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Proof of Lemma 2: Rearranging terms in (22) and simplifying we get:

Dr(K, γ) =

(
K

(
1

γ + 1

)
− 2

K − 1

1

γ + 1

)(
1

K + 1

)γ

+
1

K − 1

1

(γ + 1)

(
1

2

)γ−1

, (33)

and hence

∂Dr

∂K (K, γ) = − 1
(K−1)2

1
(γ+1)

(
1
2

)γ−1

+
(
K

(
−γ
γ+1

)
1

K+1 + 2
K−1

1
K+1

γ
γ+1 +

(
1

γ+1

)
+ 2

(K−1)2
1

γ+1

)(
1

K+1

)γ
.

(34)

Now note that the inequality ∂Dr(K, γ)/∂K > 0 is equivalent to:

2 (K − 1)

K + 1
γ + (K − 1)2 + 2 > (K + 1)

(
K + 1

2

)γ−1

+ γK
(K − 1)2

K + 1
,

or

(K − 1)2
(
1− γK

K + 1

)
+ 2

(
1 + γ

K − 1

K + 1

)
> (K + 1)γ

1

2γ−1
,

which can be rewritten as

(K − 1)2 + 2 + γ (K − 1) (2−K) > (K + 1)γ
1

2γ−1
. (35)

So, using the identities

(K − 1)2 + 2 + (K − 1) (2−K) = K + 1

and

(K + 1)γ
1

2γ−1
= 2

(
K + 1

2

)γ

we can equivalently write (35) as follows:

K + 1

2
−

(
K + 1

2

)γ

− 1

2
(1− γ) (K − 1) (2−K) > 0.

Denote by Ξ(K, γ) the term on the left hand side of the previous inequality, conceived as a

function of K and γ. Then, to complete the proof, we establish the following property:

∀K > 1, Ξ(K, γ) ≷ 0⇔ γ ≶ 1. (36)

To show this property, note first that Ξ(K, 1) = 0 for all K, so that ∂Dr

∂K (K, γ) = 0 for γ = 1

and all K. On the other hand,

∂Ξ

∂γ
(K, γ) = −

(
K + 1

2

)γ

ln
K + 1

2
+

1

2
(K − 1) (2−K)

≤ − ln
K + 1

2
+

1

2
(K − 1) (2−K) ,

42



the inequality being strict for all K > 1. It is then easy to verify that the terms on the two

sides of the above inequality are equal to 0 when K = 1 and the term on the right hand side

is negative28 for all K > 1, establishing (36) and hence also ∂Dr(K, γ)/∂K ≷ 0⇔ γ ≶ 1.

We conclude, as stated in the proposition, that the minimum of Dr(K, γ) is attained at

the maximum admissible value of K (i.e. N − 1) when γ > 1, while it is attained at the

lowest value of K (i.e. K = 1)29 when γ < 1. This completes the proof of the proposition.

�

Proof of Lemma 3 Note first that the expression of ∂Dr(K, γ)/∂K obtained in (33)

can be conveniently rewritten as follows:

∂Dr

∂K (K, γ) = − 1
(K−1)2

1
(γ+1)

(
1
2

)γ−1

+
(
−K2+K+2
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1
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γ
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1
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1
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(
1
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K+1

(
K2 −K − 2

)
1
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(
1
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Differentiating then again with respect to K yields:

∂2Dr(1/2,K, γ)

∂K2
= 2

(
1
2

)γ−1

(γ + 1) (K − 1)3
− 1

γ + 1

(
1

K+1

)γ

(K − 1)3 (K + 1)
×

(
K3

(
−γ2 + γ

)
+ 2K2

(
2γ2 − γ

)
+ 5K

(
−γ2 + γ

)
+ 4K + 2 (γ − 1)2 + 2

)

=
1

2γ (γ + 1) (K − 1)3

(
4− 2γ

(K + 1)γ+1

(
(K − 1)2K

(
γ − γ2

)

