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Abstract 

This paper develops and analyzes a model of asset markets with two types of investors. 
We study the stochastic processes for the distribution of wealth between the two types of 
investors and for the equilibrium asset returns. The relationship between this model and 
some econometric models with time varying parameters, such as the ARCH (Autoregres- 
sive Conditional Heteroskedasticity) model, as well as the relationship between the 
volume of trade and volatility, are examined. The dynamic properties of another model, 
regarding investors who use strategies that are a bit more complex, are also analyzed. 
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1. Introduction 

Recent studies in finance, which include Shiller (1984), Black (1986), Frankel 
and F root (1988, 1990a, b), and De Long, Shleifer, Summers, and Waldmann 
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(DSSW henceforth) (1990) among others, stressed the importance of heteroge- 
neous beliefs in asset markets. These studies show that models with hetero- 
geneous investors are useful in explaining some empirical puzzles that cannot 
be explained by a model with a representative investor. 

This paper studies a similar model with heterogeneous beliefs to analyze the 
asset price dynamics. We consider an asset market which includes two types of 
investors, who follow two different rule of thumb strategies. Depending on the 
relative success of each strategy, the proportion of total wealth held by each type 
of investor fluctuates. If strategy A is more successful than the other strategy B, 
for example, the investors who use strategy A increase their wealth more than 
the other investors, invest more in the asset, and increase their influence on asset 
pricing. Thus, the changes in the distribution of wealth between the two types of 
investors affect the asset prices, which in turn influence the relative success of 
each strategy and again change wealth distribution. Profits, which are random, 
are used for buying back the shares of the risky asset to create capital gains for 
the owners, or for paying out dividends to create income gains. Thus, random 
profit shocks influence the dynamics of the asset price and wealth distribution. 
The asset price and wealth distribution themselves also become stochastic 
processes. This paper studies the limiting behavior of these stochastic processes. 
Under some parameter values, we show that the limiting behavior of those 
dynamics does not depend on the initial condition. 

The most important empirical implication of our model is smooth shifts of the 
price dynamics. Both the conditional mean and the conditional variance of the 
asset price change over time reflecting changes in the wealth distribution 
between two types of investors. For some periods, strategy A may do better than 
strategy B and enhance its influence. Following some random shocks to profits, 
strategy B may become more profitable, and the proportion of wealth held by 
investors who use strategy B will increase. Following some other shocks, 
strategy A may again become more profitable and regain its influence. In this 
way, wealth distribution fluctuates over time and asset price dynamics show 
smooth shifts between two extreme regimes: one where the wealth owned by 
investors who use strategy A is infinitely larger than the wealth owned by 
investors who use strategy B, and the other where the wealth owned by investors 
who use strategy B is infinitely larger than the wealth owned by investors who 
use strategy A. If the limiting distribution of the proportion of wealth is ergodic, 
the price dynamics can show substantial variation over time without reaching 
an extreme. It has to be noted that even if the distribution of the proportions of 
wealth converges to one of the extremes, the wealth of the individuals does not 
go to zero with positive probability, it is only relative wealth that might go to 
zero under some parameter configurations. 

Our model is useful in explaining an apparent empirical regularity in financial 
markets: namely time-varying conditional variance of asset returns. Time- 
varying conditional variance has been detected by many researchers who 
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estimated ARCH (Autoregressive Conditional Heteroskedasticity) models to 
financial data. Bollerslev, Chou, and Kroner (1992) surveyed numerous success- 
ful applications of ARCH models in finance. The model with the representative 
agent does not usually have strong implications for the dynamics of conditional 
variance of asset returns. Thus, in order to interpret empirical success of ARCH 
models in finance, the standard model has to assume ARCH at the fundamental 
level, for example in the process of cash flow. The model in this paper can 
explain time-varying conditional variance without assuming ARCH at the 
fundamental level. The model also implies that the mean growth rate of 
asset price changes over time, and changes in the mean are related to changes 
in the conditional variance. Thus, a type of ARCH models called the ARCH-M 
model, which is used to capture shifts in the conditional mean associated 
with changes in the conditional variance, becomes especially relevant for our 
model. 

