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WHAT IS A NETWORK? (1/3)

e A collection of “entities” (nodes) and bilateral relationships (links).

The links/relationships can be:

Directed : Not necessarily reciprocal.

Undirected : Always reciprocal.

Weighted : Some links are more “equal’” than others.

Stochastic : The links are realized with some probability.




WHAT IS A NETWORK? (2/3)

Two crucial characteristics of networks:

A : Interactions are not anonymous (as opposed to standard “market”
transactions.)

B : The particular place agents occupy in the set of relationships is im-
portant.




WHAT IS A NETWORK? (3/3)

Network does potentially two things:

1. Production — Efficiency.

2. Allocation=—— Stability.

The interaction between the two produces a tension for network formation.

Q1 Which is the efficient productive network?

Q2 What is the stable network?

Q3 Are efficient networks stable and vice versa?




JACKSON-WOLINSKY MODEL(S) (1/4)

THE GENERAL MODEL

Let N =4{1,2,...,n} be the set of all individual nodes.

We denote by i3 a potential link between players i, 7 € N.

A graph g is a collection of undirected links zj.

We assume ii € g.

Let N(g) ={j € N :3Jij € g}, and n(g) the cardinality of N(g).
Let N;(g) ={j € N :ij € g}, and n;(g) the cardinality of N;(g).

Payoff functions for each player: u; : g — R.




JACKSON-WOLINSKY MODEL(S) (2/4)

Distance: We denote by d;;(g) the shortest (geodesic) distance between
¢t and 7 in g.

Components: The graph ¢’ C g is a component of g if for all i,5 € N(g")
(i # j), there exists a path in ¢’ connecting ¢ and j, and for any i € N(¢'),
j € N(g) if ij € g, then ij € ¢'.




JACKSON-WOLINSKY MODEL(S) (3/4)

PARTICULAR MODELS

MODEL 1-CONNECTIONS:

ui(g) = g 049 —c . ni(g), 0< 6 <1, e>0.

e Never detrimental to third parties if two agents creates a link between
them (positive externality.)

e [ woO connections can have different effects on a player.




JACKSON-WOLINSKY MODEL(S) (4/4)

MODEL 2-CO-AUTHOR:

() =S.. [ 4 1 1
ui(g) = 2lijeg [ni(g) + n;(g) T ni(g)nj(g)] '
u;(g) = 0 if n;(g) = 0.
ui(g) =1+ (1 + n%) 2ijeg [nj%g)] '

Never beneficial to third parties if two agents creates a link between them
(negative externality.)




STABILITY AND EFFICIENCY (1/17)

e Efficiency: Let W(g) = > ;enui(g). We say g* is efficient iff W(g*) >
W(g) Vg.

Notice that this notion is utilitarian not Paretian.

e Stability: We say that a network ¢’ is pairwise stable iff:
1. ui(¢') > ui(¢' —ij) and u;(g") > u;(g’ —1ij), Vij € g.

2. ui(g' +15) > ui(9') = u;(¢' +1ij) <uj(g’), Vij ¢ g.

e Notice that:
Only checks single link deviation.

Checks bilateral creation and unilateral cutting.




STABILITY AND EFFICIENCY (2/17)

EFFICIENCY IN CONNECTIONS MODEL

ui(g) = > 0%(9) — ¢ ni(g),0 <5< 1,e>0.
J¢i

1. The complete graph is efficient if ¢ < § — 52,
8 — 62 is minimum increased benefit from a new direct link.

Cost of a direct link ¢
2. A star encompassing N is efficient if § — 62 < c < 6+ (N —2)/2)6°.

3. No links are efficient if § + ((N —2)/2)62 < c.




STABILITY AND EFFICIENCY (3/17)

4. Proof of 2+43:
e Let a component ¢’ with m nodes and k links.
e Value of direct links is k(26 — 2¢).
e Maximum value of indirect links (m(m — 1)/2 — k)252.
e SO W(g) <W = k(26 —2¢) + (m(m — 1) — 2k)§2.
e W(m — star) = (m — 1)(25 — 2¢) + (m — 1) (m — 2)62.

e Thus W — W(m — star) = (k — (m — 1))(2§ — 2¢ — 2§2) < 0.
(since k>m —1 and § — 62 < ¢).

e T hus every component of efficient graph must be a star. A star of
m + n is more efficient than two separate stars.

e And W(star) > 0< § + mT_252 > c.