+2γ2 (K − 1)2 + 4γ (K − 1) + 4 (K + 1)
))

Hence
∂2Dr(1/2,K, γ)

∂K2
< 0

if and only if

G(K) ≡
(
K+1
2

)γ+1

(K−1)2

8 (K (γ − γ2) + 2γ2) + γ (K−1)
2 + (K+1)

2

< 1 (37)

28We have in fact

d
(

− ln K+1

2
+ 1

2
(K − 1) (2−K)

)

dK
=

K + 1− 2K2

K + 1
<

2K (1−K)

K + 1
< 0

29To complete the argument we verify the claimed continuity property of Dr(K, γ), as in (33), at K = 1 :

lim
K→1

Dr(K, γ)

=
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=
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−
−γ2γ
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(
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= Dr(1, γ)
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First, we observe that G (1) = 1. Thus, to establish (37), it is enough to show that G is

decreasing for all K > 1. Letting x ≡ K − 1 for notational simplicity, dG(K)
dK < 0 if, and

only if,
d
dx

((
x
2 + 1

)γ+1
)

(
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2 + 1

)γ+1 <
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(
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2
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) ,
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<
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The above inequality is equivalent to the following one:
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1

2
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3

4
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1

4
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1

4
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1

4
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4
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)
,
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2x
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2x
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4x
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4x
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2x
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2x

2γ2 + 2
>
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4x
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4x

3γ + 1
4x

2γ2 − 1
4x

3γ2 + 1+

γx+ γ2x+ 1
4x

2γ2 + 1
4x

3γ2 + 1
4x

2γ3 − 1
4x

3γ3 + γ
,

or
7

4
x2γ +

1

2
x3γ + γ + 1 +

1

4
x3γ3 >

1

4
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3

4
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2
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That is
x2γ

2

(
7

2
− γ2

2
− 3γ

)
+

1

4
x3γ

(
2 + γ2 − 3γ

)
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the above inequality being always true if γ < 1, which completes the proof. �

Proof of Proposition 3: From (23) and (33) we get:

Dc(K, γ)−Dr(K, γ) (38)

=

(
1

2

)γ ( 1

K

)γ−1

−K

(
1

γ + 1

)(
1

K + 1

)γ

+
2

K − 1

1

γ + 1

((
1

K + 1

)γ

−
(
1

2

)γ)

As shown in Propositions 1 and 2, when γ < 1 and N is even, the optimal structure both

for the ring and the completely connected structures has all components of size K + 1 = 2.

As we noticed, when K = 1 the pattern of exposure is identical for the ring and the

completely connected structure, hence the value of the above expression equals zero in that

case, as can be verified.30

Consider now the case γ > 1, for which K = N − 1 (i.e. minimal segmentation) is

optimal for both structures. Evaluating (38) at this value of K we find:

30Strictly speaking, we can show that that its limit for K → 1 equals zero.
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Dc(N − 1, γ)−Dr(N − 1, γ) =

=

[(
1

N

)γ

−
(
1

2

)γ] [
2

N − 2

1

γ + 1
− N − 1

1 + γ

]
+

(
1

2

)γ
[(

1

N

)γ−1

− N − 1

1 + γ

]

Since 2 ≤ (N − 1)(N − 2) for N ≥ 3, we have that for all31 N > 1 + (1 + γ)
1

γ the desired

conclusion follows:

Dc(K, γ)−Dr(K, γ) < 0.

This completes the proof. �

Proof of Proposition 4: From (23), we can write:

Dc(K, γ, γ′, p) = pK

(
1

2K

)γ

+ (1− p)K

(
1

2K

)γ′

Hence
∂Dc

∂K
(K, γ, γ′, p) = −p (γ − 1)

(
1

2K

)γ

− (1− p)
(
γ′ − 1

)( 1

2K

)γ′

. (39)

and ∂Dc

∂K > 0 is equivalent to

(1− p)
(
1− γ′

)( 1

2K

)γ′

> p (γ − 1)

(
1

2K

)γ

,

or, since γ > 1 and γ′ < 1,

K >
1

2

(
p (γ − 1)

(1− p) (1− γ′)

) 1

γ−γ′

.

