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We show that Ljung’s projection algorithms, which have recently been used by
economists to establish convergence to rational expectations equilibrium, do not
seem to apply to learning or forecasting behavior that one would normally call
“decentralized.” If the algorithm is defined in a way that allows individuals to have
differing information, then Ljung’s theorem does not apply. And even if a similar
theorem could be proved that would allow for differing information, there remains
a Lyapunov-like condition that is central to Ljung’s projection method and which
requires that individual beliefs be narrowly related to the equilibrium and to one
another. Journal of Economic Literature Classification Numbers: D83, D84, C72,
D82. 1994 Academic Press, Inc.

In several recent studies of the way individual economic units might
learn their parts of a rational expectations equilibrium, the learning process
has been modeled as a recursive algorithm in which individuals’ expecta-
tions depend upon their observations of variables that are influenced by
others’ expectations. The critical tool for establishing that the learning pro-
cess converges to an equilibrium has been a theorem of Ljung [1] that
gives sufficient conditions for convergence of a general class of recursive
stochastic estimation algorithms. (See, in particular, Marcet and Sargent
[3,4] and Woodford [6].) It seems reasonable to hope that the same
approach will also help us to understand the process by which the players
in a noncooperative game might learn their parts of a Nash equilibrium, a
particular kind of rational expectations equilibrium.

In the analysis of a noncooperative game, one’s attention is naturally
drawn to the question whether the learning process has been modeled as
a “decentralized” process, in the sense that the players are allowed to have
independent information and that they are allowed to act independently
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even if they have the same information. We show that the learning
behavior described by Ljung’s class of algorithms does not have this decen-
tralized character. Thus, Ljung’s approach may not be so attractive for the
analysis of learning behavior in games—or indeed for the analysis of any
kind of decentralized learning process.

Ljung’s method consists essentially of two theorems, Theorems 1 and 4
in 1], which we refer to as Ljung’s First and Second Theorems, respec-
tively. Ljung’s First Theorem requires one to establish that the sequence
of forecasts generated by the learning algorithm contains a bounded
subsequence. Because this boundedness property is generally difficult to
verify, Ljung next introduces a “projection operator” according to which,
whenever the algorithm yields an “obviously bad” forecast, the forecast is
replaced with “something more reasonable.” Ljung’s Second Theorem
then gives a condition that is usually easier to verify than bounded-
ness—a kind of Lyapunov condition—which guarantees that the sequence
of forecasts generated by the projection algorithm (but not necessarily
those generated by the original algorithm) will converge to the correct
forecast.

The macroeconomic applications of Ljung’s method that appear in [3, 4,
6] are all applications of the Second Theorem, involving the projection
operator. The idea in these applications seems to be that everyone is seeing
the same data—perhaps even that a small collection of expert forecasters
are generating the forecasts to be used by the participants in the
economy—and that therefore the forecasts should move together. Further-
more, it is then reasonable that the forecasters will all invoke the projection
operator together. But when individuals have different information, they
will not generally arrive at “obviously bad” forecasts together, and they will
therefore not invoke the projection operator together—and, therefore, as
we show, Ljung’s Second Theorem does not apply.

Let us try to apply Ljung's Second Theorem (to be described shortly)
to a simple model in which, at each period 7=1,2,.., each person i
observes the value of a real variable z,(¢} and then, based upon his obser-
vations z,(1), .., z;(t), he makes a forecast x;(t) of what his next observa-
tion z;(t++ 1) will be. In particular, we assume that there are only two
persons and that their observations and forecasts are determined by the
equations

z(t)= Bx(t — 1)+ e(1), (1)

and

1
x(1) = x( = 1)+~ ()~ x(1= 1)), (2)
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and where {e(t)} = {(e;(¢), e,(¢))} is a sequence of independent and
identically distributed random variables with expected value 0.

This model of observation and expectation formation would arise, for
example, from a two-person game with linear reaction functions (such as
a linear duopoly) in which z,(¢) is player i’s observation of his opponent’s
action at time f (say ¢ _,(z), perhaps observed with noise—thus, z,(1)=
g..(t)+e,(1)), and in which x,(r) is player i’s expectation about his
opponent’s next action. Let player I's reaction function be ¢, =a,+b,4,
and player 2’s g, =a, + b-q,, and assume that each player i’s action gq,(t)
is his best response to his forecast x,(t) about what his opponent will do
next. Then we have

z,(t) :(512(1)> (6’1(’))

(zzm) a:(0) \esn)
_ {4 0 by\(x (1—-1) e, (1)
‘<al>+<bl 0)(x2(t—1)>+(e2<t)>’

and the Nash equilibrium and the rational expectations equilibrium
coincide (we ignore boundary conditions):

where

a,+b.a_;
x*:: *:—I-———l—tl, ':1’2.