STABILITY AND EFFICIENCY (4/17)

STABILITY IN CONNECTIONS MODEL

1. The complete graph is pairwise stable if ¢ < 6 — 52,

Same reason as before, argument was pairwise.




STABILITY AND EFFICIENCY (5/17)

2. Pairwise stable networks are always fully connected.
e For a contradiction, assume g has pw-stable subcomponents ¢, g”.
o Letijcg’, and kil € 4.
e Then pw-stability of ¢’ = u;(g) — u;(g —i7) > 0.

o But, up(g + kj) — up(g) > u;(g) — u;(g — ij), since any new benefit
that ¢ gets from 5, k also gets and in addition k gets 52 times the
benefits of ¢'s connections.

o Similarly, u;(g + jk) — u;(g) > w;(g) — ui(g — lk) > O.

e This contradicts pw-stability since jk ¢ g.




STABILITY AND EFFICIENCY (6/17)

3. For § — 62 < ¢ < § star is pw-stable, but not always uniquely so.
e Deleting means losing at least 4 and gaining c.
e Adding ij : net gain § — 62, cost c.
e For N =4, and § — §3 < ¢ < §, the line is also pw-stable.

e For N =4, and ¢ — 03 >c> 08— 62, the circle is also pw-stable.




STABILITY AND EFFICIENCY (7/17)

4. For 6 < ¢, any non-empty network is inefficient.

e For § <c, connection ij is unprofitable to i if N;(g) =i (cost to ¢ is
c, benefit 9).

e Star is not stable.

e For N =15, and § — §* 4 62 — 63 > ¢, the circle is pw-stable (deleting
one link benefit is § — §* + §2 — §3, cost is ¢; adding one ling benefit
is § — 62, cost is ¢).




STABILITY AND EFFICIENCY (8/17)

EFFICIENCY IN CO-AUTHOR MODEL

1. For n even, the efficient network is n/2 pairs.

W(g) = > u(g)= > Z[i'_l_i_l_ 1]

ieEN im;(g)>0ijeg LT T Thlty

But since ;. (9)>0 2ijeg [nﬂ < n (equality only if n; > 0 for all 7)

Wig)<ont 3 z[ L ]

in;(g)>0ijeg LT




STABILITY AND EFFICIENCY (9/17)

But

1 1 1

> Z[nn]: ) ;Z[;lﬁn
i:n;(g)>015€g L7 i:n;(g)>0 tigeg L7

(since 3 ieq [1/nj} < n;) and equality can only be achieved if n; = 1

for all j € N.




STABILITY AND EFFICIENCY (10/17)

STABILITY IN CO-AUTHOR MODEL

1. Pairwise stable networks are composed of fully intra-connected com-
ponents of different sizes.

Let 2 and 5 not linked.

N 1 1 1
uq;(g-l-’bj)—l—l-(l-l-ni_l_l){ _ —I—Z]

A new link 25 is beneficial to 1 iff:
1 1 1 1 1

1+ > — >, —

n; + 1 nj—l—l ng n;+1) = ng

n,L-—|—2 1
ni—l—l n]—l—l

ni—|-2 > —Z—




STABILITY AND EFFICIENCY (11/17)

(a) If n, = n; ¢ wants j and vice versa.
1 1 -
n; Likegn, = 1 (average of fractions.)

So if n; > n; linking to j is beneficial for . When n; = n; this is
reciprocal.




STABILITY AND EFFICIENCY (12/17)

(b) If n;, < max{ni|ik € g} then i wants a link to h.
Let j such that i¢j € g and n; = max{ng|ik € g}.

Case 1 n;>n;—1

( 32121 > 1= ¢ wants h

i+t2
> 14 gh—j;l_lzmhzzzmjzz

1 1 :
= - Likeg n; < 1 =1 wants h

ni—I—Q >ni—|—2
nh—l—l_nj—|—1

\




STABILITY AND EFFICIENCY (13/17)

Case 2 n; <n; —1

ni—|—2 >nz-—|—2_ni—|—1—|—1>nz-—|—l

nh—l—l_nj—l—l_ nj—l—l n]
Since 15 € g this implies
nz—l— 1 1
n.: 2 .1 Z Z o
j i ikEg ”k " jkeg ™
k#ﬂ

The last inequality holds since the extra term 1/nj IS smaller than
other in the average. Thus,

ni—|—2 Z—
nh—l—l_n“kE




STABILITY AND EFFICIENCY (14/17)

(c) If m is the number of members in one component, and n in the next
largest, then m > nZ2.