This implies that Dc(K, γ, γ′, p) is minimized at the point

K̂(p) =
1

2

(
p (γ − 1)

(1− p) (1− γ′)

) 1

γ−γ′

provided this point is admissible, i.e. K̂(p) ∈ [1, N − 1].

Compute next the second derivative of Dc(·):

∂2Dc

∂K2
(K, γ, γ′, p) = p (γ − 1)

γ

K

(
1

2K

)γ

+ (1− p)
(
γ′ − 1

) γ′

K

(
1

2K

)γ′

≥ p (γ − 1)
γ

K

(
1

2K

)γ

+ (1− p)
(
γ′ − 1

) γ

K

(
1

2K

)γ′

= − γ

K

∂Dc

∂K
(K, γ, γ′, p)

Thus ∂2Dc

∂K2 (1/2,K, γ, γ′, p) > 0 for all feasible K < K̂(p), i.e. the function Dc (·) is convex

in this range.

31Note that (1 + γ) < (N − 1)γ−1 (N − 1) < (N)γ−1 (N − 1)
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The optimal degree of segmentation for the completely connected structure is obtained

as a solution of problem 21. Denote by (K∗

i )
C
i=1 a vector of component sizes that solves

this optimization problem. We will show that there exists some appropriate range [p0, p1]

such that if p ∈ [p0, p1], the optimal component sizes are such that K∗

i = K∗

j = K∗ for all

i, j = 1, 2, . . . , C and some common K∗ with 2 ≤ K∗ ≤ N − 2.

Choose p0 such that K̂(p0) =
N
2 − 1. Such a choice is feasible and unique since by A.3

N > 4, K̂(·) is increasing in p, K̂(0) = 0, and K̂(p)→∞ as p→ 1. Next we show that, for

all p ≥ p0, whenever C ≥ 2,the vector (K∗

i )
C
i=1 solving problem 21 satisfies:

∀i, j = 1, 2, . . . , C, K∗

i = K∗

j ≤ K̂(p) (40)

Let K∗

i and K∗

j stand for any two component sizes that are part of the solution to the

optimization problem. First note that, since K̂(p) ≥ N/2− 1, if K∗

i > K̂(p) then we must

have that K∗

j < K̂(p). But such asymmetric arrangement cannot be part of a solution

to problem 21 because Dc(·, γ, γ′, p) is increasing at K∗

i and decreasing at K∗

j . Hence a

sufficiently small increase of Kj and a decrease of Ki, which keeps Ki +Kj unchanged, is

feasible and allows to decrease the expected mass of defaults. The only possibility, therefore,

is that K∗

j ≤ K̂(p) and K∗

j ≤ K̂(p).

To complete the argument and establish (40), suppose that at an optimum we have

K∗

i 6= K∗

j for at least two components i, j. Since, as shown in the previous paragraph,

neither K∗

i nor K∗

j can exceed K̂(p), both K∗

i ,K
∗

j lie in the convex part of the function

Dc(·, γ, γ′, p). It follows, therefore, that if we replace these two (dissimilar) components

with two components of equal size 1
2(K

∗

i +K∗

j ), feasibility is still satisfied and the overall

expected mass of defaults is reduced, contradicting that the two heterogeneous components

of size K∗

i ,K
∗

j belongs to an optimum configuration.

We have thus shown that, when p ≥ p0, if at the optimum we have C ≥ 2, the

unique optimal configuration involves a uniform segmentation in components of common

size K∗(p) ≤ K̂(p). It remains then to show that at the optimum we indeed have C ≥ 2.