Our model is also useful in motivating another statistical model with time- 
varying parameters called STAR (Smooth Transition Autoregressive) model. The 
STAR model was applied to some aggregate variables like GNP and industrial 
production by Anderson and Terasvirta (1991). A STAR model assumes that 
a process is a weighted average of the two distinct AR processes and the weight 
changes over time. Our model also implies that the asset price process shifts 
between two extremes, although the variable that determines the weight in our 
model (proportion of wealth) enters the price process in a complex way. 

Another empirical implication of the model is on the relationship between 
volume of trade and asset return volatility. We show that it is possible, under 
certain parameter values, for the conditional mean and variance of the volume 
of trade to be positively correlated with volatility, as Gallant, Rossi, and 
Tauchen (1992), among others, find. 

There are several studies of the dynamics of asset prices in the asset market 
with heterogeneous agents. DSSW (1991) considers the wealth accumulation by 
two types of investors, noise traders, and sophisticated investors. The noise 
traders have random and biased forecasts of the rate of return and its variance, 
whereas the sophisticated investors have the correct forecasts. They show, under 
some parameter values, that the noise traders’ wealth may grow faster than that 
of the sophisticated investors and eventually the noise traders may dominate the 
market. One problem of DSSW (1991) is that they ignore the noise traders’ 
influence on the asset price, which is the most important point made by models 
with noise traders, such as DSSW (1990). Our model explicitly studies the way 
the heterogeneous beliefs influence asset prices and examines the price dynamics. 

Another important difference between our paper and DSSW’s research is that 
we do not assume the presence of sophisticated investors who have rational 
expectations and maximize their expected utility. Although the agents in our 
model use portfolio strategies that maximize an expected utility under some 
assumptions about beliefs, they do not have rational expectations. Thus, the 
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agents in this paper deviate from the standard rational consumers in economics. 
In this sense, our approach is similar to that followed by Blume and Easley 
(1992). They consider the dynamic process of an asset market with heteroge- 
neous investors, which is similar to ours. Each type of investor uses different 
portfolio rules, and the market eventually selects the most ‘fit’ rules, in the sense 
that wealth held by such investors grows faster than that of the other investors. 
One difference between our model and Blume and Easley (1992) is the formula- 
tion of asset return. Blume and Easley (1992) assume an exogenous probability 
distribution over the possible pay-out of the asset. Thus, the current price of the 
asset does not influence the rate of return on an asset that was bought last 
period. In other words, the assets in their model can have only income gains and 
not capital gains. Our model includes both income gains and capital gains of 
asset holding. Although we assume nonrationality of agents, the assumption is 
taken for its analytical convenience. Our results on the dynamics of asset prices 
and the survival of heterogeneous agents in the market do not depend on agents 
being nonrational; the important assumption is that they are heterogeneous. To 
show that this is indeed the case, we provide an example where agents have 
heterogeneous preferences in the Appendix. The results are similar to others 
obtained in the paper. 

The paper is organized as follows. The next section presents a model of an 
asset market with two types of investors: optimists who expect a high rate of 
return for the risky asset and pessimists who expect a low rate of return for the 
risky asset. The dynamics of the asset price and wealth distribution are derived 
and characterized. Section 3 studies the asymptotic distribution of the propor- 
tion of wealth held by each agent. Section 4 discusses the implications on 
conditional variance and relates our model to ARCH models in econometrics. 
Section 5 examines the relationship between trade volume and volatility implied 
by the model. Section 6 considers the investors who use slightly more complex 
strategies. ‘Fundamentalists’ behave similarly to optimists and pessimists in 
Section 2. They maximize the expected utility given their beliefs about the 
process of the asset returns. ‘Contrarians’ start with the assumption that the 
market on average is wrong, and invest a proportion of their wealth in the risky 
asset which is opposite to the average proportion of wealth invested in that 
asset. The price dynamics in a market with fundamentalists and contrarians is 
examined. Section 7 contains some concluding remarks. The Appendix contains 
the example of a model with rational agents who have heterogeneous prefer- 
ences and the proof of the propositions. 

