

Implementation in Adaptive Better-Response Dynamics

Antonio Cabrales, Universidad Carlos III de Madrid Roberto Serrano, Brown University and IMDEA

October 2007

Summary

- Introduction \rightarrow
- The model →

MOTIVATION

- Implementation theory has produced many mechanisms.
 - Not easy to know which is more relevant.
- Dynamic approach to test their robustness and simplicity/learnability.
- Recent research (Cabrales 1999, Cabrales and Ponti 2000, Sandholm 2002) showed:
 - Canonical mechanism (when implementing in *strict* Nash) stable *and* learnable. *Integer* games nonessential
 - More "refined" mechanism (in iterative deletion of WD strategies) can stabilize "bad" equilibria.
- Are negative results purely mechanism-driven?
 - Negative (but qualified) answer in this paper.

RESULTS

- *Quasimonotonicity* necessary for implementation when all kinds of mutations are allowed.
- Quasimonotonicity plus 3 players and ε -security also sufficient.
- More permissive sufficient conditions with other assumptions on mutations:
 - "Regret" makes more serious mistakes less likely.
 - Mutations are all same order of magnitude (and exploit myopy heavily).
- For incomplete information environments:
 - Bayesian quasimonotonicity plus incentive compatibility neessary (and sufficient with 3 players and ε -security).

PRELIMINARIES

- $N = \{1, ..., n\}$: set of agents.
- Environment: exchange economy.
- X_i : *i*'s consumption set, grid in \Re^l_+
- $\omega_i \in X_i$: *i*'s initial endowment.
- Set of allocations:

$$Z = \left\{ (x_i)_{i \in N} \in \prod X_i : \sum_{i \in N} x_i \le \sum_{i \in N} \omega_i \right\}.$$

PREFERENCES

- θ_i : *i*'s preference ordering.
- Assumptions:
 - 1. No externalities.
 - 2. 0 is worst bundle.
 - 3. Increasing preference: For all *i* and for all $x_i \in X_i$, if $y_i \gg x_i$, $y_i \succ_i^{\theta_i} x_i$.
- $\theta = (\theta_i)_{i \in N} \in \Theta$: preference profile.
- $f: \Theta \to Z$: social choice function (SCF).

MECHANISMS AND IMPLEMENTATION

- $G = ((M_i)_{i \in N}, g)$: mechanism, where M_i is *i*'s message set and $g : \prod_{i \in N} M_i \to Z$ is the outcome function.
- Played simultaneously every period by boundedly rational agents.
- Better-response dynamics (unperturbed Markov process):
 - Let m(t) message vector at time t.
 - $m_i(t+1)$ (if chosen to update) puts positive probability on any m'_i such that

$$g\left(m_i',m_{-i}(t)
ight)\succsim_i^ heta g(m(t))$$

- Better-response dynamics with mistakes (perturbed Markov process):
 - Irreducible and aperiodic perturbation of better-response dynamics.
- An SCF is *implementable in stochastically stable strategies* if there is a mechanism G such that a perturbation of the better response dynamics applied to its induced game when the preference profile is θ has $f(\theta)$ as the unique outcome supported by stochastically stable message profiles.

PROPERTIES OF SCF

- An SCF is ε -secure if for each θ , and for each $i \in N$, $f(\theta) \ge (\varepsilon, ..., \varepsilon)$.
- An SCF is quasimonotonic if, whenever it is true that for every $i \in N$, $f(\theta) \succ_i^{\theta} z$ implies that $f(\theta) \succ_i^{\phi} z$, we have that $f(\theta) = f(\phi)$ for all $\theta, \phi \in \Theta$.

NECESSITY AND SUFFICIENCY

Theorem 1: If f is implementable in SSS of any perturbed better-response dynamics, f is *quasimonotonic*.

