aversion

implied by d is increasing (decreasing), then the value of public information is pos-

itive (negative) in every symmetric common-value Tullock contest with incomplete

information in the class de�ned by the function d. Moreover, if the cost of e¤ort is

independent of the state of nature, then the players�e¤ort decreases with the level

of information when their Arrow-Pratt measure of relative risk aversion is increasing.

And if the value of the prize is independent of the state of nature, then the play-

ers�e¤ort increases with the level of information when their Arrow-Pratt measure of

relative risk aversion is decreasing.

An interesting implication of our results is that when players�e¤orts are monetary,

i.e., the function d is linear, the value of information is zero, and players�e¤ort is

invariant to changes in players� information. In contrast, when the players have

a convex quadratic cost function, then their Arrow-Pratt measure of relative risk

aversion is increasing, and the value of information is positive. Thus, if the cost of

e¤ort is independent of the state of nature, then players exert less e¤ort the better

informed they are. It is not di¢ cult, however, to �nd examples in which the cost of

e¤ort is state-dependent, and players exert more e¤ort the better informed they are

�see Example 1 in Section 4.

The value of information in Tullock contests has been seldom studied in the liter-

ature. Denter, Morgan and Sisak (2011) study the e¤ect of mandated transparency

policy on lobbying, and identify conditions under which it leads to an increase in

e¤orts. Their setting is a two-player Tullock contest with private values and one-

sided incomplete information. Morath and Münster (2013), and Kovenock, Morath

and Münster (2013) study the incentives for information acquisition and information

sharing, respectively, in all-pay auction contests. Of course, there is a large literature

studying the value of information and the incentives for information acquisition in

auctions.
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2 Common-Value Tullock Contests

A group of players N = f1; :::; ng; with n � 2; compete for a prize by choosing a

level of e¤ort in R+. There is uncertainty about the players�common value of the

prize and each player�s cost function. This uncertainty is described by a probability

space (
;F ; p); where 
 is the set of states of nature, F is a �-�eld of subsets of 
;

and p is �-additive probability measure on F . We interpret p as the players�common

prior belief about the realized state of nature. The value of the prize is described

by an integrable function v : 
 ! R++: The cost function of each player i 2 N is

described by a function ci : 
 � R+ ! R+ such that for every integrable function

si : 
! R+ the function ci(�; si(�)) is integrable. The private information about the

state of nature of player i 2 N is described by a �-sub�eld Fi of F ; that is, given

an event A 2 Fi, player i knows whether the realized state of nature is a member of

A. A common-value Tullock contest with incomplete information is thus a collection

T = (N; (
;F ; p); v; c1:::; cn;F1; :::;Fn):

Associated with a common-value Tullock contest with incomplete information

T = (N; (
;F ; p); v; c1:::; cn;F1; :::;Fn) is a Bayesian game G(T ) = (N; (
;F ; p);Rn+;

u1; :::; un;F1; :::;Fn); to which we refer as the Tullock Bayesian game associated with

T , in which the set of actions of each player is R+, and the payo¤ function of each

player i 2 N is ui : 
� Rn+ ! R given for every ! 2 
 and x 2 Rn+nf0g by

ui(!; x) =
xi
�x
v(!)� ci (!; xi) ; (1)

where �x �
PN

k=1 xk; and by ui(!; 0) = �i(!)v(!) � ci (!; 0) ; where �(!) 2 �n: (We

assume that when players exert no e¤ort the prize is allocated using some predeter-

mined state-dependent probability vector �(!) 2 �n. As we show in the Appendix,

the values of � are inconsequential.) In this game a pure strategy of player i 2 N is

an integrable Fi-measurable function si : 
 ! R+ that speci�es player i�s e¤ort in

each state of nature following the observation of his private information. We denote

by Si the set of all pure strategies of player i, and by S = S1� :::�Sn the set of pure

strategy pro�les.