At p = p0 the optimum exhibits two components, C = 2, since the optimal component size

K̂(p0) = N/2−1 is feasible. Since K̂(p) is increasing and continuous in p and Dc(K, γ, γ′, p)

is continuous in K, by continuity there exists some p1, with p0 < p1 < 1, such that for all

p ∈ (p0, p1) the expected mass of defaults in a structure with two components, both of size

N/2− 1, is still smaller than that in a single component of size N . That is, at the optimum

C ≥ 2.

Since N/2− 1 > 1, this completes the proof that the optimal component size K∗ + 1 is

“intermediate,” i.e. satisfies 1 < K∗ < N − 1. �

Proof of Proposition 5: For the probability distribution of the b shock stated in the

claim, the expected mass of firms not directly hit by a b shock who default in a completely

connected component of size K when a b shock hits the component is:

Dc(K, γ, p) = (1− p)K + pK

(
1

2K

)γ

. (41)
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Differentiating the above expression with respect to K yields:

∂Dc(K, γ, p)

∂K
= (1− p)− (γ − 1) p

(
1

2K

)γ

,

which is negative for all K as long as (25) is satisfied. This establishes that the optimal

degree of segmentation for the complete structure is minimal, that is obtains at K = N −1.

Next, using (33) and (19), noting that L̄ > 1
H = K+1 for all K, we obtain the following

expression for the expected mass of defaults in the case of the ring structure:

Dr(K, γ, p) = (1− p)

(
K −

(
K − 2

K + 1

)
K + 1

L̄

)

+ p

[(
K

γ + 1
− 2

K − 1

1

γ + 1

)(
1

K + 1

)γ]
+ p

[
1

K − 1

1

2γ−1
1

γ + 1

]

It suffices then to show that the expected mass of defaults is smaller for the ring than for

the completely connected structure when K = N − 1: Dc(N − 1, γ, p) > Dr(N − 1, γ, p) or,

substituting the above expressions:

(1− p) (N − 1) + p (N − 1)
(

1
2(N−1)

)γ
> (1− p)

(
N − 1− N2

−N−2
2N−1

)
+

p
(
N−1
γ+1 −

2
N−2

1
γ+1

) (
1
N

)γ
+ p

[
1

N−2
1

2γ−1

1
γ+1

]
,

which can be rewritten as
(
1−p
p

)
N2
−N−2

2N−1 >(
N−1
γ+1 −

2
N−2

1
γ+1

) (
1
N

)γ
+ 1

N−2
1

2γ−1

1
γ+1 − (N − 1)

(
1

2(N−1)

)γ
.

Using (25) the above inequality holds for an open interval of values of p if

(γ − 1)
(

1
2(N−1)

)γ
N2
−N−2

2N−1 >(
N−1
γ+1 −

2
N−2

1
γ+1

) (
1
N

)γ
+ 1

N−2
1

2γ−1

1
γ+1 − (N − 1)

(
1

2(N−1)

)γ

or

(γ − 1)
(

1
2(N−1)

)γ
2
(
(N−1)2+N−3
2(2(N−1)+1) 1

)
+ (N − 1)

(
1

2(N−1)

)γ

−2
(
(N−1)

2

(
1

γ+1

)
− 1

γ+1

(
1

N−2

)) (
1
N

)γ −
(

1
N−2

1
2γ−1

1
(γ+1)

)
> 0

Noticing that by A.3 and (24) we have N ≥ 5 and this in turn implies

(N − 1)2 +N − 3

4 (N − 1) + 2
≥ N − 1

4
,

a sufficient condition for the above inequality to hold is that:

(γ − 1)

(
1

2 (N − 1)

)γ

2

(
N − 1

4

)
+

2

γ + 1

1

N − 2

(
1

N

)γ

+(N − 1)

(
1

2 (N − 1)

)γ

−
(
N − 1

γ + 1

)(
1

N − 1

)γ

−
(

1

N − 2

1

2γ−1
1

(γ + 1)