Proof:

- Let true preference profile be θ .
- f implementable in SSS implies only $f(\theta)$ is in set of recurrent classes.
- Let ϕ such that for all i, $f(\theta) \succ_i^{\theta} z$ implies that $f(\theta) \succ_i^{\phi} z$.
- Since $f(\theta)$ is only outcome in recurrent class when preference is θ , when message profile gives θ :
 - Unilateral deviations for i must give either $f(\theta)$ again,
 - or z with $f(\theta) \succ_i^{\theta} z$.
- But this implies $f(\theta)$ must also be in recurrent class when preferences are ϕ .
- And therefore $f(\theta) = f(\phi)$, thus f is quasimonotonic.

Theorem 2: Let $n \ge 3$. If an SCF f is ε -secure and quasimonotonic, it is implementable in SSS of any perturbed better-response dynamics.

Proof: Canonical mechanism

- Message set: $M_i = \Theta \times Z$.
- Outcome function:

i If $\forall i, m_i = (\theta, f(\theta)), g(m) = f(\theta)$. ii If $\forall j \neq i, m_j = (\theta, f(\theta))$ and $m_i = (\phi, z) \neq (\theta, f(\theta))$: 1(a) If $z \succeq_i^{\theta} f(\theta), g(m) = (f_i(\theta) - \varepsilon, f_{-i}(\theta))$. (b) If $f(\theta) \succ_i^{\theta} z, g(m) = z$.

iii In all other cases, g(m) = 0.

Let θ be the true preference profile.

Step 1 No message profile in rule (iii) is part of a recurrent class.

- W.I.o.g., suppose $m_1 = (\phi, z) \neq (\theta, f(\theta))$.
- Change one by one strategies of $i \neq 1$, to $(\theta, f(\theta))$.
- Outcome is still 0, so better response, until (n-1) messages are $(\theta, f(\theta))$.
- Then outcome switches to either z or $(f_1(\theta) \beta, f_{-1}(\theta))$, both better-response.
- In last step agent 1 switches from (ϕ, z) to $(\theta, f(\theta))$. This yields $f(\theta)$, a better response and contradiction.

Step 2 No message profile under rule (ii.a) is part of a recurrent class.

- $m_j = (\phi, f(\phi))$, for all $j \neq i$, and $m_i = (\phi', z')$ such that $z' \succeq_i^{\phi} f(\phi)$, leading to $f_i(\phi) \beta$ for *i*.
- Agent *i* switches to (ϕ, z) , where $z_i = f_i(\phi) \beta'$ (for $\beta' < \beta$) and $z_j = 0$ for every $j \neq i$, which yields outcome *z*.
- From here each $j \neq i$ can switch to (ϕ^j, z^j) (for some $(\phi^j, z^j) \neq (\phi, f(\phi))$), leading to rule (iii), contradiction.

Step 3 No recurrent class contains profiles under rule (ii.b).

- For all $j \neq i$ $m_j = (\phi, f(\phi))$, whereas $m_i = (\phi', z')$, satisfying that $f_i(\phi) \succ_i^{\phi} z'_i$. This implies outcome is z'.
- Agent *i* switches, if necessary, to (ϕ', z) , where $z_i = z'_i$ and for all $j \neq i$, $z_j = 0$, after which the outcome is *z*.
- As before, any of the other agents can switch to rule (iii), and contradiction.

Step 4 Only the truthful profile $(\theta, f(\theta))$ is a member of a recurrent class.

- Thus, all recurrent classes contain only profiles under rule (i). One cannot abandon rule (i) to get to another without passing through rule (ii). Thus, recurrent classes are singletons.
- Each recurrent class, a singleton under rule (i), must consist of a Nash equilibrium of the game when true preferences are θ , by better-response dynamics.
- One such Nash equilibrium is the truthful profile $(\theta, f(\theta))$ reported by every agent. Unilateral deviations lead to rule (ii.a) or rule (ii.b). Not possible under betterresponse dynamics.
- One may have other (non-truthful) Nash equilibria under rule (i). Let $(\phi, f(\phi))$ be such NE.
- For this to be a NE, for all $i \in N$, $f(\phi) \succ_i^{\phi} z$ implies that $f(\phi) \succeq_i^{\theta} z$.
- Moreover, since profile is a absorbing state of the dynamics, we must also have for all $i \in N$, $f(\phi) \succ_i^{\phi} z$ implies that $f(\phi) \succ_i^{\theta} z$.
- Thus, because f is quasimonotonic, we must have that $f(\theta) = f(\phi)$.

