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Abstract 
 

We show that under standard assumptions a Tullock contest with asymmetric information has a 

pure strategy Bayesian equilibrium. Moreover, two-player common-value Tullock contests in 

which one of the players has an information advantage have a unique equilibrium. In equilibrium 

both players exert the same expected effort, and although the player with information advantage 

wins the prize with probability less than one-half, his payoff is greater or equal to that of his 

opponent. In common-value Tullock contests with more players any information advantage is 

rewarded, but the other properties of two players contests do not hold.  
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1 Introduction

In a Tullock contest �Tullock (1980) �a player�s probability of winning the prize is

the ratio of the e¤ort he exerts and the total e¤ort exerted by all the players. Baye and

Hoppe (2003) have identi�ed a variety of economic settings (rent-seeking, innovation

tournaments, patent races) which are strategically equivalent to a Tullock contest.

Tullock contests also arise by design, e.g., sport competition, internal labor markets.

A number of studies have provided an axiomatic justi�cation to such contests, see,

e.g., Skaperdas (1996) and Clark and Riis (1998)).

There is an extensive literature studying Tullock contests and its variations under

complete information about the players�value of the prize and their cost of e¤ort.

Perez-Castrillo and Verdier (1992), Baye Kovenock and de Vries (1994), Szidarovszky

and Okuguchi (1997), Cornes and Hartley (2005), Yamazaki (2008) and Chowdhury

and Sheremeta (2009) study existence and uniqueness of equilibrium. Skaperdas and

Gan (1995), Glazer and Konrad (1999), Konrad (2002), Cohen and Sela (2005) and

Franke et al. (2011), study the e¤ect on the players�behavior of changes in the payo¤

structure, and Schweinzer and Segev (2012) and Fu and Lu (2013) study optimal

prize structures. See Konrad (2008) for a general survey.

In this paper we study Tullock contests under asymmetric information (i.e., when

player�s value for the prize and/or their cost of e¤ort is private information), a topic

seldom investigated in the literature. Fey (2008) andWasser (2013) have recently pro-

vided an analysis of rent-seeking games under incomplete information. More closely

related to our work is Warneryd (2003), which we discuss below.

In our setting, each player�s value for the prize as well as his cost of e¤ort depend

on the state of nature. The set of states of nature is �nite. Players have a common

prior belief, but upon realization of the state of nature, and prior to taking action,

each player observes some event that contains the realized state of nature. The

information of each player at the moment of taking action is therefore described by a

partition of the set of states of nature. (Jackson (1993) and Vohra (1999) have shown

that this representation is equivalent to Harsanyi model of a Bayesian game using

players� types.) A contest is therefore described by a set of players, a probability

space describing players�prior uncertainty and their belief, a collection of partitions
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of the state space describing the players�information, a collection of state-dependent

functions describing the players�values and costs, and a success function specifying

the probability distribution used to allocate the prize for each pro�le of e¤orts. We

assume throughout that the players cost functions are continuously di¤erentiable,

strictly increasing and convex with respect to e¤ort, and that the cost of exerting no

e¤ort is zero in every state. (In a similar framework, Einy et al. (2001, 2002), Forges

and Orzach (2011), and Malueg and Orzach (2009, 2012) study common-value �rst-

and second-price auctions.)

We show that a Tullock contest has a pure strategy Bayesian equilibrium. The

proof involves constructing a sequence of equilibria of contests obtained from the

original Tullock contest by truncating the action space so that it is a closed and

bounded interval whose lower bound approaches zero from above. We show that any

limit point of a sequence of equilibria of these contests (which have an equilibrium

by Nash�s Theorem1) is an equilibrium of the original Tullock contest. A key step in

the proof is to show that in any such limit point the total e¤ort exerted by players is

positive in every state of nature.

Our existence result applies regardless of whether players have private or common

values, or whether their costs of e¤ort is the same or di¤erent, and we make no

presumption about the players�private information. Moreover, our result extends to

a general class of Tullock like contests which success function is formed as the ratio

between the score given to a player�s e¤ort and the total scores given to all players,

provided each player�s score function is strictly increasing and concave. (Warneryd

(2012) establishes existence of equilibrium for common value Tullock contests when

there are two types of players, those that have complete information and those who

only have the prior information, and investigates which players are active, i.e., make

a positive e¤ort, in equilibrium.)

Next we study Tullock contests in which players have a common value for the prize

and a common state independent linear cost function, to which we refer simply as

common-value Tullock contests. We consider �rst two-player common-value Tullock

1The payo¤ functions in the truncated contests are continuous, and concave in players� own

strategies, which allows the use of the Nash�s theorem. However, it cannot be applied to the original,

untruncated, contest, since the payo¤s in it have discontinuity when all e¤orts are equal to zero.
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contests in which one of the players has an information advantage over his opponent

(i.e., the partition of one player is �ner than that of his opponent). In our framework,

when one player has an information advantage it can be assumed, without loss of

generality, that one player observes the value while the other player has only the prior

information about the value. Two-player common-value Tullock with this extreme

information asymmetry have been studied by Warneryd (2003) in a setting were

the players common value is a continuous random variable. We reproduce in our

framework some of Warneryd (2003)�s results: We show that such contests have a

unique (pure strategy) Bayesian equilibrium, which we characterize. In equilibrium

both players exert the same expected e¤ort and have a positive expected payo¤,

although the payo¤ of the player with an information advantage is greater or equal to

that of his opponent. Moreover, the player with an information advantage wins the

prize less frequently (i.e., with a smaller ex-ante probability) than the uninformed

player. We also examine how players information a¤ects the e¤ort they exert and

their payo¤s. Assuming that the distribution of the players�value for the prize is not

too disperse, we show that when one player is better informed than the other the

total e¤ort exerted by the players is smaller, and thus the share of the total surplus

they capture is larger, than when both players have the same information.