Given a strategy pro�le s = (s1; :::; sn) 2 S; we denote by s�i the pro�le obtained
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from s by suppressing the strategy of player i 2 N: Also, if X is an integrable random

variable on (
;F ; p) and G is a �-sub�eld of F , we write E[X j G] for the conditional

expectation of X with respect to G. A pro�le of strategies s� = (s�1; :::; s�n) 2 S is a

Bayesian Nash equilibrium of G(T ) if for every i 2 N; every si 2 Si; and almost all

! 2 
;

E[ui(�; s� (�)) j Fi](!) � E[ui(�; s��i (�) ; si (�)) j Fi](!): (2)

It is easy to see, e.g., Remark 2.1 in Einy, Moreno and Shitovitz (2003), that s� 2 S

is a Bayesian Nash equilibrium if and only if for every i 2 N and every si 2 Si

E[ui(�; s� (�))] � E[ui(�; s��i (�) ; si (�))]: (3)

Throughout the paper we restrict attention to pure strategy Bayesian Nash equilibria.

3 Symmetric Common-Value Tullock Contests

A symmetric common-value Tullock contests with incomplete information, i.e., a con-

tests in which all players have the same cost function and the same information, may

be described by a collection T = (N; (
;F ; p); v; c;G); where c is the cost function of

every player, and G is a �-sub�eld of F describing the information of every player. We

refer to G(T ) as a symmetric Tullock Bayesian game associated with T . Our �rst re-

sult establishes conditions implying that a Tullock game with symmetric information

has a unique Bayesian Nash equilibrium.

Theorem 3.1. Let T = (N; (
;F ; p); v; c;G) be a symmetric common-value Tullock

contest with symmetric information. Assume that for all ! 2 
; c(!; �) is twice

di¤erentiable, strictly increasing and convex, and satis�es c(!; 0) = 0. Then the

game G(T ) has a unique (pure strategy) Bayesian Nash equilibrium s�. Moreover, s�

is symmetric, i.e., s�1 = s
�
2 = ::: = s

�
n.

Proof: For every ! 2 
 de�ne the n-person complete information game G(!; T ) in

which the set of pure strategies of every player is R+ and the payo¤ function of each

player i 2 N; hi(!; �) : Rn+ ! R+; is given for x 2 Rn+ by

hi(!; x) = E[ui(�; x) j G](!):
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The game G(!; T ) has a unique Nash equilibrium t�(!) = (t�1(!); :::; t
�
n(!)), which is

symmetric, i.e., t�1(!) = t
�
2(!) = ::: = t

�
n(!): (We establish this result in the Appendix

along the lines of Szidarovszky and Okuguchi (1997)�s Theorem 1.) We show that

the strategy pro�le s� 2 S given for ! 2 
 by s�(!) = t�(!) is a Bayesian Nash

equilibrium of the symmetric Tullock Bayesian game G(T ): We �rst show that s� is

a G-measurable function. De�ne the correspondence H : 
! 2R
n
+ by

H(!) = ft 2 Rn+ j t is a Nash equilibrium of G(!; T )g.

We show that the graph of the correspondence H is measurable with respect to the

product �-�eld G
B(Rn+); where B(R
n
+) is the �-�eld of Borel subsets of Rn+: For all

r 2 Rn+ let

J(r) = f(!; x) 2 
� Rn+ j hi(!; x) � hi(!; x�i; ri) for all i 2 Ng.

Since for all i 2 N and all x 2 Rn+ the function hi(�; x) is G-measurable, and since

for all ! 2 
 the pro�le 0 2 Rn+ is not a Nash equilibrium of G(!; T ), then hi(!; �) is

continuous on the set fx 2 Rn+ j (!; x) 2 J(r)g. Therefore the set J(r) is G
B(R
n
+)-

measurable for all r 2 Rn+: Now, the graph of the correspondence H is

graph(H) =
\
r2Rn+

J(r) =
\
r2Qn+

J(r);

where Qn+ is the set of n-tuples of rational numbers. Since Qn+ is countable, then

graph(H) is G
B(Rn+)-measurable. Thus, by the Measurable Selection Theorem �

see Aumann (1969) and Hildenbrand (1974)�s Theorem 1 (page 54) �there exists a G-

measurable function � : 
! Rn+ such that �(!) 2 H(!) for almost all ! 2 
. Since

for all ! 2 
 the set H(!) is a singleton (because G(!; T ) has a unique equilibrium),

then �(!) = t�(!) = s�(!) for almost all ! 2 
, and therefore s� is a G-measurable

function.