PERMISSIVE RESULTS

1. REGRET DYNAMICS

- Suppose agent *i* moves at time *t*.
- z_i^0 : bundle at period t.
- y_i : bundle that *i* proposes.
- z_i : bundle that he receives in new outcome.
- Resistance of such transition:

$$\left[u_i(z_i^0)-u_i(z_i)\right]-\lambda\left[u_i(y_i)-u_i(z_i)\right],$$

where $0 < \lambda < 1$ is small enough. Call these *better-response regret dynamics*.

Theorem 3: Let $n \ge 3$. Then, any ε -secure SCF f is implementable in SSS of any perturbed better-response regret dynamics.

- Proof based on (modified) canonical mechanism of Theorem 2.
- Quasimonotonicity of f implies again recurrent classes are singletons under rule (i).
- Let θ denote the true preferences.
- We classify recurrent classes of unperturbed process into:

 E_0 truth-telling profile, for each $i \in N$, $m_i = (\theta, f(\theta))$.

 E_j for j = 1, ..., J is coordinated lie on profile θ^j : for each $i \in N$, $m_i = (\theta^j, f(\theta^j))$, a Nash equilibrium of the mechanism under θ . These require that for all $i \in N$, $f(\theta^j) \succ_i^{\theta^j} z$ implies that $f(\theta^j) \succ_i^{\theta} z$.

• Modify outcome function of proof of Theorem 2:

(ii.a'.) Replace β with $(\Delta, 0, \dots, 0)$, punishment is smallest unit of nummeraire.

- Profile in E_0 is only stochastically stable profile:
 - [a] To get out of E_0 , through rule (ii.a') paying $(1 + \lambda)\Delta$ or through (ii.b) paying no less than $(1 + \lambda)\Delta$.
 - After that, a mistake to rule (iii), costs K, takes us to 0.
 - From there for free to any equilibria in E_j .
 - [b] To get out of any E_j , two paths but cheapest under rule (ii.a') again.
 - In this case, resistance is strictly smaller than $(1 + \lambda)\Delta$, because of the relief term.
 - After that, to rule (iii) paying also K, and from there for free to E_0 .

2. UNIFORM MUTATIONS

- An SCF f is (strongly) Pareto efficient if for all θ and for all $z \neq f(\theta)$, there exists an $i(\theta, z)$ such that $f(\theta) \succ_{i(\theta, z)}^{\theta} z$.
- For every θ and ϕ , there is an $j(\theta, \phi)$ and $x(\theta, \phi)$ and $y(\theta, \phi)$ such that

$$x(\theta,\phi) \succ_{j(\theta,\phi)}^{\theta} y(\theta,\phi) \quad \text{and} \quad y(\theta,\phi) \succeq_{j(\theta,\phi)}^{\phi} x(\theta,\phi).$$
 (*)

Denote by $J(\theta, \phi)$ the set of agents $j(\theta, \phi)$ for whom there exists a preference reversal between a pair of alternatives across states θ and ϕ , as specified in (*).

(5) For each θ and ϕ , there is $j(\theta, \phi) \in J(\theta, \phi)$ such that $j(\theta, \phi) \neq i(\theta, x(\theta, \phi))$, where $x(\theta, \phi)$ is an alternative for which agent $j(\theta, \phi)$ has a preference reversal as in (*).

Theorem 4. Suppose environment satisfies (1), (2) and (5). Let $n \ge 5$. Any ϵ -secure and strongly Pareto efficient SCF f is implementable in SSS, when mutations are uniform.

Proof: Let $M_i = \Theta \times Z$, $m_i = (m_i^1, m_i^2)$, $m = (m^1, m^2)$.

(i.) If for every $i \in N$, $m_i^1 = \theta$, $g(m) = f(\theta)$.