We proceed to study whether these results for two-players common-value Tullock

contests extend to contests with more than two players. We show that information

advantage in rewarded in equilibrium in contests with any number of players: in any

equilibrium of a common-value Tullock contests, if a player has an information ad-

vantage over another player then the payo¤ of the former is greater or equal to that

of the later. This result is obtained by observing the formal equivalence between a

common-value Tullock contest and a oligopoly with asymmetric information, and us-

ing the theorem of Einy, Moreno and Shitovitz (2002) that shows that in any Cournot

Bayesian equilibrium of an oligopolistic industry a �rm�s information advantage is re-

warded. The other properties of equilibrium of two-player contests, however, do not

extend to contests with more than two players. Speci�cally, we show a three-player

example in which two of the players have symmetric information which is superior

to that of the third player, where the expected e¤orts exerted by players di¤er. We
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also provide an example of a contest in which all but one player have the same infor-

mation and the remaining player has an information advantage, in which the ex-ante

probability that the player with information advantage wins the prize is greater than

that of any of the other players.

We also study the relative e¤ectiveness of Tullock contests and all-pay auctions

to induce players to exert e¤ort. In the same framework we work at, and under the

same assumptions, Einy et al. (2013) characterize the unique equilibrium of a two-

player common-value all-pay auctions, which is in mixed strategies, and show that

the expected payo¤ of the player with an information advantage is positive while the

expected payo¤ of his opponent is zero, and that both the expected e¤ort and the

ex-ante probability of winning the prize are the same for both players. Using the

results in Einy et al. (2013) and our results we show that the sign of the di¤erence

in the total e¤ort exerted by players in a Tullock contest and an all-pay auction is

undetermined, and may be either positive or negative depending on the distribution

of the players�value for the prize �see Example 1. (Fang (2002) and Epstein, Mealem

and Nitzan (2011) study the outcomes of Tullock contests and all-pay auction under

complete information.)

The rest of the paper is organized as follows: in Section 2 we describe the general

setting. In Section 3 we establish that every Tullock contest has a pure strategy

Bayesian equilibrium. Section 4 and 5 study common-value Tullock contests with

two players, and with more players, respectively. Section 6 concludes. Long proofs

are given in the Appendix.

2 Tullock Contests

A group of players N = f1; :::; ng; with n � 2; compete for a prize by choosing a

level of e¤ort in R+. Players�uncertainty about the state of nature is described by

a probability space (
; p); where 
 is a �nite set and p is a probability distribution

over 
 describing the players�common prior belief about the realized state of nature.

W.l.o.g. we assume that p(!) > 0 for every ! 2 
. The private information about
the state of nature of player i 2 N is described by a partition �i of 
: The value for
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the prize for each player i is described by a random variable Vi : 
 ! R++, i.e., if

! 2 
 is realized then player i�s (�private�) value for the prize is Vi(!). The cost of
e¤ort of each player i 2 N is described by a function ci : 
 � R+ ! R+, which is

continuously di¤erentiable, strictly increasing and convex in e¤ort xi, and such that

ci(�; 0) = 0 on 
:
A contest starts by a move of nature that selects a state ! from 
 according to the

distribution p: Every player i 2 N observes the element �i(!) of �i which contains !.

Then players simultaneously choose their e¤ort levels (x1; :::; xn) 2 Rn+. The prize is
awarded in a probabilistic fashion, according to a success function �; which attributed

to each pro�le of e¤ort levels x 2 Rn+ a probability distribution �(x) in the n-simplex
according to which the prize recipient is chosen. Hence, the payo¤ of player i 2 N;
ui : 
� Rn+ ! R, is given for every ! 2 
 and x 2 Rn+ by

ui(!; x) = �i (x)Vi(!)� ci (!; xi) : (1)

Thus, a contest is described by a collection (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �):
In a contest, a pure strategy of player i 2 N is a �i-measurable function Xi : 
!

R+ (i.e., Xi is constant on every element of �i); that represents i�s choice of e¤ort in

each state of nature following the observation of his private information. We denote

by Si the set of strategies of player i, and by S =
Qn
i=1 Si the set of strategy pro�les.

For any strategy Xi 2 Si and �i 2 �i; Xi (�i) stands for the constant value that Xi (�)
takes on �i. Also, given a strategy pro�le X = (X1; :::; Xn) 2 S; we denote by X�i

the pro�le obtained from X by suppressing the strategy of player i 2 N: Throughout
the paper we restrict attention to pure strategies.

Let X = (X1; :::; Xn) be a strategy pro�le. We denote by Ui(X) the expected

payo¤ of player i, which is given by

Ui(X) � E[ui(�; (X1 (�) ; :::; Xn (�))]:

For �i 2 �i; we denote by Ui(X j �i) the expected payo¤ of player i conditional on
�i; i.e.,

Ui(X j �i) � E[ui(�; (X1 (�) ; :::; Xn (�)) j �i]:

An N -tuple of strategies X� = (X�
1 ; :::; X

�
N) is a Bayesian equilibrium if for every

5



player i 2 N , and every strategy Xi 2 Si

Ui(X
�) � Ui(X�

�i; Xi); (2)

or equivalently,

Ui(X
� j �i) � Ui(X�

�i; Xi j �i) (3)

for every �i 2 �i:

3 Existence of Equilibrium in Tullock Contests

Tullock contests are identi�ed by a class of success functions �T such that for x 2
Rn+nf0g the probability that player i 2 N wins the prize is

�Ti (x) =
xi
x
; (4)

where �x �
PN

k=1 xk is the total e¤ort exerted by the players. Theorem 1 establishes

that under our assumptions a Tullock contest has a pure strategy equilibrium.

Theorem 1. Every Tullock contest has a (pure) strategy Bayesian equilibrium.