Now for i 2 N and si 2 Si we have

E[ui(�; s�(�)) j G](!) � E[ui(�; (s��i(�); si(�))) j G](!)

for almost every ! 2 
, and therefore

E[ui(�; s�(�))] � E[ui(�; (s��i(�); si(�)))]:
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Hence s� is a Bayesian Nash equilibrium of the game G(T ):

Uniqueness and symmetry follows from the fact that for all ! 2 
 the pro�le

t�(!) 2 Rn+ is the unique Nash equilibrium of G(!; T ), and t�1(!) = t�2(!) = ::: =

t�n(!). �

4 The E¤ect of Information on Payo¤s and E¤ort

In this section we study the value of public information, and the e¤ect of information

on players� e¤ort, in the class of symmetric common-value Tullock contests with

incomplete information in which the players� cost function is multiplicative. Let

d : R+ ! R+ be a twice di¤erentiable, strictly increasing and convex function. Denote

by T (d) the set of all symmetric common-value Tullock contests with incomplete

information (N; (
;F ; p); v; c;G) such that the cost function c satis�es for all (!; x) 2


� R+
c(!; x) = w(!)d(x);

where w is some non-negative integrable real-valued function on (
;F ; p), and G is a

�-sub�eld of F . Thus, a symmetric common-value Tullock contests with incomplete

information T 2 T (d) is de�ned by pair of non-negative integrable functions (v; w)

and a �-sub�eld of F .

Any pair of non-negative integrable functions (v; w) induces a binary relation on

the family of all �-sub�eld of F as follows: If G and H are two �-sub�elds of F , then

H % G , fE(v j H) = E(v j G _ H) and E(w j H) = E(w j G _ H)g:

(Here G _ H is the smallest �-sub�eld of F that contains both G and H.) The

interpretation of the binary relation % is simple: H % G if and only if the predictions
of the common value and the cost function (the uncertain elements of the contest) are

the same whether players information is given by H or it is given by the aggregate

information in G and H (i.e., by G _ H).

Let T = (N; (
;F ; p); v; wd;G) 2 T (d). By Theorem 3.1 the Bayesian game G(T )

has a unique equilibrium, which is symmetric. Denote by s�G the strategy played by
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every player in equilibrium, and by u�G the equilibrium payo¤ of every player. We

say that the value of public information in T = (N; (
;F ; p); v; wd;G) is positive

(negative) if for every contest T 0 = (N; (
;F ; p); v; wd;H),

H % G ) E(u�H) � E(u�G) (E(u�H) � E(u�G)).

Also, we say that players�e¤ort increase (decrease) with the level of information in

T = (N; (
;F ; p); v; wd;G) 2 T (d) if for every T 0 = (N; (
;F ; p); v; wd;H),

H % G , E(s�H) � E(s�G) (E(s�H) � E(s�G)).

Let the functions S; U : L1+(
;F ; p) � L1+(
;F ; p) ! R be given for each (v; w) 2

L1+(
;F ; p)� L1+(
;F ; p) by

S(v; w) = E(s�F);

and

U(v; w) = E(u�F):

The functions S and U identify the expected equilibrium e¤ort and payo¤, respec-

tively, in every contest T = (N; (
;F ; p); v; wd;F) 2 T (d). Let the functions

D;F : R2++ ! R be given for each (a; b) 2 R2++ by

D(a; b) = S(a1
; b1
); (4)

and

F (a; b) = U(a1
; b1
): (5)

The functions S and F identify the expected equilibrium e¤ort and payo¤, respec-

tively, in every contest T = (N; (
;F ; p); a1
; (b1
) d;F).

Proposition 4.1 establishes conditions identifying the e¤ect of information on play-

ers�e¤ort and payo¤ for a contest T 2 T (d). The proof of Proposition 4.1 is identical

to that of Proposition 3.3 in Einy, Moreno and Shitovitz (2003), and therefore is

omitted.

Proposition 4.1. Let d : R+ ! R+ be a twice di¤erentiable, strictly increasing and

convex function, and let T = (N; (
;F ; p); v; wd;G) 2 T (d) be a symmetric common-

value Tullock contest with incomplete information.

8



(4.1.1) If the function D de�ned in (4) is convex (concave) on R2++, then e¤ort

increases (decreases) with the level of information in T .

(4.1.2) If the function F de�ned in (5) is convex (concave) on R2++, then the

value of public information in T is positive (negative).

Proposition 4.2 identi�es a necessary and su¢ cient condition for the function F

to be either concave or convex.