(ii.a.) If exactly (n-1) messages m_i are such that $m_i^1 = \theta$ and $m_{i(\theta, x(\theta, \phi))} = (\phi, x(\theta, \phi)),$ $g(m) = (x_{i(\theta, x(\theta, \phi))}(\theta, \phi), x_{j(\theta, \phi)}(\theta, \phi), 0, 0, \dots, 0).$

- (ii.b.) If exactly (n-1) messages m_i are such that $m_i^1 = \theta$, but the odd man out, say agent k, does not satisfy the requirements of rule (ii.a), $g(m) = (f_k(\theta) \beta, f_{-k}(\theta))$, where $f_k(\theta) \ge f_k(\theta) \beta \ge (\epsilon, \dots, \epsilon)$.
- (iii.a.) If exactly (n-2) messages m_i are such that $m_i^1 = \theta$, $m_{i(\theta,x(\theta,\phi))} = (\phi, x(\theta,\phi))$ and $m_{j(\theta,\phi)} = (\phi, y(\theta,\phi)), g(m) = (y_{i(\theta,x(\theta,\phi))}(\theta,\phi), y_{j(\theta,\phi)}(\theta,\phi), 0, 0, \dots, 0).$
- (iii.b.) If exactly (n-2) messages m_i are such that $m_i^1 = \theta$, but we are not under rule (iii.a), for all $k \in N$, $g_k(m) = (\epsilon, \dots, \epsilon)$.

(iv.) In all other cases, g(m) = 0.

 E_0^j All n agents report the true state θ as the first part of their announcement.

 E_1^j Agents' reported state is not θ , the true state.

- **[a]** To get out of E_0^j , $i(\theta, x(\theta, \phi))$
 - imposes one reversal $x(\theta, \phi)$ one mistake.
 - Next, $j(\theta, \phi)$ imposes $y(\theta, \phi)$ second mutation.
 - Finally, anyone changes to (iv) where 0 is the outcome third mutation.
 - From 0, for free to any other absorbing state.

[b] To get out of an untruthful profile, say $m^1 = \phi$:

- $i(\phi, x(\phi, \theta))$ can impose $x(\phi, \theta)$. If $f(\phi) \succ_{i(\phi, x(\phi, \theta))}^{\theta} x(\phi, \theta)$, this requires a first mutation. If $x(\phi, \theta) \succeq_{i(\phi, x(\phi, \theta))}^{\theta} f(\phi)$, zero resistance.
- Next, $j(\phi, \theta)$ changes to $y(\phi, \theta)$ for free.
- Finally, someone changes to 0 under rule (iv), at most a second mutation.
- From there, for free to any other absorbing state.

ENVIRONMENT

- Each agent knows $\theta_i \in \Theta_i$.
- Let $\Theta = \prod_{i \in N} \Theta_i$ and $\Theta_{-i} = \prod_{j \neq i} \Theta_j$.
- We assume the set of states with ex-ante positive probability is Θ .
- Let $q_i(\theta_{-i}|\theta_i)$ be type θ_i 's interim probability over θ_{-i} .
- An SCF is a mapping $f: \Theta \mapsto Z$.
- Let A denote the set of SCFs.
- We shall θ_i 's interim expected utility over an SCF f:

$$U_i(f| heta_i) \equiv \sum_{ heta_{-i}\in oldsymbol{\Theta}_{-i}} q_i(heta_{-i}| heta_i) u_i(f(heta_i, heta_{-i}),(heta_i, heta_{-i})).$$

• $G = ((M_i)_{i \in N}, g), m_i : \Theta_i \to M_i), \text{ and } g : \Theta \mapsto Z.$

• Strategy revision using the interim better-response logic. That is, letting m^t profile at period t, type θ_i switches from $m_i^t(\theta_i)$ to any m_i' such that:

$$\sum_{\theta_{-i}\in \Theta_{-i}} q_i(\theta_{-i}|\theta_i) u_i(g(m'_i,m^t_{-i}(\theta_{-i})),(\theta_i,\theta_{-i})) \geq \sum_{\theta_{-i}\in \Theta_{-i}} q_i(\theta_{-i}|\theta_i) u_i(m^t(\theta),\theta).$$

- An SCF *f* is *implementable in asymptotically stable strategies* if there exists *G* such that interim better-response process has *f* as unique outcome of the recurrent classes of the process.
- An SCF *f* is *implementable in stochastically stable strategies* if there exists *G* such that a perturbation of the interim better-response process has *f* as unique outcome supported by stochastically stable strategy profiles.