Let 5 in @ component and ¢ in the next largest. : does not want j

iff:
4+ 2 1
ny —|— 1 m,
The first inequality is true since all connections of ¢ have n; con-
nections.

Remark a) implies that all ¢« with maximal n; have to be inter-linked.

b) implies that if j is linked to one i with maximal n;, 7 wants to be
linked to all other k£ with maximal n; and those with whom they are
themselves connected.

So fully intra-connected components at maximum. Then, iterate.




STABILITY AND EFFICIENCY (15/17)

e Evidence of “‘connectedness”’ in science in:
Newman (2004) PNAS.

Goyal, van der Leij, Moraga (2004).

e Seems like over-connected.

e Tension between stability and efficiency is well-captured by pw-stability.

e Positive issues in pw-stability: EXxistence.




EXISTENCE AND PW-STABILITY (1/5)

Trading networks

e Set of players N = {1,...,n}, players are nodes of a network g.

e Endowments for player i stochastic: (x;,y;) € {(1,0),(0,1)} equally
likely.

e Production function: f(z,y) =z -y.

e Trade is possible between agents ¢+ and 5 if they belong to the same
component.

o Let P = {ig,?1,...,2p} C N, such that g|p is a component of g.




EXISTENCE AND PW-STABILITY (2/5)

e Trading outcome for a player : € P is: w; = ﬁ (Zﬁzo xik,zizo y'&'k> :

e [ hat is, endowments are aggregated within connected component and
shared equally.

e Cost of every link is c.

e Network formation is done before endowments are realized (need to
use expected payoffs.)




EXISTENCE AND PW-STABILITY (3/5)

T

(@) (b) (© (d)

n=4

—c=g—c¢, forallie N.

—c for i € {1,2} and Eu; = 0 for ¢ € {3,4}.

) —e=¢%—cforie{1,3},Bu; = ¢ —2c for i =2, and

(d) Eu; = 16f <4,4) %f (%,%) —c = 136 c for i € {1,4}, and FEu; =
ig — 2c for i € {2,3}.




EXISTENCE AND PW-STABILITY (4/5)

2.

These observations together imply that for Qi <c<

. (a) is not stable for ¢ <

(b) is not stable for ¢ < % since players 3 and 4 would like to create a
link.

= — & = - since players 2 and 3 would like to

create a link.

. (d) is not stable for ¢ > 1—36 % L since player 3 would like to delete

48
link 34.
. (¢) is not stable for ¢ > 2 — & = 3 since player 2 would like to delete
link 23.

. All other configurations are unstable since links are redundant.

lthere is no stable

00|

trading network.




MULTIPLICITY AND PW-STABILITY (1/3)

DYNAMIC STABILITY

e For many parameters/payoff functions (e.g. co-author) there are mul-
tiple pw-stable networks.

e In games one approach to decrease multiplicity is evolutionary dynam-
ICS.

e In particular - stochastic stability

Young, or, Kandori, Mailath and Rob, both 1993 Econometrica




MULTIPLICITY AND PW-STABILITY (2/3)

e Stochastic process:
State variable - past actually played strategies (perhaps time-averaged.)

Updating rule/transition probabilities:

Best-response (or better-response) to state - with prob. 1 —e.

Anything else - with probability e.

e Stochastic process reaches all states with positive probability.

e Thus, it is ergodic and has a stationary distribution puc.

e Stochastically stable states are those with positive probability in @ =
lim._,o ,LLs.




MULTIPLICITY AND PW-STABILITY (3/3)

e Stochastically stable networks
State variable: network g.
Updating rule: one-link deviation possibility.
Example: co-author model - two pw-stable networks.

More mistakes are needed to do one transition than the other.




THE MYERSON GAME (1/9)

e Set of players: N ={1,....,n}.
e Strategy set: S; = {0,1}"1.

o Let strategy s; = (s;1,8;2,...,8in) € 5;
sij = 0 if ¢« does not want to link to j,

sij = 1 if ¢ wants to link to j.
e s=(s1,...,8p) € S is a strategy profile.
e Let g(s) be the network that arises from s.

o For g(s), let g;;(s) € {0,1} denote the presence of absence of link ij.