Proposition 4.2. Let d : R+ ! R+ be a twice di¤erentiable, strictly increasing and

convex function. The function F de�ned in (5) is convex (concave) on R2++ if and

only if Faa(a; b) � 0 (Faa(a; b) � 0) for all (a; b) 2 R2++:

Proof. Let (a; b) 2 R2++:Write s(a; b) for the strategy of each player in the unique

Bayesian Nash equilibrium of the gameG(T ); where T = (N; (
;F ; p); a1
; (b1
) d;F).

Then

F (a; b) =
a

n
� bE(d(s(a; b)));

It is easy to see that s is homogeneous of degree zero on R2++, i.e., s(�a; �b) = s(a; b)

for all � 2 R++: Hence

F (�a; �b) = �F (a; b);

i.e., F is homogeneous of degree one on R2++. By Euler�s Theorem

F (a; b) = aFa(a; b) + bFb(a; b):

Di¤erentiating with respect to a on both sides on this equation and simplifying yields

aFaa(a; b) + bFba(a; b) = 0: (6)

Likewise

aFab(a; b) + bFbb(a; b) = 0: (7)

Hence

a2Faa(a; b) = b
2Fbb(a; b); (8)

and therefore

Faa(a; b) � 0, Fbb(a; b) � 0:
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Further, (6) and (7) imply

Faa(a; b)Fbb(a; b)� Fab(a; b)Fba(a; b) = 0: (9)

Thus, the eigenvalues of the Hessian matrix of F are non-negative (non-positive)

when Faa is a non-negative (non-positive) function on R2++: �

Let u : R+ ! R be a twice di¤erentiable increasing and concave function. If u

is an individual�s von Neumann-Morgenstern utility function, then his Arrow-Pratt

measure of relative risk aversion is given for all x 2 R+ by

Ru(x) = �
xu00(x)

u0(x)
:

In a asymmetric common-value Tullock contests with incomplete information T =

(N; (
;F ; p); v; wd;G) 2 T (d) a player�s utility if he wins the prize is u(�; xi) =

v(�) � w(�)d(xi), and it is u(�; xi) = �w(�)d(xi) if he does not win the price. Hence

players�Arrow-Pratt measure of relative risk aversion is determined by the function

d independently of the state, and is given for all x 2 R+ by R�d(x).

Our next result establishes a relationship between the behavior of the Arrow-Pratt

measure of relative risk-aversion implied by the function d and the value of public

information.

Theorem 4.3. Let d : R+ ! R+ be a thrice di¤erentiable, strictly increasing and

convex function, and let T = (N; (
;F ; p); v; wd;G) 2 T (d) be a symmetric common-

value Tullock contest with incomplete information. If the players�Arrow-Pratt mea-

sure of relative risk aversion R�d is increasing (decreasing), then the value of public

information in T is positive (negative).

Proof. Assume thatR�d(x) is an increasing function, and let T = (N; (
;F ; p); v; c;G) 2

T (d). By Proposition 4.2 it su¢ ces to show that Faa(a; b) � 0 for all (a; b) 2 R2++,

where F is the function de�ned in (5). For (a; b) 2 R2++,

F (a; b) =
a

n
� bE(d(s(a; b))); (10)
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where s(a; b) is the strategy of each player in the unique Bayesian Nash equilibrium

of the game G(T ), with T = (N; (
;F ; p); a1
; (b1
) d;F). Let

g(a; b) = d(s(a; b)):

Then

F (a; b) =
a

n
� bE(g(a; b));

and therefore

Faa(a; b) = �bE(gaa(a; b)):

We show that E(gaa(a; b)) � 0: Di¤erentiating g we get

ga(a; b) = d
0(s(a; b))sa(a; b)

and

gaa(a; b) = d
00(s(a; b)) (sa(a; b))

2 + d0(s(a; b))saa(a; b): (11)

Since s(a; b) maximizes E[ui(�; (s��i(�); si(�))) j G], it satis�es the �rst order condition

E[
a (n� 1)
n2s(a; b)

j G](!) = bE[d0(s(a; b)) j G](!)

for all ! 2 
: Since s(a; b) is G-measurable, then

s(a; b)d0(s(a; b)) =
n� 1
n2b

a: (12)

Therefore

(sd0(s))
0
(a; b)sa(a; b) =

n� 1
n2b

;

i.e.,

sa(a; b) =
n� 1

n2b (sd0(s))0 (a; b)
(13)

Di¤erentiating this expression we get

saa(a; b) = �
n� 1
n2b

(sd0(s))00 (a; b)sa(a; b)�
(sd0(s))0 (a; b)