2. Optimists, pessimists, and the asset price 

We consider an asset market where there are two types of investors. One type 
of investor, called ‘optimist’, holds higher expectation about the rate of return of 
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the risky asset than the other type of investor, called ‘pessimist’. Besides this 
assumption of heterogeneous beliefs, our model is very much a standard model 
of asset pricing used in macro/finance literature.’ Time is continuous and 
investors have infinite horizons. Both types of agents are assumed to have 
identical preferences with constant relative risk aversion, so their instantaneous 
utility function is u(C) = Cl-‘/(1 - r), r # 1, and u(C) = log C for r = 1, where 
7 ( 3 0) is the coefficient of relative risk aversion and C denotes consumption. 
There are two types of assets, a riskless asset with an instantaneous rate of return 
r and a risky asset whose price is P(t). We assume that the riskless asset has 
unlimited supply at r, and the risky asset is the claim to the single firm operating 
in this economy. Let dD(t) be instantaneous dividends per share. Let W”(t) be 
the wealth of the optimists, Wp(t) the wealth of the pessimists, and 
W(t) = W”(t) + W”(t). Let n’(t) be the proportion of wealth that an agent of 
type i invests in the risky asset and c’(t) the proportion consumed out of total 
wealth per unit of time. Given the assumptions about the return of the assets, 
wealth evolves according to the following equation: 

dW’(t) = n’(t) 
dP(t) + dD(t) 

P(t) 
+ (1 - A’(t))rdt - c’(t)dt W’(t), 

i = 0, p. 

The agents believe that the returns of the risky asset follow the stochastic 
process given by 

dP(t) + dD(t) 

P(t) 
= C(i dt + /I dB(t), 

where i is equal to o for the optimists and p for the pessimists and LX, > up. Thus, 
optimists expect higher returns than pessimists for a given level of risk. We 
assume that the agents never change their beliefs. The influence of each belief on 
the asset price, however, changes as the wealth distribution between two types of 
agent changes. It may be more realistic to assume that some agents change their 
beliefs if their strategy yields much lower returns than the alternative one, but 
such an assumption would not change the qualitative results. Under such an 
assumption, a successful strategy would increase the influence through two 
channels. The wealth of the agents that use the strategy grows faster, and, at the 

‘The crucial assumption for our purpose is heterogeneity in general, not necessarily in beliefs. The 

Appendix presents an example where agents are symmetrically informed and have rational expecta- 

tions, but have heterogeneous risk preferences. The conclusions from such a model are qualitatively 

the same as those obtained from the model in the text. 
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same time, the strategy gains some new converts. Thus, the dynamics of the 
model would look qualitatively the same. 

The objective of the agents is to maximize E { Jr e-% [C(s)] ds} subject to the 
budget constraint (l), and c’(t) > 0, W’(t) > 0, W ‘(0) = W. > 0. Under these 
conditions and an additional assumption p > (1 - z) [((ai - r)‘/2022) + r] 
(which always holds when the agent is more risk-averse than an agent with 
logarithmic utility) the consumption by each type of agent will be a constant 
proportion of their total wealth (see Merton, 1969): 

Ci = i (p - (1 - Z) [((OZi - r)*/20*?) + r]). 

Merton (1969) also shows that the proportion of the risky asset in the 
portfolio of a type i agent, Ai, is given by (tli - r)/zB*. 

Let N(t) be the total number of shares outstanding at time t. Then, market 
clearing implies 

A”W “(t) + IPW p(t) = P(t)N(t), (2) 

or if we let q(t) denote the proportion of wealth held by the optimists, i.e., 

W “(G/W@). 

l”q(t) + P(1 - q(t)) = N(t)P(t)/W(t). (3) 

The firm’s instantaneous profits, dn*(t), are assumed to follow the following 
stochastic process: 

dz*(t) = n”W’(t)dt + +‘WP(t)dt + aW(t)dB(t), 

which, by the definition of q(c), can be written as 

d7t*(t) = ((dq(t) + ~~(1 - q(t)))dt + adB(t)) W(t) 

= Mq@)) dt + ~Wt)) W(t), 

where 7t”, YP, and r~ are constant parameters.* The firm uses the profits to buy 
back its shares and/or pay out dividends, so that 

dn*(t) = - dN(t)(P(t) + dP(t)) + N(t) dD(t). (4) 

*To motivate this assumption, suppose for the moment that the firm is a monopolist in a contestable 

market, so that it charges the price just low enough to deter new entrants. This assumption, 

combined with an implication of the constant relative risk aversion utility function that says the 

consumers spend a constant proportion of wealth for consumption goods, implies profits are also 
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Using the market equilibrium condition (2) and the relation between asset 
returns and the profits process given by (4), we can solve for the process of 
equilibrium asset returns. Then, by using (1) and It% formula, we can derive the 
stochastic process for q(t), the proportion of wealth held by the optimists.3 