Note that Theorem 1 makes no presumption about the players�private informa-

tion, and applies regardless of whether players have private or common values, or

whether their costs of e¤ort is the same or di¤erent. A direct implication of Theorem

1 is the existence of equilibrium for a general class of success functions. For this class

of success functions, Szidarovszky and Okuguchi (1997) have established existence of

a unique equilibrium when players have complete information.

Corollary 1. Every contest in which the success function � is given for x 2 Rn+nf0g
and i 2 N by

�i (x) =
gi (xi)Pn
j=1 gj (xj)

;

where, for every j 2 N; gj : R+ ! R+ is strictly increasing and concave bijection2,

has a Bayesian equilibrium.
2Functions gj do not, in fact, need to be bijections, for our claim to hold. This can be shown

using the same argument as in the proof below, provided Theorem 1 is extended to hold for contests

where the levels of e¤ort are restricted to be in a set [a; b) for 0 � a � b and b 2 R+ [ f1g (under
the additional assumption that limx!b ci(�; x) =1). This extension of Theorem 1 can be obtained

by essentially the same proof as the one given in the Appendix.
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Proof. Let C = (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �) be a contest satisfying
the assumptions of Corollary 1 for (g1; :::; gn). The Tullock contest (N; (
; p); f�igi2N ;
fVigi2N ; f�cigi2N ; �T ) where �ci (�; �) = ci

�
�; g�1i (�)

�
for every i 2 N and �T (0) = �(0)

has a Bayesian equilibrium X� = (X�
1 ; :::; X

�
n) by Theorem 1. It is easy to see that

Y � = (g�11 �X�
1 ; :::; g

�1
n �X�

n) is a Bayesian equilibrium of C: �

4 Two-Player Common-Value Tullock Contests

Henceforth we study contests in which players have a common value for the prize

and a common state-independent linear cost function, i.e., for all i 2 N; Vi = V; and
ci (�; x) � x on 
. We refer to these contests as common-value contests, and they are
described by a collection (N; (
; p); (�i)i2N ; V; �). Let us index the set of states of

nature as 
 = f!1; :::; !mg; write p(!k) = pk and V (!k) = vk for k 2 f1; :::;mg, and
assume, w.l.o.g., that 0 < v1 � v2 < ::: � vm.
In this section we study two-player common-value Tullock contests in which player

2 has an information advantage over player 1 (i.e., n = 2 and �2 is �ner than �1).

Thus, we may assume w.l.o.g. that the only information player 1 has about the state

is the common prior belief, i.e., �1 = f
g, whereas player 2 has perfect information
about the state of nature, i.e., �2 = ff!1g; :::; f!mgg. In such contests a strategy
pro�le is a pair (X; Y ); where X can be identi�ed with x 2 R+ that speci�es player
1�s unconditional e¤ort, and Y can be identi�ed with (y1; :::; ym) 2 Rm+ that speci�es
the e¤ort of player 2 in each of the m states of nature. Thus, abusing notation, we

shall write X = x and Y = (y1; :::; ym) whenever appropriate.

The following notation will be useful in characterizing the pure strategy Bayesian

equilibria of a Tullock contest. For k 2 f1; :::;mg write

Ak =

 
mX
s=k

ps
p
vs

! 
1 +

mX
s=k

ps

!�1
: (5)

Note that

A1 =
E(
p
V )

2
:
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Lemma 1 establishes a key property of the sequence fAkgmk=1 :

Lemma 1. If
p
v�k > A�k for some �k < m; then

p
vk > Ak and A�k > Ak for all

k > �k:

Proposition 1 shows that a two-player common-value Tullock contest in which

player 2 has an information advantage has a unique pure strategy equilibrium with

the following explicit description. Let k� 2 f1; :::;mg be the smallest index such that
p
vk > Ak: Since

p
vm >

pm
(1 + pm)

p
vm = Am;

k� is well de�ned.

Proposition 1. A two-player common-value Tullock contest in which player 2 has

an information advantage has a unique Bayesian equilibrium (X�; Y �) given by

x� = A2k� ;

y�k = 0

for all k < k�; and

y�k = Ak� (
p
vk � Ak�)

for all k � k�.

Proposition 1 in particular implies uniqueness and symmetry of equilibrium in

the complete information case, i.e., when m = 1. (Note that in this case k� = 1;

and therefore y�1 = A1(
p
v1 � A1) = v1=2 � v1=4 = A21 = x�. This result is well

known in the literature.) When m > 1, we have
p
v1 > A1 = E(

p
V )=2 (and hence

k� = 1) whenever the distribution of values is not too disperse; e.g., this inequality

holds when vm < 4v1: When this is the case, the unique equilibrium is interior. For

future references we state this observation in Remark 2.

Remark 2. Consider a two-player common-value Tullock contest in which player 2

has an information advantage. The unique Bayesian equilibrium is interior if and

only if
p
v1 > E(

p
V )=2, i.e., the distribution of values is not too disperse.
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Interestingly, when one player has superior information the expected e¤ort exerted

by players in the equilibrium of the contest is the same.

Proposition 2. In a two-player common-value Tullock contest in which player 2 has

an information advantage both players exert the same (expected) e¤ort, i.e.,

E(Y �) = A2k� = x
� = X�: (6)

Hence the expected total e¤ort is

TE = X� + E(Y �) = 2A2k� :

Proof. By Proposition 1,

E(Y �) =
mX
s=1

psy
�
s

=
mX
s=k�

psAk� (
p
vk � Ak�)