�2 : (14)

Therefore

saa(a; b) � 0, (sd0(s))
00
(a; b)sa(a; b) � 0: (15)

11



By (11) and (14),

gaa(a; b) = d
00(s(a; b)) (sa(a; b))

2 � n� 1
n2b

d0(s(a; b)) (sd0(s))00 (a; b)sa(a; b)�
(sd0(s))0 (a; b)

�2 :

Hence gaa(a; b) � 0 if and only if

d00(s(a; b)) (sa(a; b))
2 � n� 1

n2b

d0(s(a; b)) (sd0(x))00 (a; b)sa(a; b)�
(sd0(s))0 (a; b)

�2
=

d0(s(a; b)) (sd0(x))00 (a; b)

(sd0(s))0 (a; b)
sa(a; b)

n� 1
n2b (sd0(s))0 (a; b)

=
d0(s(a; b)) (sd0(s))00 (a; b)

(sd0(s))0 (a; b)
(sa(a; b))

2 ;

where the last expression is obtained by replacing sa(a; b) from equation (13). Hence

gaa(a; b) � 0 , d00(s(a; b))

d0(s(a; b))
� (sd

0(x))00 (a; b)

(sd0(x))0 (a; b)
� 0

, (ln d0(s(a; b)))0 �
�
ln (sd0(s))0 (a; b)

�0 � 0
,

�
ln
(sd0(s))0 (a; b)

d0(s(a; b))

�0
� 0

,
�
(sd0(s))0 (a; b)

d0(s(a; b))

�0
� 0

,
�
1 +

s(a; b)d00(s(a; b))

d0(s(a; b))

�0
� 0

, (R�d(s(a; b)))
0 � 0: �

Our next result concerns the e¤ect on players�e¤ort of changes in the level of

information.

Proposition 4.4. Let d : R+ ! R+ be a thrice di¤erentiable, strictly increasing

and convex function, and let T = (N; (
;F ; p); v; wd;G) 2 T (d) be a symmetric

common-value Tullock contest with incomplete information.
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(4.4.1) If w is constant on 
 and (xd0(x))00 � 0 ( (xd0(x))00 � 0) for all x 2 R+,

then players�e¤ort increases (decreases) with the level of information in T .

(4.4.2) If v is constant on 
 and (xd0(x))00 � 0 for all x 2 R+, then players�

e¤ort increases with the level of information in T .

Proof. We prove (4.4.1). W.l.o.g. assume that w(�) = 1 on 
. Let a 2 R++ and

let s(a; 1) be the pure strategy played by every player in the unique equilibrium of

G(T ); where T = (N; (
;F ; p); a1
; 1
d;F). Let �D(a) := D(a; 1) = E(s(a; 1)). Then
�D00(a) = E(saa(a; 1)): Since sa(a; 1) > 0 by (13), then (xd0(x))00 � 0 (respectively,

(xd0(x))00 � 0) implies saa(a; 1) � 0 (respectively, saa(a; 1) � 0) by (15), and therefore
�D00(a) � 0 (respectively, �D00(a) � 0). Hence players�e¤ort increase (decrease) with

the level of information in T by Proposition 4.1.1.

We prove (4.4.2). W.l.o.g. assume that v(�) = 1 on 
. Let D̂(b) := D(1; b) =

E(s(1; b)). Then D̂00(b) = E(sbb(1; b)): Di¤erentiating equation (12) with respect to b

and using a = 1 yields

sb(1; b) = �
n� 1
n2

1

(sd0(s))0 (1; b)

1

b2
< 0:

Di¤erentiating this expression we get

sbb(1; b) = �n� 1
n2

�
� 2
b3

1

(sd0(s))0 (1; b)
� 1

b2
(sd0(s))00 (1; b)sb(1; b)

[(sd0(s))0 (1; b)]2

�

=
n� 1
n2

1

b2
1

(sd0(s))0 (1; b)

�
2

b
+
(sd0(s))00 (1; b)sb(1; b)

(sd0(s))0 (1; b)

�
:

Therefore (sd0(s))00 (1; b) � 0 implies sbb(1; b) � 0 and hence D̂00(b) � 0: Thus, players�

e¤ort increases with the level of information in T by Proposition 4.1.1. �

When the Arrow-Pratt measure of relative risk aversion is increasing (decreasing)

and the players�cost of e¤ort (value) is independent of the state of nature, we can

evaluate the impact of changes in the level of information on players�e¤ort.