Proposition I, 

a) 
dP(t) + dD(t) 7W)) - n”c”q(Q - lPcP(l - q(t)) 

P(L) = P,(l - I”)q(t) + P(1 - AP)(l - q(t)) 
dt + rdt 

1 

+ AO(l - I”)q(t) + P(l - nP)(l - q(t)) 
CT dB(t). (5) 

,,) dq(t) = q(t)(l _ q(t))(A” _ np) n(q(t)) - nocoq(t) - A”‘(1 - &)I 

- AO)q(t) + RP(1 - P)(l - q(t)) 

-g]dt- 4(0(1 - q(0)(nO - ~“)(~“q(t) + JP(l - 4(Wdl 
(P(l - 2-)4(t) + P(1 - JL”)(l - q(t)))2 

4wu - dOW - ApI0 
+ P(1 - I”)q(t) + P(1 - P)(l - q(t)) 

Wt), 

Proof. See the Appendix. 

The proposition shows that the equilibrium asset returns depend on random 
shocks to the profits. More importantly, the proportion of optimists’ wealth, 
q(t), affects the equilibrium asset returns. The dynamics of q(t) is given by the 
latter half of the proposition. 

nrooortional to wealth. We add the noise term to incoroorate other factors not taken into account 

by ;he ones included in the drift term. We assume the variance of the noise depends on wealth. 

Examples of such noise would include the effect of scientific discoveries on costs and some 

government intervention on the business, which are likely to be related to the total wealth in the 

economy. Linearity and additivity are assumed for analytical tractability. 

‘Itb’s rule is the analog in stochastic differential calculus to the chain rule in ordinary calculus. Let 

X(t) be a stochastic integral represented by dX(t) = u dt + v dB(t) in its stochastic differential form. 

Let g(t, x) be a twice continuously differentiable function. Then, Y(l) = g(t, X(t)) is also a stochas- 

tic integral, and 

dY(t) = z(r, X(t))dt + g(t, X(t))dX(t) + i$(t, X(t))(dX(t))-‘, 

where dt.dl = dt’dB(t) = dB(t).dt = 0, dB(t)dB(t) = dt. See, for example, Oksendal (1989). 
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The next section studies the asymptotic properties of the dynamics of q(t). 
Since the dynamics of asset returns critically depends on that of q(t), the 
knowledge of asymptotic properties of q(t) is necessary for us to understand the 
long-run properties of asset return dynamics. To simplify the notation, we 
hereafter write the dynamics of q(t), given by the latter equation of the proposi- 
tion, as 

dq(t) = 4dWt + &AU dW. 

3. Asymptotic behavior of the model 

This section investigates asymptotic properties of the process q(t). Let us first 
define the following expressions which are useful in examining the asymptotic 
properties: 

M(x) = &exp[j-;$$bq]. 
Here z is an arbitrary number in (0,l). As Gihman and Skorohod (1972) show, 

II, I,, j: M(x)dx, and the asymptotic properties of the process q(t) have the 
following relations.4 (1) If II is infinite and Z2 is finite, q(t) converges to one 
almost surely. (2) If II is finite and I2 is infinite, q(t) converges to zero almost 
surely. (3) If 1, and l2 are finite, q(t) converges to one with probability 
IJ(Ir + 12) and to zero with probability I&, + I,). (4) If II and I2 are infinite, 
the process converges to neither zero nor one; if in addition j; M(x) dx is finite, 
q(t) has a unique ergodic distribution with density M(x)/jA M(y)dy. When both 
II and IZ are infinite but j; M(x)dx is also infinite, there will be an ergodic 
distribution but it will not be unique, it will be depend on the value of q(0). 

The relation between these measures and the asymptotic properties of q(t) can 
be intuitively understood. The function II measures the difficulty for q(t) to 

“This approach was used by Fudenberg and Harris (1992) to study the asymptotic properties of 

a class of evolutionary game dynamics. 
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converge to zero. A large I I means that a(q)/b(q)2 is positive when q is close to 
zero. Thus, the positive deterministic drift, captured by u(q), tends to dominate 
the random effects, b(q), so that the dynamics is kept away from zero. Note what 
matters is the ratio of the deterministic drift to the size of variance. Even when 
a(q) is positive in the neighborhood of zero, q(t) may converge to zero with 
a positive probability if b(q)’ is much larger than u(q). Because of the large 
variance, the optimists may suffer from a run of sizable bad luck, which makes 
their wealth a negligible proportion of the total wealth, and once in that 
situation it is difhcult for their wealth to become nonnegligible as a proportion 
of total wealth. 