If each player forms his forecast by averaging his past observations, i.e., if

!

|
x,(¢) =7 V;] z;(s),

and if we work with deviations from the equilibrium (i.e., a, =a, =0), then
Eqgs. (1) and (2) describe the movement of expectations and observations
over time, and we can ask whether the players will eventually “learn” to
have correct expectations x* about one another and therefore learn to take
the equilibrium actions ¢*. In other words, if the system’s law of motion
is given by (1) and (2), will it converge to its equilibrium?

Stochastic difference equation systems of the form given by (1) and (2)
are called by Ljung “recursive stochastic estimation algorithms.” His
method for analyzing the asymptotic properties of these algorithms is to
avoid direct analysis of the difference equation system, and instead to
identify an associated differential equation. Each of his two theorems then
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gives a set of conditions on the algorithm and its associated differential
equation which ensure that, if the differential equation has an asymptotically
stable stationary point, then the asymptotic behavior of the difference
equation system will be the same as that of the differential equation, i.e.,
the difference equation system will converge (almost surely) to the
differential equation’s stationary point.

Applying Ljung's method to our system (1) and (2), we first substitute
z(¢) from (1) into (2) to obtain as the transition function the following
stochastic difference equation:

x(t)zx(t—1)+%[(B—l)x(t—1)]+;e(t), (3)

for which Ljung’s associated differential equation (ADE) is x=f(x)=
(B—1I)x, which has x*=0--the equilibrium-—as its unique stationary
point. The stationary point’s domain of attraction, which we denote by &,
depends on the eigenvalues of the matrix B— 1 We assume that b, b, < 1
(i.e., that the reaction curves “cross the right way” for best-response
behavior to be stable); hence, both eigenvalues are negative and we have
7 =R~

Ljung’s First Theorem requires that the forecasts lie in a bounded area
infinitely often, i.c., that we can find a bounded subsequence of {x(¢)}. This
is usually a difficult condition to check, even for systems as simple as ours.
To avoid this difficulty, Ljung provides his Second Theorem, for which
he modifies the forecasting algorithms (2) into the following projection
algorithm, which we denote by (2'):

Let D be a bounded subset of R? with a nonempty interior;

Let C be a closed subset of the interior of D, called the algorithm’s
target set;

Let {p(t)} be a sequence of points' in C;
And instead of (2), the forecast x(t) is given by

t)_{i(t) it #(eD (2'a)
O=\pty it 1)¢D, (2'b)

where X(1)=x(1— 1)+ (1/t)(z(r) — x(r — 1)).

! Ljung and Séderstrom {2] suggest that p(t) can be taken to be, for instance, x(f— 1), and
they cite Ljung [1] as providing a proof of convergence. It is clear, however, that Ljung’s
Second Theorem does not apply to such a projection algorithm: The rule p(t) = x(¢ — 1) does
not yield an algorithm of the form (2') because it does not guarantee that p(¢) will lie in a
closed subset of the interior of D. (The distance from any such closed subset C to the exterior
of D must be positive, and therefore we might have x(r—1)e D\ C.)
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Algorithm (2’) differs from (2) in that the forecasts in (2') are made to
lie in a prespecified bounded set D by substituting, for any forecase %(z)
that lies outside D, a point p(z) that does lie in D. (There is an important
technical reason, which we describe momentarily, why the sequence { p(z)}
must be bounded away from the exterior of D.) It is natural to interpret the
set D as the support of the forecaster’s beliefs: When the forecast obtained
lies outside this set, the forecaster ignores it (as an “outlier”—an atypical,
perhaps mistaken, value), and uses an alternative prediction p(¢) instead. It
is important to note, in particular, that the use of a projection algorithm
in a model of learning behavior is a bekavioral assumption and not simply
an analytical device for studying convergence properties.

Ljung’s Second Theorem requires, roughly, that trajectories of the ADE
that start in C never leave the set D. This condition is formalized in terms
of a “Lyapunov-like” function U that appears in the following condition.

Condition L. The system (1) and (2’) is said to satisfy Condition L if
there is a twice continuously differentiable nonnegative real valued function
U:R? - R, that satisfies

(L.1) VxeD\C:U'(x)f(x)<0, and
(L.2) 3¢y, c¢,, with 0<€¢<c,, such that VxeC:U(x}<c¢, and
Vx¢D:U(x)=c,.

LIUNG’S SECOND THEOREM. Let the ADE of a projection algorithm (such
as the algorithm defined by (1) and (2'})) be x=f(x), and let x* be an
asymptotically stable stationary point of f (ie., the domain of attraction &
of x* under f is an open set). If the algorithn?’'s target set is a subset of %,
and if the algorithm satisfies Condition L, then for any x(0) the sequence
{x(2)} converges almost surely to x*.

If the forecasts are described by a projection algorithm such as (27), then
at each time ¢ each individual must choose x,(7) = X,(¢), or else each must
choose x;(¢)=p,(t). Each person must therefore know whether or not
X¥(t)eD in order to know whether he should invoke the projection
operator and thereby revert to p;(¢). In particular, he must know the other
person’s unprojected forecase ¥ _,(¢). This is clearly unsatisfactory. If our
intent is to explain how individuals might attain equilibrium even when
they do not start out knowing what one another will do, then we do not
want to assume that they know one anothers’ forecasts.