Proposition 4.5. Let d : R+ ! R+ be a thrice di¤erentiable, strictly increasing

and convex function, and let T = (N; (
;F ; p); v; wd;G) 2 T (d) be a symmetric

common-value Tullock contest with incomplete information.

13



(4.5.1) If w is constant on 
 and the players�Arrow-Pratt measure of relative risk

aversion R�d is increasing, then players�e¤ort decreases with the level of information

in T .

(4.5.2) If v is constant on 
 and the players�Arrow-Pratt measure of relative risk

aversion R�d is decreasing, then players�e¤ort increases with the level of information

in T .

Proof. We prove Proposition (4.5.1). Assume that R�d is increasing, i.e., for all

x 2 R+ �
xd00(x)

d0(x)

�0
� 0:

Then �
1 +

xd00(x)

d0(x)

�0
� 0;

which implies

(2d00(x) + xd000(x)) d0(x) � d0(x)d00(x) + x (d00(x))2 � 0;

and therefore

2d00(x) + xd000(x) = (xd0(x))00 � 0

for all x 2 R+: Hence Proposition 4.5.1 follows from Proposition 4.4.1.

We prove Proposition (4.5.2). Assume that R�d is decreasing. Hence�
1 +

xd00(x)

d0(x)

�0
� 0:

Taking log in equation (12) we may write

ln s(a; b) + ln d0(s(a; b)) = ln
n� 1
n2

+ ln a� ln b:

Setting a = 1 and di¤erentiating with respect b we get

�1
b
=
sb(1; b)

s(1; b)

�
1 +

s(1; b)d00(s(1; b))

d0(s(1; b))

�
:

Hence sb(1; b) < 0: Di¤erentiating this equation again with respect to b yields

1

b2
=

sbb(1; b)s(1; b)� sb(1; b)2
s(1; b)2

�
1 +

s(1; b)d00(s(1; b))

d0(s(1; b))

�

+
sb(1; b)

2

s(1; b)

�
1 +

s(1; b)d00(s(1; b))

d0(s(1; b))

�0
:
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Since R�d is decreasing, the second term in the right hand side is non-positive, and

therefore the �rst term must be non-negative, i.e.,

sbb(1; b)s(1; b)� sb(1; b)2 � 0:

Hence sbb(1; b) � 0: Thus D̂(b) = D(1; b) = E(s(1; b)) is convex, since D̂00(b) =

E(sbb(1; b)) � 0: Therefore players�e¤ort increases with the level of information in T

by Proposition 4.1.1. �

Finally, we present some applications and examples. In a symmetric common-

value classic Tullock contests with incomplete information the cost function of every

player i 2 N is ci(!; x) = x: Therefore the players�Arrow-Pratt measure of relative

risk aversionR�d is constant. Our next proposition is a direct consequence of Theorem

4.3 and Proposition 4.5.

Proposition 4.6. In every symmetric common-value classic Tullock contest with

incomplete information the value of public information is zero, and the players�e¤ort

is invariant to changes in the players�information.

The following examples provide other applications of our results.

Example 1. Assume that n = 2; 
 = f!1; !2g; p(!1) = p(!2) = 1=2, and let

d(x) = x2=2 + 2x: Then for x 2 R+,

R�d(x) =
x

x+ 1
:

Therefore R0�d(x) > 0. Hence in every contest T 2 T (d) the value of public infor-

mation is positive. Moreover, if the players�cost of e¤ort is independent of the state

of nature, then their e¤ort decrease with the level of public information. However,

if the the cost of e¤ort depends on the state, then players�e¤ort may increase with

the level of information. An example with this feature is as follows: let the value be

v(!1) = v(!2) = 2; and let the multiplicative component of the cost be w(!1) = 1=6;

w(!2) = 1=48: Consider the contest T 2 T (d) in which the players have no infor-

mation about the state. Then equilibrium e¤orts are s�(!1) = s�(!2) =
p
57=3 � 1:
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Consider the contest T 0 2 T (d) in which the players have complete information about

the state. Then equilibrium e¤orts are s�(!1) = 1 and s�(!2) = 4; and therefore the

expected e¤ort is E(s�) = 5=2 >
p
57=3� 1: Hence the expected e¤ort increases with

the level of information in T .