Similarly, the function I2 measures the difficulty for q(t) to converge to one. 
A large I2 means that a(q)/b(q) ’ is negative when q is close to one. Thus the 
negative deterministic drift tends to dominate the random effects, so that the 
dynamics is kept away from one. 

Convergence of q to zero (or one) does not imply convergence of individuals’ 
wealth to zero. Individuals’ wealth does not converge to zero with positive 
probability in finite time, and might even go to infinity if the discount factor is 
not very large, even if the proportion of wealth of agents of its type goes to zero.5 

For our purposes, defining a function D(q) = 2a(q)q(l - 4)/b(q)’ makes the 
discussion easier. Note that D(q) is a bounded, continuously differentiable 
function in the interval [0, 11. Note also that both the a( .) and the b( .) functions 
have a factor of q(l - q) which cancels out in the expression for D( .). so that 
D(.) is well-defined and need not be zero when q is zero or one. 

Depending on the values of D(q) at q = 0 and q = 1, there are four possibilities 
for the asymptotic dynamics of q, which are identified in the following proposi- 
tion. 

Proposition 2. a) IfD(0) 2 1 and D(1) I - 1, the process converges to neither 
zero nor one; if in addition D(0) > 1 and D( 1) < - 1, there is a unique ergodic 
distribution. b) IfD(0) 2 1 and D(1) > - 1, the process converges to one almost 
surely. c) If D(0) < 1 and D(1) < - 1, the process converges to zero almost 
surely. d) IfD(0) < 1 and D(1) > - 1, the process converges to one with probubil- 
ity 11/(11 + Z2) and to zero with complementary probability. 

Proof. See the Appendix. 

The stochastic process for q(t) has two absorbing states, zero and one, because 
there is no deterministic drift and no stochastic variation at these states. This is 
why the values of D(0) and D(1) are so important. The function D( .) compares 
the strength of the deterministic drift to the variance of the noise term. 

5The proof of this statement is available upon request 
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Table 1. Values of D(O), D(l), and the asymptotic properties of the q(t) process 

D(1) I - 1 D(1) > - 1 

(a) ergodic distribution, if both (b) a.s. convergence to 1; this is the 

inequalities in D(. ) are strict; otherwise the limiting case of d) when I, is infinite 

distribution depends on the initial value, and I2 is finite 

4(O) 

D(0) < 1 (c) as. convergence to 0; this is the limiting (d) convergence to 1 with probability 

case of d) when It is finite and I2 is infinite It/(It + I,), and to 0 with probability 

I,/(II + I,) 

Table 1 gives a visual exposition of Proposition 2. The value of D(0) is 
important in determining whether the process converges to zero with positive 
probability. If D(0) -C 1, then the process q(t) converges to zero with nonzero 
probability. The probability becomes one when D(1) < - 1 also holds. If 
D(0) 2 1, however, the process never converges to zero. Similarly, the value of 
D(1) is important in determining whether the process q(t) converges to one with 
a positive probability. 

We will now show that all of the cases presented in Proposition 2 are possible 
for some open nonempty set of the parameter values of this model. Suppose that 
co = cp = c and no = rep = rc, where c and z are some constants. Since the 
inequalities in cases a) through d) partition the parameter space, showing that all 
the cases are possible for an open nonempty set of the subset of the parameter 
space where the above equalities hold guarantees that all cases are also possible 
for an open nonempty set of the whole parameter space. Under the assumption 
that co = cp = c and x0 = rep = rc: 

2(IzP( 1 - AP))’ 
D(o) = (A0 _ /q,P)(3 

[ 

7r - APC APa 

np(l - A”) - (AP(l - AP))2 1 
21p 

=--- 
R” - AP [ 

(77 - R)(l - np) _ 1 

02 1, 
Thus, D(0) 2 1 if and only if 

rc - /zpc 
2---- 

A” + IP 

a2 Z np(l - AP)’ 
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Also: 

