

Building socio-economic networks: how many conferences should you attend?

Antonio Cabrales, Antoni Calvó-Armengol, Yves Zenou

October 2006

Summary

- Introduction →
- The game 🛶 📫
- Equilibrium and welfare: large economies →
- Comparative statics →
- Topology: theory and empirics →
- The case of homogeneous populations —

- Spillovers between different agents generate incentives for "linking."
 - Research and development.
 - Labor Market Information.
 - Friendships and "Social Capital."
- If linking is done "non-cooperatively," inefficiencies arise (overlinking underwork), so role for policy.

- Previous "purely economic" work does not look very much at endogenous and costly network formation.
- The (more game-theoretic) work that does, simplifies away the game after forming the network.
- Reason: Analytical intractability.

Model

- We analyze a network formation game with two choices:
 - Socialization effort.
 - Productive effort.
- The key simplification is: undirected socialization.
 - Each link created with probability equal to product of socialization efforts.
 - Thus random network.
- Strategy space much simpler (one dimensional for each player rather than n 1-dimensional), so equilibrium is a smaller-sized fixed point.

- As a result we can:
 - Discuss welfare and policies.
 - We can also replicate some-fat tails, short distance-(but not allclustering) features of available data.
 - We can (and do) perform statistical (regression) analysis.

Results

- Equilibrium: for "large" groups two stable (and one unstable).
- The equilibria are "ordered": both in actions and in welfare.
- An increase in returns increases (decreases) actions at Low (High) equilibrium.
- This increase in returns has stronger relative effect on socialization effort.
 - An explanation for the explotion of R&D collaboration.
 - Perhaps also for the decrease in social capital.

- Heterogeneity: A mean preserving spread in rewards, increases (decreases) payoffs at Low (High) equilibrium.
- Results robust to cost structure.

Prior work:

- Spillovers (theory): Marshall (1920), D'Aspremont and Jacquemin (1988), Bénabou (1993).
- Spillovers (empirics): Ciccone, Hall (1996); Cassiman, Veugelers (2002).
- Spillovers (policy): Motta (1996), Leahy and Neary (1997).
- Networks: Myerson (1981), Jackson and Wolinsky (1996).
- Replicating the features of data: Jackson and Rogers (2006).
- Play on fixed networks: Calvó-Armengol and Jackson (2004), Bramoullé and Kranton (2005).

The replica game

- $N = \{1, ..., n\}$ finite set of players, $T = \{1, ..., t\}$ finite set of types.
- There are exactly m players of each type $\tau \in T$.
- For each $i \in N$, $\tau(i) \in T$ is his type.
- Simultaneous move game of network formation and investment.
- Returns to investment are the sum of a private component and a synergistic component.

- Private returns are heterogeneous: $\mathbf{b} = (b_1, ..., b_t)$ where $0 < b_1 \le b_2 \le ... \le b_t$.
- The synergistic returns depend on the network.

Network formation

- Each player *i* selects $k_i \ge 0$ a level of socialization effort. $\mathbf{k} = (k_1, ..., k_n)$.
- Then, *i* and *j* interact with link intensity $(g_{ij} = g_{ji})$:

$$g_{ij}(\mathbf{k}) = \rho(\mathbf{k}) \, k_i k_j; \quad g_i(\mathbf{k}) = \sum_{j=1}^n g_{ij}(\mathbf{k}); \quad \rho(\mathbf{k}) = \begin{cases} 1/\sum_{j=1}^n k_j, \text{ if } \mathbf{k} \neq \mathbf{0} \\ \mathbf{0}, \text{ if } \mathbf{k} = \mathbf{0} \end{cases}$$

- When $\max_i k_i^2 < 1/\rho(\mathbf{k})$, network interpretable as random graph where $g_{ij}(\mathbf{k})$ probability of ij edge.
- Random graph model with expected degrees $\mathbf{k} = (k_1, ..., k_n)$ in Chung and Lu (2002) (can replicate Poisson distributions, power laws etc.)

Investment

- Each player *i* selects an investment level $s_i \ge 0$ and $s = (s_1, ..., s_n)$.
- The choices of k_i and s_i are simultaneous.
- Individual investment yields private return and synergistic return.

• Private returns:
$$b_{\tau(i)} s_i - s_i^2/2$$
.