NECESSITY

An SCF f is strictly incentive compatible if for all i and for all θ_i ,

$$\sum_{\theta_{-i}\in \Theta_{-i}} q_i(\theta_{-i}|\theta_i) u_i(f(\theta),\theta) > \sum_{\theta_{-i}\in \Theta_{-i}} q_i(\theta_{-i}|\theta_i) u_i(f(\theta_i',\theta_{-i}),(\theta_i,\theta_{-i}))$$

for every $\theta'_i \neq \theta_i$.

Theorem 5. If f is implementable in SSS of any perturbation of interim better-response dynamics, f is incentive compatible. If at least one recurrent class is a singleton, f is strictly incentive compatible.

- Consider a mapping $\alpha_i = (\alpha_i(\theta_i))_{\theta_i \in \Theta_i} : \Theta_i \mapsto \Theta_i$. A deception $\alpha = (\alpha_i)_{i \in N}$ is a collection of such mappings where at least one differs from the identity mapping.
- Given an SCF f and a deception α , let $[f \circ \alpha]$ denote the following SCF: $[f \circ \alpha](\theta) = f(\alpha(\theta))$ for every $\theta \in \Theta$.
- Finally, for a type $\theta'_i \in \Theta_i$, and an arbitrary SCF y, let $y_{\theta'_i}(\theta) = y(\theta'_i, \theta_{-i})$ for all $\theta \in \Theta$.
- An SCF f is *Bayesian quasimonotonic* if for all deceptions α , for all $i \in N$, and for all $\theta_i \in \Theta_i$, whenever

 $U_i(f \mid \theta_i) > U_i(y_{\theta'_i} \mid \theta_i) \forall \theta'_i \in \Theta_i \quad \text{implies} \quad U_i(f \circ \alpha \mid \theta_i) > U_i(y \circ \alpha \mid \theta_i), \quad (**)$ one must have that $f \circ \alpha = f$.

Theorem 6. If f is implementable in asymptotically stable strategies of an unperturbed interim better-response dynamic process, f is Bayesian quasimonotonic.

(二 (白

SUFFICIENCY

Theorem 7. Suppose the environments satisfy Assumptions (1) and (2) in each state. Let $n \ge 3$. If an SCF f is ϵ -secure, strictly incentive compatible and Bayesian quasimonotonic, f is implementable in asymptotically stable strategies of interim better-response dynamics.

Proof:
$$G = ((M_i)_{i \in N}, g), M_i = \Theta_i \times A. m_i = (m_i^1, m_i^2).$$
 Outcome function g is:

- (i.) If for every agent $i \in N$, $m_i^2 = f$, $g(m) = f(m^1)$.
- (ii.) If for all $j \neq i$ $m_j^2 = f$ and $m_i^2 = y \neq f$, one can have two cases:

(ii.a.) If there exist types $\theta_i, \theta'_i \in \Theta_i$ such that $U_i(y_{\theta'_i} \mid \theta_i) \geq U_i(f \mid \theta_i), g(m) = (f_i(m^1) - \beta, f_{-i}(m^1))$, where $f_i(m^1) \geq f_i(m^1) - \beta \in X_i$.

(ii.b.) If for all $\theta_i, \theta'_i \in \Theta_i$, $U_i(y_{\theta'_i} \mid \theta_i) < U_i(f \mid \theta_i)$, $g(m) = y(m^1)$.

(iii.) In all other cases, g(m) = 0.

Implementation in Adaptive Better-Response Dynamics

Antonio Cabrales, Universidad Carlos III de Madrid Roberto Serrano, Brown University and IMDEA

October 2007