D(1) = 2(R”(l - 12O))2 

[ 

n - 2°C R0fr2 

(I”” - LP)o2 A”(1 - no) - (LO(l - Y))2 1 
2/I 

=--- 
i” _ )P 

[ 

(77 - &)(l - no) _ 1 . 

b fJ2 I 

So D(1) < - 1 if and only if 

Thus, we can distinguish the four cases a) through d) in the proposition by 
comparing 

71 - APc 
2---- 

1” + IP 

fJ2 to JP(l - L”) 

and 

lr - I”c 
2--- 

I” + jLP 

a* to X)(1 - no) 

As an example, Fig. 1 identifies the four cases on 1,” - 3.p space. It is obvious 
that all cases are possible for a nontrivial set of parameters. 

Although the discussion above is useful in establishing that all the cases are 
indeed possible, the conditions derived there are hard to interpret. By rewriting 
the inequalities in D(0) and D(1) in Proposition 2, we can get a more intuitive 
interpretation of those conditions. For example, noting that 

D(O) = 2(LP(l - LP))’ 

(no - 1P)a2 C 

7cp - cpip APO2 co - cp 

I?(1 - ;1P) - (/IP(l - nP))2 
-____ 

il” - LP 1 . 

One can show that D(0) 2 1 is equivalent with 

(1” _ A*(()))* _ (10 - l*(o))2 - 2(cO - c+‘(l -j np))2 2 a (6) 

where 

n*(o) ~ AP(f - AP)(nP - cPAP) 
Is2 . 
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Fig. 1. The four cases in Proposition 2. 

1” + 1p II - 1°C H - IPC I” + 1p 
___ - (4 q, _+2 u2 

and 2->----- 
u2 - 1P(l - AP) 

I”+l.p <2R-l% 77 - IPC 
(‘4 ___ - 

1” + l.p 

AO(l - 1”) r? 
and 2-r- 

u* 1P(l - nq 

2 n - PC (4 1” + IP x - IPC 1” + 1p 
2 - 

AO(l A.3) u2 
and 2-c----- 

_ 62 1y1 - AP) 

1” + 1p 
(4 ___ 

I[ - 2°C I( - IPC 
<2- 

1” + AP 

nq1 -no) u* 
and 2-<----- 

uz nq1 - nq 
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Note that A*(O) is the proportion of wealth that the agents would invest in the 
risky asset if they had logarithmic utility and their beliefs were correct when 
4 = 0 (no optimists).‘j Inequality (6) is useful for interpreting the results in 
Proposition 2 in an intuitive way. Suppose, for the moment, that co is equal to cp. 
Then the last term on the left-hand side of (6) vanishes, and whether the 
inequality holds depends on whether the optimists’ portfolio 1” is closer to A*(O) 
than the pessimists’ portfolio 1P. First, let us consider the case when inequality 
(6) holds, that is when D(0) 2 1. In this case, 2” is closer to A*(O), which is the 
optimal strategy of a logarithmic utility maximizer when there are no optimists, 
implying that the optimists do better than the pessimists’ when the share of the 
optimists’ wealth is close to zero. Thus, whenever the optimists’ share of wealth 
comes close to zero, the optimists start to do better and increase their share of 
the wealth. Therefore, the optimists’ share of the wealth never converges to zero 
in this case. If D(0) < 1, so that inequality (6) does not hold, the share of the 
optimists’ wealth can end up being zero. When D(0) < 1, whenever the opti- 
mists’ share of wealth is close to zero, the pessimists do better and can increase 
their share until it converges to one. To interpret inequality (6), we have so far 
assumed that co = cp. Holding everything else equal, a co greater than cp makes it 
easier for the optimists’ share of the wealth to converge to zero with positive 
probability. Since a high consumption rate slows down wealth accumulation, 
the result makes sense. In a similar way, we can intuitively understand why the 
optimists’ share of the wealth never converges to one when D(1) I - 1. 