= Ak�
mX
s=k�

ps
p
vk � A2k�

mX
s=k�

ps

= A2k�

 
1 +

mX
s=k�

ps

!
� A2k�

mX
s=k�

ps

= A2k� :�

In a two-player common-value Tullock contest in which player 2 has an information

advantage the equilibrium probabilities that player 1 wins the prize when the state

is !k is

��1k := �
T
1 (x

�; y�k) =
A2k�

A2k� + Ak�
�p
vk � Ak�

� = Ak�p
vk

when k � k�; whereas the probability that player 2 wins the prize is ��2k = 1 � ��1k:
Thus, the larger is the realized value of the prize, the smaller (larger) is the probability

that player 1 (player 2) wins the prize, i.e., ��1k0 � ��1k and ��2k0 � ��2k for k0 > k � k�;
with a strict inequality if vk0 > vk: Of course, the larger is the realized value of the

prize, the larger is the e¤ort of player 2, i.e.,

y�k0 = Ak� (
p
vk0 � Ak�) � Ak� (

p
vk � Ak�) = y�k:
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for k0 > k � k� (with a strict inequality if vk0 > vk). Additionally, for k0 > k � k�;

��1k0vk0 = Ak�
p
vk0 � Ak�

p
vk = �

�
1kvk

(with a strict inequality if vk0 > vk), i.e., the larger is the realized value of the prize,

the larger is the conditional expected payo¤ of player 1; also,

��2k0vk0 � ��2kvk0 � ��2kvk

(with a strict inequality if vk0 > vk), i.e., the larger is the realized value of the prize,

the larger is the conditional expected payo¤ of player 2. Write ���i = E(��i ) for the

ex-ante probability that player i wins the prize. Proposition 3 establishes another

interesting property of equilibrium.

Proposition 3. Consider a two-player common-value Tullock contest in which player

2 has an information advantage. If v1 < v2 < ::: < vm, then the ex-ante probability

that player 1 wins the prize is greater than that of player 2, i.e., ���1 > ��
�
2:

Remark 3 states that under symmetric information each player exerts an expected

e¤ort equal to E(V )=4: The proof of this result is straightforward, and is therefore

omitted.

Remark 3. A two-player common-value Tullock contest in which players have

symmetric information has a unique pure strategy equilibrium, which is symmetric

and involves each player exerting an expected e¤ort equal to E(V )=4:

The surplus captured by the players in a contest is the di¤erence between the

expected (total) surplus E(V ) and the expected total e¤ort they exert. In Proposition

4 below we show that when player 2 has an information advantage, in an interior

equilibrium players exert less e¤ort, and therefore capture a greater surplus, than

when they are symmetrically informed.

Proposition 4. Consider a two-player common-value Tullock contest in which player

2 has an information advantage. If v1 < vm and the distribution of values is not too

disperse, i.e.,
p
v1 > E(

p
V )=2, then the players�exert less e¤ort and hence capture

a greater share of the surplus than when both players have symmetric information.
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Proof. When player 2 has an information advantage, then
p
v1 > E(

p
V )=2

implies that the equilibrium is interior by Remark 2, and therefore the expected total

e¤ort is TE = 2A21 =
�
E(
p
V )
�2
=2 by Proposition 2. When players have symmetric

information the expected total e¤ort TE is TE = E(V )=2 by Remark 3. Then

v1 < vm together with Jensen�s inequality imply

TE � TE = E(V )

2
�

�
E(
p
V )
�2

2
> 0: �

Warneryd (2003) establishes counterparts to Propositions 1 to 4 when the players�

common-value V is a continuous random variable, and shows that the fully informed

player obtains a greater payo¤ than the uninformed player. This latter result also

holds when V is a discrete random variable, and, as it turns out, even outside the

two-player case. Indeed, we will show in Theorem 2 in the next section that in

a common-value Tullock contest with two or more players, when a player has an

information advantage over another player (not necessarily an extreme one), then in

any Bayesian equilibrium the payo¤ of the former is greater or equal to that of the

latter.

We conclude this section studying what can be said about the players�expected

total e¤ort in all pay auctions and Tullock contests. The contests arising in many

economic and political applications are e¤ectively all pay auctions either by design

(e.g., sports or political competition) or by the nature of the problem (e.g., a patent

races).

A common-value all-pay auction is a common-value contest in which the suc-

cess function is given for x 2 Rn+ by �APA(x) = 1=m(x) if xi = maxfxjgj2N ; and
�APA(x) = 0 otherwise, where m(x) = jk 2 N : xk = maxfxjgj2N j. Einy et. al.

(2013) show that in unique equilibrium of a two-player common-value all-pay auction

in which v1 < ::: < vm and player 2 observes the value while player 1 does not, the

players�total expected e¤ort is

TEAPA = 2

mX
s=1

ps

 
s�1X
k=1

pkvk +
1

2
psvs

!
= 2

mX
s=1

ps

s�1X
k=1

pkvk +
mX
s=1

p2svs:

Hence the di¤erence between total e¤orts in an all-pay auction and a Tullock contest
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is

� := TEAPA � TE = 2
mX
s=1

ps

s�1X
k=1

pkvk +
mX
s=1

p2svs � 2A2k� :

For simplicity, consider the case where there are only two states of nature, i.e., m = 2:

If the equilibrium of the Tullock contest is interior, then

� = 2p1p2v1 +
�
p21v1 + p

2
2v2
�
� 2A21

= 2p1p2v1 + p
2
1v1 + p

2
2v2 � 2

�
p1
p
v1 + p2

p
v2
�2

4

= 2p1p2v1 +
1

2
(p1
p
v1 � p2

p
v2)

2

> 0:

Hence an all-pay auction generates more e¤ort that a Tullock contest. However, if

the Tullock contest has a corner equilibrium, then

� = 2p1p2v1 +
�
p21v1 + p

2
2v2
�
� 2A22

= 2p1p2v1 + p
2
1v1 + p

2
2v2 � 2

�
p2
p
v2
�2

(1 + p2)2

= p1v1(1 + p2)� p22v2
�

2

(1 + p2)
2 � 1

�
:

Thus, � may be either positive or negative depending on the distribution of the

players�common value �see Example 1 below. Hence the level of e¤ort generated by

these two contests cannot be ranked in general.

The following example illustrates our �ndings.