• Synergistic returns:
$$\frac{\partial^2 u_i(\mathbf{s},\mathbf{k})}{\partial s_i \partial s_j} = ag_{ij}(\mathbf{k}), a \ge 0$$

Payoffs

Formally, let $p_{ij}(\mathbf{k}) = g_{ij}(\mathbf{k})$ if $i \neq j$ and $p_{ii}(\mathbf{k}) = g_{ii}(\mathbf{k})/2$. Player *i*'s utility is given by:

$$u_i(\mathbf{s}, \mathbf{k}) = b_{\tau(i)} s_i + a \sum_{j=1}^n p_{ij}(\mathbf{k}) s_j s_i - \frac{1}{2} s_i^2 - \frac{1}{2} k_i^2$$
(1)

Equilibrium and welfare: large economies (1/8) >

- We solve for Nash equilibria in pure strategies $(s^*; k^*) = (s_1^*, ..., s_n^*; k_1^*, ..., k_n^*)$ of *m*-replica game with *m* large enough.
- There are exactly three such equilibria.
 - One (partially corner) with null socialization.
 - Two interior equilibria.

Lemma 1 $(s_i^*, k_i^*) = (b_{\tau(i)}, 0)$ for all i = 1, ..., mt is a pure strategy Nash equilibrium with payoffs $b_{\tau(i)}^2/2$.

• It is a strict equilibrium, but not stable for large populations, as we will show later.

Define:

$$a(\mathbf{b}) = a \frac{\sum_{\tau=1}^{t} b_{\tau}^2}{\sum_{\tau=1}^{t} b_{\tau}}.$$
 (2)

- Holding average type $\sum_{\tau=1}^{t} b_{\tau}/t$ constant, $a(\mathbf{b})$ increases with heterogeneity in types.
- Many authors refer to $\sum_{\tau=1}^{t} b_{\tau}^2 / \sum_{\tau=1}^{t} b_{\tau}$, as the second-order average type (see e.g. Vega-Redondo 2006).

Theorem 2 Suppose $2/3\sqrt{3} > a(b) > 0$. Then, for $m \ge m^*$, there are exactly two interior pure strategy Nash equilibria. For these equilibria (s; k;) converge to $(s^* \leftrightarrow k^* \leftrightarrow)$ as m goes to infinity.

For these equilibria (s_i, k_i) converge to $(s^*_{\tau(i)}, k^*_{\tau(i)})$ as m goes to infinity $s^*_{\tau(i)} = b_{\tau(i)}s$, $k^*_{\tau(i)} = b_{\tau(i)}k$, and (s, k) are positive solutions to:

$$\begin{cases} k = a(\mathbf{b})s^2\\ s\left[1 - a(\mathbf{b})k\right] = 1 \end{cases}$$
(3)

• Under $2/3\sqrt{3} > a(b) > 0$. , the system (3) has exactly two positive solutions.

Simulations on Theorem 1 with a = 2, t = 1 and $b_1 = 0.1$. Numbers are multiplied by 10^4 .

n	2	5	10	20	50	100	500	∞					
Low equilibrium													
s^*	1,898	1,195	1,101	1,065	1,049	1,046	1,046	1,046					
k^*	2,366	815	458	303	234	222	218	219					
High equilibrium													
s^*	3346	4,643	4,591	4,508	4,444	4,420	4,400	4,394					
k^*	3506	3,923	3,911	3,891	3,875	3,869	3,864	3,862					

- The two equations (3) equalize marginal costs with marginal benefits at equilibrium.
- The marginal benefit from investment s_i^* is:

$$b_{\tau(i)}/(1-rac{a(\mathbf{b})}{b_{\tau(i)}}k_i^*)$$

- When a = 0, this marginal benefit boils down to $b_{\tau(i)}$, the private return in (1).
- When $a \neq 0$, this is scaled up by synergistic multiplier $1/(1 \frac{a(b)}{b_{\tau(i)}}k_i^*)$, homogeneous across players and an increasing function of the second order average type a(b).

Equilibrium and welfare: large economies (6/8) <>

 \bullet The marginal benefit of $k_i^*,$ as the population size gets large, boils down to

$$a\rho\left(\mathbf{k}\right)\sum_{j=1}^{n}s_{i}s_{j}$$

- The condition $2/3\sqrt{3} > a(b)$ is necessary and sufficient for (3) to have a non-negative solution.
- When a(b) is too large, the synergistic multiplier operates too intensively and both k and s increase without bound.