It is natural, then, to define a decentralized projection algorithm as one
in which each individual has a projection operator that he invokes
independently, whenever his own forecast lies outside a given set (say, the
support of his own beliefs about the others’ equilibrium actions). In our
example, then, we would have, for i=1, 2, the following, denoted by (2"):
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Let D, be a bounded subset of R with a nonempty interior.
Let C; be a nonempty closed subset of the interior of D,.
Let {p,(t)} be a sequence of points in C,.

The forecast x;(z) is given by

e x:(0) if X,(t)eD; (27a)
x‘““{p,-(r) if %(1)¢D,, (2"b)

where ¥, (1) =x;(t — 1} + (1/1)(z;(¢) — x;{t = 1)).

Is the algorithm (2”) of the form (2'), so that Ljung’s Second Theorem
can be applied to i1t? This would require both that D=D xD, and
C=(C, x C,. But now suppose that at some time ¢ we have, say, %,(7) ¢ D,
and X,(t)eD,. Then X(t)¢ D and the algorithm (2') requires that
x(t)=p(t)e C. But according to (2"), only person 1 invokes the projection
operator: x,(t)=p,(t)e C,, but x,(t) need not lie in C,. Thus, x(r) will lie
in the set C,x D,, but not necessarily in C, as algorithm (2') requires.
In other words, a decentralized projection algorithm is not a projection
algorithm of the kind to which Ljung’s Second Theorem applies.?

Could we remove the set C from the definition of a projection algorithm,
ie., could we allow C=D, so that the definition would include decen-
tralized projection algorithms? It seems not. The requirement in algorithm
(2’) that each term p{¢) lie in a given closed set C which is in turn
contained in the interior of D (i.e., that the sequence {p(#)} be bounded
away from the exterior of D) is of fundamental importance in the proof of
Ljung’s Second Theorem (see [5, Remark 1]): It guarantees that if the
projection algorithm were invoked infinitely many times, {x(z)} would
have a subsequence in the (compact) set C and would therefore have a
limit point in the interior of D. This interior limit point plays a crucial role
in proving that, if Condition L is satisfied, the projection operator could in
fact only be invoked finitely many times, so that an algorithm of the form
(2') will eventually be of the form (2'a), and will therefore behave
asymptotically like its ADE. Existence of such an interior limit point is not
guaranteed for a decentralized algorithm of the form (2”), and it is not
clear how the proof of Ljung’s Second Theorem could be altered to include
decentralized algorithms.

There is a second difficulty in applying Ljung’s Second Theorem to
decentralized forecasting problems. Suppose that, after all, we could prove
a version of the Second Theorem that would cover decentralized projection
algorithms. Now consider the implications of Condition L. This condition

*Marcet and Sargent [4] mistakenly apply Ljung’s Second Theorem to a projection
operator of the form (2"). See Remark 1 in Moreno and Walker (5] for an analysis of the
obstacles to adapting the theorem’s proof to operators of the form (2”).
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effectively requires that the trajectories of the ADE, when starting in C,
never leave the set D; if we choose C; very close to D,, the trajectories of
the ADE at the boundary of D must point inward. To see the implications
of this assumption for our example, suppose that the sets D, and D, are
bounded intervals in R. Figure 1 gives the phase diagram of the ADE.
The lines x, =0 and X, =0 are the reaction functions of players 1 and 2,
respectively, in the two-person game if 4, and b, are both negative and the
stability condition b,b, <1 is satisfied. At point %, on the boundary of D,
the ADE will follow a trajectory that will drive the system out of the set
D; therefore, Condition L is not satisfied here. It is only when the upper left
and lower right corners of D lie between the graphs of the functions x; =0
and %,=0, as in Fig. 2, that Condition L is satisfied. If D, and D, are the
real intervals («,, §,) and (a«,, f§,), then Condition L requires that the
following inequalities be satisfied (when b, and b, are both negative):

1 1
sz|<a2<'—“B] al’ld —<ﬂ2<b2a].
b] bl

D
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By imposing Condition L, then, we are effectively requiring that the
individual beliefs have supports that are not independent of one another. If
each firm arrives at its support D, independently, Condition L will not
generally be satisfied.

An alternative interpretation is that Condition L is a kind of consistent
beliefs condition, similar to the consistency of prior beliefs that plays such
an important role in justifying Nash equilibrium via common-knowledge
arguments. But the primary reason for studying models of learning is
to explain the attainment of equilibrium when individuals do nor have
full information about one another. Therefore Condition L, and Ljung’s
projection operators, do not seem to be appropriate for modeling
decentralized processes of decision making and expectation formation.

It may be, however, that decentralized projection operators such as (2")
are in fact good descriptions of the way individuals form expectations. If so,
it is an important question for further research whether there is a decen-
tralized analogue of Ljung’s Second Theorem, a theorem that will give
us conditions under which decentralized recursive stochastic estimation
algorithms converge.
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