Our model may appear similar to the one developed by Blume and Easley 
(1992). Our results are, however, somewhat different from those by Blume and 
Easley. In their model, if two types of investors invest constant, but different, 
proportions of wealth in the risky asset, as they do in our model, one type of 
investor sees its wealth eventually become negligible relative to the other type’s 

61f an investor has logarithmic utility and expects the risky asset to follow a stochastic process given 

by u(t)dt + /?(t)dB(t), and the riskless asset return to be r, then the optimal proportion of wealth 

invested in the risky asset is (a(t) - r)/fl(t)‘. In our model, if the investor has correct beliefs. then 

a(t) = mt)) - JOcWt) - IPcP(l - q(t)) 
P(l - P)q(t) + A’(1 - IP)(l - q(t)) 

+ r 
’ 

* 
B(t) = 

P(l - P)q(t) + P(1 - P)(l -q(t)) 

Thus, (a(t) - r)/fl(t)’ is given by 

$w)~ - ~“codt) - IPcP(l -q(t))] [P(l -- P)q(t) + P(1 - 1P)(l - q(t))]. 

When q = 0, the above expression simplifies to 
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wealth (Blume and Easley, 1992, Propositions 3.1 and 3.2, p. 16). In our model, 
one type of investor may eventually dominate the other [cases (b) and (c) in 
Proposition 21, but two types may co-exist even in the long run [case (a)], or 
both types have a chance of dominating the market and the probability of one 
type eliminating the other depends on the initial condition [case (d)]. 

What is responsible for the difference is the presence of changes in the price 
level in the asset returns in our model. The Blume and Easley model considers 
assets that pay state contingent payoffs, which do not depend on changes in the 
prices. In our model the payouts of the risky asset include increases in the price. 
Since the price changes as the distribution of wealth between the two types of 
investors changes, the true process of the rate of return also changes in our 
model. 

If we allow investors in our model to have nonconstant portfolio strategy, we 
can prove a proposition that is similar to Theorem 5.2 in Blume and Easley 
(1992). If one type of investor chooses a portfolio strategy that always differs 
more from the (nonconstant) optimal strategy that would be chosen by an 
investor with correct beliefs and logarithmic utility than the other strategy does, 
then the wealth share of such investor becomes asymptotically negligible. 

Proposition 3. Suppose we have a riskless asset with rate of return r and a risky 
asset with rate of return 

dP(t) + dD(t) 

P(t) 
= a(t) dt + P(t) dB(t), 

where a(t), /3(t) are bounded, measurable functions for all t and fl> IP(t)I > p > 0 
for all t. Let A1 (t), A2 (t) be the investment shares of agents I and 2 in the risky asset, 
which are also assumed to be bounded and measurable, and suppose that both 
agents’ consumption rates are c’(t) and c2(t). We will denote ki(t) = A,(t) - 
(a(t) - r)/f?‘(t)for i = 1,2. If IkI( - Ikz(t)l > k* > 0 and cl(t) - cZ(t) > c* > 0 
almost surely, W ‘(t)/W 2(t) converges to zero almost surely. 

Proof See the Appendix. 

Note that ki(t) is a measure of distance between Ai and (cc(t) - r)/f?(t)2, which 
is the portfolio strategy that would be followed by an investor with logarithmic 
utility and the correct beliefs. The parameters in the process of asset returns, a(t) 
and j?(t), are functions of t, and (a(t) - r)//I’(t) also changes over time. The 
assumption of time-varying cc and /I reflects the results in our model [Proposi- 
tion 2(a)]. 

Comparing Proposition 3 to Theorem 5.2 in Blume and Easley (1992) clarifies 
an important difference between our model and theirs. In their model, ‘fitness’ 
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of a strategy can be measured by the distance between the strategy and the one 

that would be used by an investor with logarithmic utility and correct beliefs, 
which turns out to be a constant portfolio strategy. In our model, fitness of 
a strategy can be measured also by its distance from the optimal strategy of 
a logarithmic utility maximizer with correct beliefs. But the fittest strategy is not 
a constant portfolio strategy. Thus, it is possible for the optimists’ strategy to be 
closer to the fittest strategy when the optimists’ share of wealth is small, and the 
pessimist strategy becomes fitter when the pessimists’ share of wealth is small. 

allowing two strategies to coexist even in the long run. 

4. Asset returns process and ARCH 

Our model implies that the process followed by asset returns has a time- 
varying variance. As Eq. (5) suggests, the standard deviation of the returns 
depends on q(t), which fluctuates over time. 

Time-varying conditional heteroskedasticity of asset returns has been 
documented by many empirical studies that applied ARCH models to 
financial data. Those empirical studies found that the conditional variance of 
asset return is well captured by a stochastic process that depends on its own 
past. 