Example 1. Let m = 2, p1 = 1 � p; v1 = 1; and v2 = v; where p 2 (0; 1) and
v 2 (1;1): Then E(V ) = 1 � p(1 � v), E(

p
V ) = 1 � p(1 �

p
v); A1 = E(

p
V )=2,

and A2 = p
p
v=(1 + p): If v < (1 + p)2 =p2; then

p
v1 = 1 > A1 and k� = 1; otherwise

k� = 2:

In a Tullock contest in which player 2 observes the value but player 1 does not,

the unique equilibrium is

X� = A21; Y
� = (A1 (1� A1) ; A1

�p
v � A1

�
);
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and the total e¤ort is TE = 2A21 = [1 � p(1 �
p
v)]2=2 when v < (1 + p)2 =p2.

Otherwise, the unique equilibrium is

X� = A22; Y
� = (0; A2

�p
v � A2

�
);

and the total e¤ort is TE = 2A22 = 2p
2v=(1+p)2: If v < (1 + p)2 =p2; then the ex-ante

probability that player 1 wins the prize is

���1 = (1� p)A1 + p
A1p
v
=
1

2

�
p+ (1� p)

p
v
� 1� p+ ppvp

v
� 1

1 + p
>
1

2
:

Otherwise, this probability is

���1 = (1� p) + p
A2p
v
= (1� p) + p2

1 + p
=

1

1 + p
>
1

2
:

Hence, consistently with Proposition 3 the uninformed player wins the prize more

frequently than the informed player. Further, if v < (1 + p)2 =p2, then

2 [U2(X
�; Y �)� U1(X�; Y �)] = (1� p) A1 (1� A1)� A

2
1

A21 + A1 (1� A1)
+ pv

A1 (
p
v � A1)� A21

A21 + A1 (
p
v � A1)

= (1� p) p
�
1�
p
v
�2

> 0:

And if v � (1 + p)2 =p2, then

2 [U2(X
�; Y �)� U1(X�; Y �)] = � (1� p) + pvA2 (

p
v � A2)� A22

A22 + A2 (
p
v � A2)

=
1� p
p+ 1

(p(v � 1)� 1)

>
1� p
p

> 0:

That is, the payo¤of the informed player is greater or equal to that of the uninformed

player. (We show in Theorem below the information advantage is always rewarded in

a common-value Tullock contest, regardless of the number of players and the number

of states of nature.)

Under symmetric information the equilibrium total e¤ort in a Tullock contest is

E(V )=2 > maxf2A21; 2A22g; i.e., the total e¤ort when player 2 has an information
advantage is less than when both players have the same information.

13



In an all pay auction in which player 2 observes the value but player 1 does not,

the equilibrium total e¤ort is

TEAPA = 2 (1� p) p+ (1� p)2 + p2v = (1� p) (1 + p) + p2v:

As we have shown above, if v < (1 + p)2 =p2; then the expected total e¤ort in the

unique equilibrium of the Tullock contest, which is interior, is TE = 2A22 = [1�p(1�
p
v)]2=2: Hence

TEAPA � TE = (1� p) (1 + p) + p2v � (1� p(1�
p
v))

2

2
> 2p > 0:

However, if v � (1 + p)2 =p2; then the expected total e¤ort in the unique equilibrium
of the Tullock contest, which is a corner equilibrium, is TE = 2p2v= (1 + p)2 : Assume

that p = 1=4. Then

TEAPA � TE = 15

16
� 7

400
v:

Hence TEAPA < TE for v > 375=7.

5 n-Player Common-Value Tullock Contests

In this section we study whether the properties of two-player common-value Tullock

contests extend to contests with more than two players. We begin by establishing

in Theorem 2 a general property of common-value Tullock contests: these contests

reward information advantage. Theorem 2 is a direct implication of the theorem of

Einy, Moreno and Shitovitz (2002).

Theorem 2. Let X� = (X�
1 ; :::; X

�
n) be any equilibrium of an n-player common-

value Tullock contest. If player i has an information advantage over player j, then

Ui(X
�) � Uj(X�).

Proof. An n-player common-value Tullock contest (N; (
; p); (�i)i2N ; V ) is for-

mally identical to what Einy, Moreno and Shitovitz (2002) refer to as an oligopolist

industry (N; (
; p); P; c; (�i)i2N); where the demand and cost functions are de�ned

for (!; x) 2 
� R++ as
P (!; x) =

V (!)

x
;

14



and

c(!; x) = x;

respectively. With this convention, the state-dependent pro�t of �rm i 2 N in the

industry coincides with the payo¤ of player i 2 N in the contest, i.e., for ! 2 
 and
X 2 S;

ui(!;X) =
V (!)Pn
s=1Xs

Xi(!)�Xi(!)

= P (!;

nX
s=1

Xs(!))Xi(!)� c(!;Xi(!)):

Theorem 2 then follows from the theorem of Einy, Moreno and Shitovitz (2002).3 �

The following example shows that Proposition 2 does not extend to common-value

Tullock contests with more than two players. In the example, player 1 has only prior

information whereas players 2 and 3 have complete information. In equilibrium the

expected e¤ort of the uninformed player is below that of each of the informed players.

Example 2. Consider a 3-player common-value Tullock contest in which m = 2;

p1 = p2 = 1=2, v1 = 1 and v2 = 2: Player 1 has no information, i.e., his information

partition is �1 = f!1; !2g; and players 2 and 3 have complete information, i.e., their
information partitions are �2 = �3 = ff!1g; f!2gg: In the interior equilibrium of

this contest, which is readily calculated by solving the system of equations formed by

the players�reaction functions, the e¤ort of player 1 is X�
1 = 0:30899 while the e¤orts

of players 2 and 3 are X�
2 = X

�
3 = (0:20342; 0:46933). Note that

X�
1 = 0:30899 <

1

2
(0:20342 + 0:46933) = E(X�

2 ) = E(X
�
3 );

i.e., the e¤ort of player 1 is less than the expected e¤ort of players 2 and 3.