• The socialization effort at equilibrium :

$$\frac{k_i^*}{k_j^*} = \frac{b_{\tau(i)}}{b_{\tau(j)}}.$$

• Thus, intensity of a link at approximate equilibrium is:

$$g_{ij}(\mathbf{k}^{*}) = k^{*} \frac{b_{\tau(i)} b_{\tau(j)}}{m \sum_{\tau=1}^{t} b_{\tau}},$$
(4)

which decreases linearly with 1/m.

• For this reason, the overall socialization effort $g_i(\mathbf{k}^*) = k^* b_{\tau(i)}$ is independent of the population size.

Proposition 3 For *m* sufficiently large, the two interior equilibria are stable while the equilibrium with $(s_i^*, k_i^*) = (b_{\tau(i)}, 0)$ for all i = 1, ..., mt is not stable.

Proposition 4 Let (s^*, k^*) and (s^{**}, k^{**}) be the two different approximate equilibria of an *m*-replica game. Then, without loss of generality, $(s^*, k^*) \ge (s^{**}, k^{**})$ and $u(s^*, k^*) \ge u(s^{**}, k^{**})$, where \ge is the component-wise ordering.

Socialization and investment

Proposition 5 Let $(s^*, k^*) \ge (s^{**}, k^{**})$ be the two ranked approximate equilibria of an m-replica game.

Suppose that a(b) increases.

Then, at the Pareto-superior approximate equilibrium (s^*, k^*) all the equilibrium actions decrease,

while at the Pareto-inferior approximate equilibrium (s^{**}, k^{**}) all the equilibrium actions increase.

In both cases, the percentage change in k_i is higher than that of s_i (in absolute values), for all i = 1, ..., mt.

Equilibrium payoffs

When m gets large, equilibrium payoffs are:

$$u_{i}^{*} = \frac{b_{\tau(i)}^{2}}{2a(b)s} \frac{k}{s} + o(1), \text{ for all } i = 1, ..., mt.$$
(5)
$$= \frac{b_{\tau(i)}^{2}}{2}s + o(1), \text{ for all } i = 1, ..., mt.$$
(6)

Proposition 6 Let $(s^*, k^*) \ge (s^{**}, k^{**})$ be the two ranked approximated equilibria of an *m*-replica game.

- 1. Suppose that either only a increases, or $(a; b_1, ..., b_t)$ are all scaled up by a common multiplicative factor. Then, at the Pareto-superior approximated equilibrium all the payoffs u_i ($\mathbf{s}^*, \mathbf{k}^*$) decrease, while at the Pareto-inferior approximated equilibrium all payoffs u_i ($\mathbf{s}^{**}, \mathbf{k}^{**}$) increase, for all i = 1, ..., mt.
- 2. Suppose that the vector $(b_1, ..., b_t)$ changes via a mean preserving spread (i.e. a change that holds $\sum_{\tau=1}^{t} b_{\tau}$ constant but increases $\sum_{\tau=1}^{t} b_{\tau}^2$). Then, at the Pareto-superior approximated equilibrium the sum of payoffs $\sum_{i=1}^{mt} u_i (\mathbf{s}^*, \mathbf{k}^*)$ decreases, as well as payoffs for types below the average. At the Pareto-inferior approximated equilibrium the sum of payoffs $\sum_{i=1}^{mt} u_i (\mathbf{s}^{**}, \mathbf{k}^{**})$ increases.

Remark 7 Let $(s^*, k^*) \ge (s^{**}, k^{**})$ be the two ranked approximated equilibria of an *m*-replica game. Fix *i* and let $b'_{-\tau(i)}$ and $b_{-\tau(i)}$ be two different population types (excluding *i*). If $a(b_{\tau(i)}, b_{-\tau(i)}) \ge a(b_{\tau(i)}, b'_{-\tau(i)})$, then player *i* gets a lower (resp. higher) utility at the Pareto superior approximated equilibrium (resp. at the Pareto inferior approximated equilibrium) under $(a, b_{\tau(i)}, b_{-\tau(i)})$ that under $(a, b_{\tau(i)}, b'_{-\tau(i)})$.