)

=
N − 2

(N − 1)γ−1

(
(γ − 1)

1

2γ+1
+

1

2γ
− 1

γ + 1

)
+

2

γ + 1

(
1

N

)γ

−
(

1

2γ−1
1

(γ + 1)

)
> 0.
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Since γ ∈ (1, 2), this inequality is in turn satisfied if the following hold:

[
N − 2

(N − 1)γ−1
+

(
1

N

)γ](
γ + 1

2γ+1
− 1

γ + 1

)
−

(
1

2γ−1
1

(γ + 1)

)
> 0

or

(N − 1)2−γ −
(

1

(N − 1)γ−1
− 1

Nγ

)
>

1
2γ−1

1
(γ+1)

γ+1
2γ+1 − 1

γ+1

which is implied by the inequality

(N − 1)2−γ −
(

1

4γ−1
− 1

5γ

)
>

1
2γ−1

1
(γ+1)

γ+1
2γ+1 − 1

γ+1

that is in turn equivalent to (24). This completes the proof of the proposition. �

Further details of the proof of Proposition 9:

Noting that α′−α = (1− θ)2 (β − 1) /β, the exposure matrix for the star structures can

be conveniently rewritten as follows:

Ã =




α′ (1− α′) /β (1− α′) /β · · · (1− α′) /β

1− α′ α (α′ − α) / (β − 1) · · · (α′ − α) / (β − 1)
...

...
...

...
...

1− α′ (α′ − α) / (β − 1) (α′ − α) / (β − 1) · · · α




,

Recall that α = 1/2 while α′ is determined, together with θ, by (29) and (30). Its properties

are characterized below:

Lemma 4 For all β > 2, the solution of (29) and (30) is unique and given by continuous,

monotonically increasing functions θ(β) and α′(β), such that

5/9 ≤ α′(β) < 2− 2
√
2 (42)

Proof of Lemma 4:

It can be easily verified that for all β > 2 there is only one admissible (i.e., lying between

0 and 1) solution of (29), given by

2 +
√
2β2 − 2β

2β + 2
.

This expression defines the function θ(β), which is increasing if and only if the following

inequality is satisfied:

(4β − 2)

2
√

2β2 − 2β
(2β + 2) >

(
4 + 2

√
2β2 − 2β

)
,
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which is equivalent to

2β2 + β − 1 > 2
√

2β2 − 2β + 2β2 − 2β

or

9β2 − 6β + 1 > 8β2 − 8β

always satisfied for β > 2. The minimal value of θ in this range is then θ(2) = 2/3, while

the maximum is limβ→∞ θ(β) = 1/ 2
√
2.

Also, α′(β) is also increasing in β

dα′

dβ
= 2(2θ − 1)

dθ

dβ
.

Hence its minimum value is α′(β) = 5/9 and its maximum is 2− 2
√
2. �

The precise expression of Gstar(L) =
(
Gs

star(L) +Gℓ
star(L)

)
/2 is obtained from that of

Gs
star(L) and Gℓ

star(L) and is given by:

Gstar(L) =





0 for L ≤ 2
1
2 for 2 < L ≤ 1

1−α′

1
2 + 1

2β for 1
1−α′ < L ≤ β

α′

1
2 + 1

22β for β
α′ < L ≤ min

{
β−1

α′−1/2 ,
β2

1−α′

}

β
2 + β if β−1

α′−1/2 ≤
β2

1−α′

1+β
2 + β otherwise

for min
{

β−1
α′−1/2 ,

β2

1−α′

}
< L ≤ max

{
β−1

α′−1/2 ,
β2

1−α′

}

2β for L > max
{

β−1
α′−1/2 ,

β2

1−α′

}

,

(43)

since again it can be verified, given the previous lemma, that

2 <
1

1− α′
<

β

α′
< min

{
β − 1

α′ − 1/2
,

β2

1− α′

}
.
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