Example 2. Assume that d(x) = x� for all x 2 R+, where � > 1. Then for x 2 R+,

R�d(x) = � � 1, and therefore R0�d(x) = 0. Hence in every contest T 2 T (d) the

value of public information in T is zero. However, since

(xd0(x))
00
= �2(�� 1)x��2 > 0;

in every contest T 2 T (d) in which the cost of e¤ort is independent of the state of

nature players� e¤ort decrease with the level of public information by Proposition

4.4.1.

5 Extensions

The results of sections 3 and 4 apply to a broader class of generalized symmetric

common-value Tullock contests with incomplete information in which the contests

success function � : 
�Rn+ ! �n is given by for i 2 N and (!; x) 2 
�Rn+nf0g by

�i(!; x) =
g(!; xi)Pn
j=1 g(!; xj)

;

where g : 
 � R+ ! R+ is a score function such that for all ! 2 
; g(!; �) is

twice di¤erentiable, strictly increasing and concave, and satis�es g(!; 0) = 0. In the

Bayesian game associated with a contest Tg in this class, G(Tg), the payo¤ function

of each player i 2 N is given for all (!; x) 2 
� Rn+ by

ui(!; x) =
g(!; xi)Pn
j=1 g(!; xj)

v(!)� c(!; xi):

Since there is a bijection between the equilibria of the game G(Tg) and the game

G(T ); where T = (N; (
;F ; p); v; ĉ;G); with ĉ(!; �) = g�1(!; �) � c(!; �) for all ! 2 
,

then changes in information in Tg have the same impact as in T .
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6 Appendix

Lemma. A symmetric common-value Tullock contest with complete information in

which the contenders� cost of e¤ort is a twice di¤erentiable strictly increasing and

convex function c : R+ ! R+ such that c(0) = 0 has a unique (pure strategy) Nash

equilibrium.

Proof. Denote by v > 0 the contenders common value. We show that the n-

person complete information game in which the set of pure strategies of every player

is R+ and the payo¤ function of each player i 2 N is hi : Rn+ ! R+ given for

x 2 Rn+nf0g by

hi(x) =
xi
�x
v � c(xi);

where �x =
Pn

j=1 xj, and

hi(0) = �iv � c(0) = �iv;

where � 2 �n is predetermined, has a unique Nash equilibrium, which is symmetric.

Note that hi (�; x�i) is twice di¤erentiable and concave on Rn+nf0g. For x�i 2

Rn�1+ nf0g player i�s optimal e¤ort solves the problem

max
xi2R+

hi (xi; x�i) :

Di¤erentiating hi we get
@hi
@xi

=
�x� xi
�x2

v � c0(xi):

Write

'(�x; xi) := (�x� xi) v � �x2c0(xi):

Note that
@'

@xi
= ��x (2c0(xi) + �xc00(xi)) < 0

for (xi; x�i) 2 Rn+nf0g: If '(�x; 0) = �x (v � �xc0(0)) � 0; then @hi=@xi � 0 on R+; and

therefore player i�s optimal e¤ort is xi = 0: If '(�x; 0) > 0; since '(�x; �x) = ��x2c0(�x) <

0 and @'=@xi < 0; then player i�s optimal e¤ort is the unique solution to the equation

'(�x; xi) = 0:
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Clearly x = 0 2 Rn+ is not a Nash equilibrium: since n � 2; then �i < 1 for some

i 2 N; and therefore

hi(x) = �iv < v � c(") = hi(x�i; "):

for " > 0 su¢ ciently small.

Therefore a Nash equilibrium x 2 Rn+nf0g satis�es '(�x; xi) = 0 for all i 2 N;

where �x =
Pn

j=1 xj: Hence xi = xj for all i; j 2 N; and therefore x = (t; :::; t); where

t 2 R++ solves '(nt; t) = 0: Equivalently, t must solve the equation �(t) = 0; where

�(t) :=
'(nt; t)

t
= (n� 1) v � n2tc0(t):

Note that �(0) > 0 and �0(t) = �n2 (c0(t)) + tc00(t)) < 0: Moreover, since c is convex,

there is Q > 0 su¢ ciently large that Qc0(Q) > v; and therefore

�(Q) = (n� 1) v � n2Qc0(Q) < nv (1� n) < 0:

Hence the equation �(t) = 0 has a unique solution t� 2 R++; and therefore the unique

(pure strategy) Nash equilibrium is x = (t�; :::; t�).
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