> 🕪 🕪 🦾

- Key network regularities:
 - 1. The distribution of connectivities is fat tailed. Higher proportion of nodes with many links than at random.
 - Average distance (or shortest path) between nodes is very small and grows very slowly with network size. For Hollywood actors network is 225,226 individuals and average path length is 3.65.
 - Third, the tendency of two linked nodes to be linked to a common third-party, (clustering coefficient), is much higher than at random. For the movie actors 3,000 times higher.
 - 4. Social networks exhibit internal (sometimes hierarchical) community structure, sometimes arranged hierarchically.
 - 5. Also, highly connected nodes tend to be connected with highly connected nodes (positive assortativity).

- Some mechanisms replicate this topological features, (Jackson and Rogers 2006).
- Basic ingredients are: a population growth process, and a link formation device for newcomers that combines random meetings with network search of the partner.

- Our model is static. It thus cannot replicate some things (e.g. high clustering).
- Yet, delivers some implications for topology, and relates it topology to incentives.
- Since $g_i(\mathbf{k}^*) = k_i^* = k^* b_{\tau(i)}$ when link intensities are smaller than one, we can interpret our network as a random graph.
- Then, the average connectivity is $\overline{\mathbf{k}^*} = k^* \overline{\mathbf{b}}$,
- The empirical variance of connectivities is $v(\mathbf{k}^*) = k^{2*}v(\mathbf{b})$. Therefore,

$$\frac{\sqrt{v\left(\mathbf{k}^{*}\right)}}{\overline{\mathbf{k}^{*}}} = \frac{\sqrt{v\left(\mathbf{b}\right)}}{\overline{\mathbf{b}}}$$

- Heteregeneity is driven by the heterogeneity in private returns. We can thus cover many topologies, including fat tailed connectivity.
- With Proposition 6, we can show impact on welfare of some changes in b.
- Chung and Lu (2002) show that average distance in a random graph with expected connectivity $(k_1^*, ..., k_n^*) = k^* (b_{\tau(1)}, ..., b_{\tau(n)})$ is:

$$(1+o(1))\frac{\log(mt)}{\log(k^*\overline{\mathbf{b}})}.$$

Summarizing :

	Low equilibrium				High equilibrium			
	$\overline{\mathbf{k}}$	v (k)	distance	payoffs	$\overline{\mathbf{k}}$	v (k)	distance	payoffs
a up	+	+		+		_	+	—
(a, \mathbf{b}) all up	+	++	—	++	•	•	•	—
b spread	+	++		++		•	+	<u> </u>
				(payoffs)				(payoffs)

Topology: theory and empirics (6/12)

- Our static model does not generate networks with a high clustering.
- Yet, split the population into smaller subpopulations.
- $1-\varepsilon$ of the socialization in-home, while a residual fraction ε is invested in the whole
- The smaller the size of each community, the bigger the clustering level (for identical average connectivity).
- This goes against our characterization of equilibrium actions.
- Finally, empirically observed social networks have a giant component Next section.

Empirics

- Data from the National Longitudinal Survey of Adolescent Health (AddHealth).
- Students in grades 7-12 from roughly 130 private and public schools in years 1994-95.
- Detailed information on friendship relationships.
- Detailed information on grades (math, history, social studies and science). We calculate an index.
- We take the network comprising the largest number of individuals for our exercise, with 107 nodes.

For this network, we focus on:

- the degree connectivity of each node k_i , i = 1, ..., 107
- the student achievement for each node e_i , i = 1, ..., 107

Topology: theory and empirics (9/12)

- We transform the performance measure. We write $e_i = s_i^{\beta} \exp(\varepsilon_i)$.
- In equilibrium $k_i/s_i = k/s$. Thus $e_i = \left(\frac{s}{k}k_i\right)^{\beta} \exp(\varepsilon_i)$.
- We run the regression: $\log(e_i) = \delta + \beta \log(k_i) + \varepsilon_i$.
- We find $\hat{\delta} = .0686$ and $\hat{\beta} = 1.3264$, significant at 10% and 1%.
- We then change variables: $s_i = e_i^{1/\widehat{\beta}}$, so $\log(s/k) = \log[\widehat{\delta}/\widehat{\beta}]$.

• Since
$$k = a(b)s^2$$
, and $s_i = b_{\tau(i)}s$, $s_i = \frac{b_{\tau(i)}k}{a(b)s}$.