The next example shows that Proposition 3 does not extend to contests with

more than two players. In the example there is an informed player and a number of
3The demand function P (!; x) is not di¤erentiable at x = 0 �it is not even de�ned �and therefore

does not formally satisfy the assumptions of Einy, Moreno and Shitovitz (2002). However, it is easy

to see that in any equilibrium X of a common-value Tullock contest the total e¤ort is positive in all

states of nature, i.e., �X(�) > 0: Thus the non-di¤erentiability at 0 is irrelevant, and the proof of the
theorem in Einy, Moreno and Shitovitz (2002) applies in this case with no change.
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uninformed players. Contrary to the spirit of Proposition 3, the ex-ante probability

that the informed player wins the prize is above that of the uninformed players.

Example 3. Consider an eight player common-value Tullock contest in which

m = 2; p1 = p2 = 1=2, v1 = 1 and v2 = 2: Players 1 to 7 have no information, i.e., their

information partition is �i = f!1; !2g for i 2 f1; :::; 7g; and player 8 is completely
informed, i.e., his information partitions is �8 = ff!1g; f!2gg: This contest has a
(corner) equilibrium given by

X�
1 = ::: = X

�
7 = 0:15551; X

�
8 = (0; 0:38694) :

In equilibrium, the ex-ante probability that player i 2 f1; 2; :::; 7g wins the prize is

���i =
1

2
(
1

7
+

0:155 51

7(0:155 51) + 0:386 94
) = 0:12413;

whereas the ex-ante probability that player 8 win the prize is

���8 = 1� 7(0:12413) = 0:13109:

Thus, the informed player wins the prize more frequently than an uninformed player.

6 Concluding remarks

Under broad conditions, Tullock contests have pure strategy equilibria. Two-player

common-value Tullock contests in which one player has an information advantage ex-

hibit interesting properties: an equilibrium is unique, although it may not be interior.

And regardless of whether the equilibrium is interior or not, both players exert the

same expected e¤ort, although the player with an information advantage obtains a

payo¤ greater or equal to his opponent, and wins the object less frequently than him.

When the equilibrium is interior, which occurs when the distribution of the players�

common value is not too disperse, the players exert less e¤ort than when they are

symmetrically informed. (It is an open question whether this property holds when

the distribution of values is su¢ ciently disperse and the unique equilibrium is a corner

equilibrium.) While the information advantage is rewarded in common-value Tullock

contests regardless of whether there are two or more players, the other properties of
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equilibrium obtained for two-player contests may not hold in contests with more than

two players. Interestingly, a Tullock contest may generate more e¤ort than an all-pay

auction.

7 Appendix

Proof of Theorem 1. Let C = (N; (
; p); f�igi2N ; fVigi2N ; fcigi2N ; �T ) be a Tullock
contest. Since the cost function of each player is strictly increasing and convex in the

player�s e¤ort, it follows from (1) that there exists Q > 0 such that ui(�; x) < 0 for
every i 2 N and every x 2 Rn+; provided xi > Q: For any 0 < " < Q consider a variant
of the contest, denoted by C"; in which the e¤ort set of each player i is restricted

to be the bounded interval [";Q] : In C"; the set of strategies of player i, Si;", is

identi�able with the compact set [";Q]�i via the the bijection xi  ! (xi (�i))�i2�i.

Player i�s expected payo¤ function Ui is continuous on S" = �ni=1Si;" (since the
success function � in (4) is continuous if e¤orts are restricted to [";Q]), and it is

concave in i�s own strategy (as the state-dependent payo¤ function ui(�; x) is concave
in the variable xi if e¤orts are restricted to [";Q]). Nash�s Theorem thus guarantees

existence of a Bayesian equilibrium in C"; pick one such equilibrium and denote it by

X�
" = (X

�
1;"; :::; X

�
n;").

We show that

lim inf
"!0+

�X�
" (�) > 0:

Indeed, suppose to the contrary that there is a vanishing positive sequence f"kg1k=1
such that

lim
k!1

min
!2


�X�
"k
(!) = 0; (7)

and �x !� 2 
 such that
�X�
"k
(!�) = min

!2

�X�
"k
(!) (8)

for in�nitely many k (and thus, w.l.o.g., for every k). Since the expected payo¤ of

player i is negative in every state of nature when xi = Q; for any su¢ ciently small

"k the equilibrium strategy X�
i;"k

satis�es X�
i;"k
(�) < Q: Thus, for a given �i 2 �i;

X�
i (�i) 2 ["k; Q): Additionally, Xi and Xi (�i) can both be viewed as the argument

of the function Ui(X�
�i;"k ; Xi j �i); since Xi (�i) is the only numerical input needed to
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determine the conditional expected payo¤ of player i given �i; when the equilibrium

strategies of players other than i are X�
�i;"k . Since the equilibrium strategy X�

i;"k
is a

(local) maximizer of Ui(X�
�i;"k ; Xi j �i) by (3),

dUi(X
�
�i;"k ; Xi; j �i)
dXi (�i)

����
Xi(�i)=X�

i;"k
(�i)

� 0:

That is,
dE[ui(�; X�

�i;"k (�) ; Xi (�i) j �i]
dXi (�i)

����
Xi(�i)=X�

i;"k
(�i)

� 0;

or, equivalently,

E

�
dui(�; X�

�i;"k (�) ; X
�
i;"k
(�i))

dxi
j �i
�
� 0:

Using (4) and (1) we calculate the derivative explicitly,

E

"
Vi(�)
�X�
"k
(�)
�
X�
i;"k
(�i)Vi(�)
�X�
"k
(�)2

� d

dxi
ci
�
�; X�

i;"k
(�i)

�
j �i

#
� 0:

Thus

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(�i)

�
j �i
�
�X�

i;"k
(�i)E

"
Vi(�)
�X�
"k
(�)2
j �i

#
� 0;

which leads to

X�
i;"k
(�i) �

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(�i)

�
j �i
�

E

"
Vi(�)
�X�
"k
(�)2
j �i

# : (9)

Inequality (9) holds, in particular, for �i = �i (!�) : Since X�
i;"k
(!�) = X�

i;"k
(�i (!