THE MYERSON GAME (2/9)

One-sided link formation (directed networks): g;;(s) = s;;

Two-sided link formation (undirected): g;;(s) = s;; * 5.

e Example of one- sided: Bala and Goyal (2000) Econometrica.

ui(g) = > 0%(9) — ¢ ni(g),0 <5 < 1,e>0.
J¢i




THE MYERSON GAME (3/9)

MULTIPLICITY IN MYERSON GAMES: REFINEMENTS

o Let:

s1\S2 | s21 | $22
s11 | 22|22
S$12 -2,-2 10,0

e Trembling-hand perfect equilibrium (THPE):

ot is a e—constrained equilibrium if it is:

1. Completely mixed.
2. of € argmax{u;(o;,0° ;)|0o;(s;) > e(s;) }-

o is a THPE iff ¢ = lim._go® where ¢ is some sequence of
g—constrained eq.




THE MYERSON GAME (4/9)

e (s11,s21) in the example is NE but not THPE.

e Unfortunately that is not general.




THE MYERSON GAME (5/9)

Claim 1 THPE does not eliminate all “unwanted’” Nash equilibria in the
following Example.

PS

1 - 1
1 1
-2 -1 -1

-2 ) -2 -1 -1

It is easy to see that the null graph is a Nash equilibrium, but not stable.
We will now show it is a THPE.

Represent a mixed strategy o € A{0,1}? as in:




THE MYERSON GAME (6/9)

o1 —

s13=0 |s13=1
s1o=0|a b
s1o=1|c l—a—-b—c

Then we will check that the following in an e— constrained equilibrium (for
sufficiently small ¢.)

Q
=)
|

9
N
|

e Easy to check o7 is optimal.

s13=0|s13=1
81220 € 3 ,O’SZ
81221 € 1 — 3¢

s32 =0 s3p =1
s313=0|1—2e%—¢ | "
31 — € €| €
831:1 64 €

so>3 =0 soz3 =1
s5o1=0]1—2c%—¢ | &%
821=1 84 €

Player 1 has a dominant strategy to
create as many links as possible.




THE MYERSON GAME (7/9)

e Why is o5 optimal against 0%, = (0%,0%)7

.'4 |1—§’|4:._*' Il—f'sl

A\ /\AQ

,1_2,4_ ol — 2% — o)e-

/O;Q\/;Q

(1-2:4 e MO0 L (1-30)t

\AAJ\
\AA/\




THE MYERSON GAME (8/9)

Let ua((s31 = 0, s30 = 1),0°,) and disregard terms of order &2 or
more. Then

uo((s31 = 0,530 = 1),0°5) ~ ((1 = 3e)e +&°) - (1) +2e°-1 <0
whereas

up((s31 = 0,530 =0),0°5) =0

e Notice that it is crucial that the “mistake” of sending links to both 1

and 2 by player 3 is g, whereas the (less serious) of sending only to 3

is £2.

e [ hus proper equilibrium may be better.

ot is a e—proper equilibrium if it is:

1. Completely mixed.




THE MYERSON GAME (9/9)

/ /
2. ui(sg, US_Z') < ui(sia UE_Z-) = 0;(s;) < e 02(31)}
o is a proper equilibrium iff o = lim._,g 0® where ¢¢ is some sequence
of e—proper eq.

e (s11,s21) in the example is NE but not THPE.

e Unfortunately that is not general.




PAIRWISE NASH EQUILIBRIA (1/3)

e Let again the (Myerson) network formation game.

e We say that g is pairwise Nash iff:

g is a Nash equilibrium of the Myerson game.

ui(g +1j) > u;i(g) = uj(g+ ij) > u;(g).

e [ his is a Nash equilibrium for which every mutually beneficial link is
Created.

e A pairwise Nash network is robust to:
Bilateral single link creation.

Unilateral multi-link destruction.




PAIRWISE NASH EQUILIBRIA (2/3)

e For the latter reason, this is more demanding than pw-stability.

e Pairwise stability:

ge PS=u;(g—1j) —u;(g) <0 Vie N,ijeg (x).

e Pairwise Nash:

g € PN = u;(g—ij1—tj2...—ijp) —ui(g) <0 Vi € N,ij1,ij2, ..., ip € g ().

e Obviously (xx) = (x). If (x) = (*x*), then Pairwise stability and Pairwise
Nash are equivalent.

e A condition guaranteing this is u;(.) being a— convex.




PAIRWISE NASH EQUILIBRIA (3/3)

e u;(.) is a— convex iff

p
ui(g — ij1 — ijo... —ijp) —ui(g) > o > (ui(g —ijg) — ui(9)) .
k=1

e [0 find o take the

min{u;(g — tj1 — ij2... — 15y) —ui(g)} / max{u;(g — ijg) — ui(g)} .
9Cg Wk
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