Topology: theory and empirics (10/12)

- We do an ML fit of: $s_i = \frac{b_{\tau(i)}}{a(\mathbf{b})} \exp[-\hat{\delta}/\hat{\beta}] + \nu_i$ conditional on $a(\mathbf{b}) < 2/3\sqrt{3}$
- First only four different types $(b_1, ..., b_4)$ agents to types by quartiles.
- Then ten parameters $(b_1, ..., b_{10})$, in deciles.
- We obtain:

 $(a; b_1, ..., b_4) = (0.1857; 1.75, 1.87, 1.98, 2.11)$ $(a; b_1, ..., b_{10}) = (0.2097; 1.21, 1.33, 1.42, 1.55, 1.61, 1.76, 1.85, 1.90, 1.99, 2.55)$

- Easy to check, that individuals rank partners in decreasing value of their type for the high equilibrium(the opposite order for the low equilibrium).
- In this particular case, the only stable pairwise matching groups types 1 with types 2, and types 3 with types 4.
- This stable matching does not maximize social welfare at the high equilibrium.
- Allowing groups with more than two types, the ordering for type 1 at high equilibrium is: (1,3,4), (1,4), (1,2,3,4), (1,2,4), (1,3), (1,2,3), (1,2).

We can also use the estimated types to illustrate comparative statics of a mean preserving spread.

- Divide the 107 nodes into 27 agents of each type.
- Then, let x individuals type 1 and 4, and 54 x individuals for type 2 and 3, and vary x from 1 to 53.
- We observe numerically the monotonicity of in prop. 6.
- And, for this parameters, the utility of types 3 and 4 (not covered in prop 6) changes in the same direction as the others.

- Remark 7 implies that individuals of the highest type prefer to segregate.
- A simple induction argument justifies that the highest types of any heterogeneous subgroup would want to segregate.
- One would expect that some homogeneous groups to exists in a given society.
- We can also conduct some robustness checks on the technology and further insights on topology.

Player *i*'s utility is:

$$u_i(\mathbf{s}, \mathbf{k}) = bs_i + a \sum_{j=1}^n p_{ij} s_j s_i - \frac{1}{c+1} s_i^{c+1} - \frac{1}{c+1} k_i^{c+1},$$
(9)

where $a, b \ge 0$ and $c \ge 1$. The case c = 1 corresponds to quadratic costs. As c increases, the cost function becomes steeper.

We introduce $\phi : \mathbb{R} \to \mathbb{R}$ given by:

$$\phi(x) = c^{\frac{1}{c+1}} \left[x^{c+1} - b^{1+\frac{1}{c}} \right]^{\frac{1}{c+1}}$$

• For large populations, up to two *interior symmetric equilibria* solving:

$$\begin{cases} k^c = as^2\\ s^c \left[1 - ak\right] = b \end{cases}, \tag{10}$$

with added condition $k^* \leq \phi(s^*)$. This is equivalent to:

$$u_i(s^*,k^*) = \frac{1}{c+1} \left[cs^{*c+1} - k^{*c+1} \right] \ge \frac{c}{c+1} b^{1+\frac{1}{c}} = u_i \left(b^{1/c}, 0 \right).$$
(11)

• The condition $k^* < \phi(s^*)$ guarantees that $(b^{1/c}, 0)$ is not a strict best-response player *i* to the rest playing (s^*, k^*) .

Proposition 8 Suppose that (10) has three different solutions. Let $(s^*, k^*) \ge (s^{**}, k^{**})$ be the two ranked interior symmetric approximate equilibria for large population. When a increases, s^{**} and k^{**} increase, while s^* and k^* decrease. In both cases, the percentage change in k is higher than that of s.

The topology of Erdös-Rényi equilibrium networks

- In the Erdös-Rényi (Bernoulli) random networks that correspond to the interior equilibria expected number of links is k
- Network connectivity (or degree) is not correlated across different nodes.
- When $k^* < 1$, the networks is composed of a huge number of disjoint small trees.
- When $k^* > 1$, a single giant component that encompasses a high fraction of all the network nodes emerges.

Proposition 9 When $a \ge 1$, no equilibrium network has a giant component. Suppose that a < 1 and that there are two non-empty equilibrium networks. Then, the two equilibrium networks display different topological characteristics (one network with a giant component, one without) if and only if $ab^{2/c} < (1-a)^{2/c}$. If, instead, $ab^{2/c} > (\frac{c}{a+c})^2$.

Building socio-economic networks: how many conferences should you attend?

Antonio Cabrales, Antoni Calvó-Armengol, Yves Zenou

October 2006