�))

(as, by de�nition, !� 2 �i (!�)); (9) yields

X�
i;"k
(!�) �

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(!�)

�
j �i (!�)

�
E

"
Vi(�)
�X�
"k
(�)2
j �i (!�)

# : (10)

Summing over i 2 N we obtain

�X�
"k
(!�) �

nX
i=1

E

�
Vi(�)
�X�
"k
(�)
� d

dxi
ci
�
�; X�

i;"k
(!�)

�
j �i (!�)

�
E

"
Vi(�)
�X�
"k
(�)2
j �i (!�)

# ;
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or (since �X�
"k
(!�) � n" > 0)

1 �
nX
i=1

E

� �X�
"k
(!�)

�X�
"k
(�)

Vi(�)� �X�
"k
(!�) d

dxi
ci
�
�; X�

i;"k
(!�)

�
j �i (!�)

�
E

"
�X�
"k
(!�)2

�X�
"k
(�)2

Vi(�) j �i (!�)
# : (11)

By the de�nition of �X�
"k
(!�) (see (8)),

0 �
�X�
"k
(!�)

�X�
"k
(!)
� 1

for every ! 2 
: Hence we assume w.l.o.g. (by moving to a subsequence if necessary)
that the limit

a (!) = lim
k!1

�X�
"k
(!�)

�X�
"k
(!)

exists for every ! 2 
: Note also that a (!) = 1 for ! = !�, which occurs with positive
probability by our assumption on p; and thus

lim
k!1

E

"
�X�
"k
(!�)2

�X�
"k
(�)2

Vi(�) j �i (!�)
#
= E

�
a (�)2 Vi(�) j �i (!�)

�
> 0: (12)

Also, (7) and (8) imply

lim
k!1

E

"
�X�
"k
(!�)

dci
�
�; X�

i;"k
(!�)

�
dxi

j �i (!�)
#
= 0: (13)

Taking limit of the right-hand side of (11), which exists by (12) and (13), we get

1 �
nX
i=1

E[a (�)Vi(�) j �i (!�)]
E[a (�)2 Vi(�) j �i (!�)]

:

Furthermore, as 0 � a (�)2 � a (�) � 1; we obtain

1 �
nX
i=1

E[a (�)Vi(�) j �i (!�)]
E[a (�)2 Vi(�) j �i (!�)]

� n:

Since by assumption n � 2; we have reached a contradiction. This proves that,

indeed,

lim inf
"!0+

�X�
" (�) > 0: (14)

Now let f"�kg1k=1 be a vanishing positive sequence such that the limit

X�
i (!) � lim

k!1
X�
i;"k
(!)
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exists for every i 2 N and ! 2 
: (Such a sequence exists since all X�
i;" (!) belong

to the compact interval [0; Q]:) Obviously, X� = (X�
1 ; :::; X

�
n) constitutes a strategy

pro�le in the contest C; and it follows from (14) that

�X� (�) > 0: (15)

We show that X� is a Bayesian equilibrium of C.

Since the state-dependent payo¤ function ui(�; x) is continuous at any point x
with �x > 0, for every i 2 N , every �i 2 �i; and every sequence fYkg1k=0 of strategy
pro�les such that Y0 (�) > 0 and Yi;0 (!) = limk!1 Yi;k (!) for every i and !; we have

lim
k!1

Ui(Y1;k; :::; Yn;k j �i) = Ui(Y1;0; :::; Yn;0 j �i): (16)

Since every X�
" is a Bayesian equilibrium in C"; for every su¢ ciently large k and every

strategy Xi of player i satisfying 0 < Xi (�) � Q we have

Ui(X
�
"�k
j �i) � Ui(X�

�i;"�k
; Xi j �i): (17)

Applying the limit as k ! 1 to both sides of inequality (17), it follows from (16)

(and the fact (15)) that

Ui(X
� j �i) � Ui(X�

�i; Xi j �i) (18)

for every strategy Xi of player i satisfying 0 < Xi (�) � Q and every �i 2 �i:
It is easy to see that

lim inf
xi!0+

Ui(X
�
�i; xi j �i) � Ui(X�

�i; 0 j �i);

where xi > 0 (respectively, xi = 0) is identi�ed with a strategy of i for whichXi (�i) =

xi (respectively, Xi (�i) = 0): Thus (18) in fact holds for every strategy Xi satisfying

0 � Xi (�) � Q (i.e., the deviations of i may be zero at some states of nature).
Finally, note that player i can improve upon any strategy Xi for which Xi (!) > Q

at some ! by lowering the e¤ort on �i(!) to zero and thus receiving non-negative

expected payo¤ conditional on �i(!): Thus, in contemplating a unilateral deviation

from X�
i ; player i is never worse o¤ by limiting himself to strategies Xi satisfying

0 � Xi (�) � Q: But this implies that (18) holds for every strategy Xi 2 Si: Since this
is the case for every i 2 N , we have shown that X� is a Bayesian equilibrium of C. �
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Proof of Lemma 1. Assume that
p
v�k > A�k for some �k < m:

We show that
p
vk > Ak for all k > �k: Suppose not; let k̂ > �k be the �rst index

k > �k such that for
p
vk � Ak: Note that vk̂ � vk̂�1 and

p
vk̂�1 > Ak̂�1 imply0@1 + mX

s=k̂

ps

1Apvk̂ �
0@1 + mX

s=k̂�1

ps

1Apvk̂�1 � pk̂�1pvk̂�1
>

0@1 + mX
s=k̂�1

ps

1AAk̂�1 � pk̂�1pvk̂�1
=

mX
s=k̂�1

ps
p
vs � pk̂�1

p
vk̂�1

=

0@1 + mX
s=k̂

ps

1AAk̂;
which contradicts the assumption that

p
vk̂ � Ak̂:

Now we show that A�k > Ak for all k > �k: Suppose not; let ~k > �k be the �rst

index k > �k such that A�k � Ak: Since
p
v~k�1 > A~k�1 (as we have just shown), then0@1 + mX

s=~k�1

ps

1AA~k�1 =
mX

s=~k�1

ps
p
vs

= p~k�1
p
v~k�1 +

mX
s=~k

ps
p
vs

> p~k�1A~k�1 +

0@1 + mX
s=~k

ps

1AA~k:
Hence 0@1 + mX

s=~k�1

ps

1AA~k�1 � p~k�1A~k�1 >
0@1 + mX

s=~k

ps

1AA~k;
i.e., 0@1 + mX

s=~k

ps

1AA~k�1 >
0@1 + mX

s=~k

ps

1AA~k:
Thus, A�k � A~k�1 > A~k; which contradicts the choice of ~k. �

Proof of Proposition 1. Let (X; Y ); where X = x and Y = (y1; :::; ym), be a

Bayesian equilibrium, whose existence is guaranteed by Theorem 1. We show that
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x > 0: If x = 0; then �T2 (0) = 1; since otherwise player 2 does not have a best response

against x = 0: But then y1 = y2 = ::: = ym = 0; and therefore player 1 can pro�tably

deviate by exerting an arbitrarily small e¤ort " > 0: Hence x > 0: Moreover, yk > 0

for some k 2 f1; :::;mg since otherwise x > 0 is not a best response of player 1:
Since x > 0 maximizes player 1�s payo¤ given Y , then

@

@x

 
mX
s=1

ps

�
vs

x

x+ ys
� x
�!

=
mX
s=1

psvs
ys

(x+ ys)
2 � 1 = 0: (19)

And since ys maximizes player 2�s payo¤ in state !s given x; then

@

@ys

�
vs

ys
x+ ys

� ys
�
= vs

x

(x+ ys)
2 � 1 � 0; (20)

(with equality if ys > 0) for each s = 1; :::;m.

Notice next that if yk > 0 for some k < m; then yk0 > 0 for all k0 > k: Since

x > 0; if yk > 0 then yk =
p
x
�p
vk �

p
x
�
by (20), and since vk0 � vk for all k0 > k;

p
x
�p
vk0 �

p
x
�
> 0, i.e.,

vk0
x

x2
� 1 > 0;

for all k0 > k: Then yk0 = 0 would violate inequality (20) for s = k0: Hence yk0 > 0:

Let k� be the smallest index such that yk > 0: Thus, x > 0 and (19) imply

mX
s=1

psvs
ys

(x+ ys)
2 =

mX
s=k�

psvs
ys

(x+ ys)
2 = 1;

and (20) implies yk0 =
p
x
�p
vk0 �

p
x
�
> 0 for all k0 � k�: Hence x = A2k� ; yk =

Ak�
�p
vk � Ak�

�
for all k � k�; and yk = 0 for all k < k�:

We now show that k� = k�, which establishes that the pro�le (x�; y�1; :::; y
�
m)

identi�ed in Proposition 1 is the unique equilibrium. Assume �rst that k� < k�:

Then
p
vk� � Ak� since k� is the smallest index such that

p
vk > Ak; and hence

yk� =
p
x
�p
vk� �

p
x
�
= Ak�

�p
vk� � Ak�

�
� 0; a contradiction as yk� > 0 by the

de�nition of k�: Assume next that k� > k�: In this case, yk� = 0: Since
p
vk� > Ak� ;

by Lemma 1

A2k� > A
2
k� = x; (21)

and therefore

vk�
x

x2
� 1 = A2k�

A4k�

�
vk� � A2k�

�
> 0:
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This stands in contradiction to (20), as yk� = 0 by the de�nition of k�(> k�): We

conclude that indeed k� = k�. �

Proof of Proposition 3. Let us be given a two-player common-value Tullock contest

in which player 2 has an information advantage over player 1. Given (yk� ; ::::; ym) 2
Rk�+ de�ne the function

�p2 (yk� ; :::; ym) :=

mX
k=k�

pkyk
yk +

Pm
s=k� psys

:

Hence, recalling (6), ��2 = �p2 (y
�
k� ; :::; y

�
m). We show that a maximum point y of �p2 on

K = f(yk� ; ::::; ym) 2 Rk
�
+ j yk� � yk�+1::: � ymg must satisfy yk� = ::: = ym: Hence

max
K
�p2 =

Pm
s=k� ps

1 +
Pm

s=k� ps
� 1
2
: (22)

Since y�k� < ::: < y
�
m (the inequalities are strict, which follows from our assumption

that v1 < v2 < ::: < vm and the expressions for (y�k)
m
k=k� given in Proposition 1), (22)

implies

��2 = �p2 (y
�
k� ; :::; y

�
m) < max

K
�p2 � 1=2;

which establishes Proposition 3.

Di¤erentiating �p2 with respect to yk for k 2 fk�; :::;mg we get

@�p2
@yk

= pk

 
mX

t=k�;t6=k

ptyt
(yk +

Pm
s=k� psys)

2
�

mX
t=k�;t6=k

ptyt
(yt +

Pm
s=k� psys)

2

!
: (23)

For every (yk� ; :::; ym) 2 K such that yk� < yk�+1 � ::: � ym; @�p2=@yk� (y) > 0;

and therefore necessarily yk� = yk�+1. Suppose now that it has already been shown

that yk� = yk�+1 = ::: = yk; m � 1 � k > 1: We show that yk+1 = yk as well.

Indeed, if yk� = yk�+1 = ::: = yk < yk+1 � ::: � ym, then by (23) we obtain that
@�p2=@yk (y) > 0; a contradiction. Thus yk� = ::: = ym: �
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