A class of ARCH models called ARCH-M (ARCH in mean) model considers 
the dependence of the mean rate of return on the conditional variance. Thus, the 
mean as well as the variance of rate of return becomes time-varying in ARCH-M 
model. Our model also predicts the time-varying average returns. 

We examine the stochastic process of the conditional variance of the asset 
returns implied by our model and argue that our model can give a theoretical 
justification for an ARCH-like model in finance. 

Given what we found in Section 2 the returns process can be written as 

dP(t) + dD(t) 

P(r) 
= a(q(t))dt + k’(y(r))dB(t), 

where 

z(q) = 
r(q) - i.“c”q - ipcp( 1 - q) 

j.‘(l - j.“)y + jLp(l - i.p)( 1 - y) 

+ r 

’ 

V(q) = 
c 

j.“( 1 - P)q + ;.p( 1 - j.“)( 1 - 4)’ 
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Since V is a monotonic function of q we can write q as a function of V, 

1 
q = A”( 1 - 10) - P(1 - P) ( 

a - P(l - P) 
V > 

E g(V). 

Applying It63 Lemma to the definition of V, and noting that dq(t) = 

a(q(t))dt + b(q(O)dNt) and q = g(v), 

dV(t) = V’(g(V(t)))a(g(V(t)))dt + +~“W’(N)~‘@)d~ 

+ v’(g(v(d)) v(t) d&t), 

which is a nonlinear, continuous time version of ARCH, since the conditional 
variance of the asset returns is time-varying (thus heteroskedastic) and depends 
on its past (thus autoregressive). 

The relationship goes further since the conditional mean of the returns, cr(q(t)), 
also depends on q(t), and therefore on the variance since q = g(V). So we can 
write 

dP(t) + dD(t) 

p(t) 
= a(g(V(t)))dt + V(t)dB(t). 

This can be considered as a nonlinear version of ARCH-M.7 

5. Volume of trade and volatility 

Another set of empirical implications of interest is those that relate the volume 
of trade and volatility. Many researchers have looked at the relation between 
trading volume and volatility and often found a positive relation (see Gallant, 
Rossi, and Tauchen, 1992, for example). We show that our model has an 
empirical implication for this relation. Under some parameter values, our model 
implies a positive relation between volatility and trading volume. We consider 
two alternative definitions of the trading volume: the total oalue of the shares 
that change hands and the total number of shares that change hands. The first 

‘Another type of statistical model that can be given a behavioral foundation by our model is the 

STAR model (see Terlsvirta and Anderson, 1991; Anderson, 1992). A STAR model assumes that the 

stochastic process followed by a certain variable is a weighted average of two distinct AR processes 

and the weight depends on lagged values of the variable under consideration. It can be easily shown 

that the process for returns in our model follows a stochastic process which resembles closely 

a (continuous-time) STAR model. 
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definition gives us a result that is easier to interpret. In order to simplify the 
mathematical expressions, we introduce the following notation: 

A(t) = Y(l - P)q(t) + 2P(l - LP)(l - q(t)), 

A’(t) = E."q(t) + /IP(l - q(t)), 

n,(t) = n(q(t)) - h?q(t) - 2PcP(l - q(t)). 

N”(t) is the number of shares held by the optimists. By definition of 2, 
N”(t) = PW“(t)/P(t). 

First consider the total value of the shares that change hands. Since shares are 
traded unidirectionally, between optimists and pessimists, instantaneous trans- 
action volume is just d(N”(t)P(t)) = A”dW”(t). Substituting Eq. (5) into Eq. (1) 
we get 

dW”(t) 
---= 
WYt) 

2% + I - co 
> 

dt + I“& dB(t). 

Since o/A(t) is asset return volatility we have the desired relation. If we abstract 
from the fact that n,(t) depends on q(t), which is a monotonic function of 
volatility, we can find a linear relationship between volatility and volume. 

If we define the transaction volume as the number of shares that change 
hands, calculations become more involved. Using It8’s formula: 

dN”0 = dW”(t) dP(t) dW”(t)dP(t) + (dP(t))’ 

___ - - - N”(t) WV) P(t) W”(W(t) po2. 

Assume that the firm does not buy back shares with the profits (and only pays 
dividends) so that trading is done exclusively by investors. Then 

1 dn*(t) dD(t) 

N(t)P(t) 
= p(t) = @(q(t)) dt + 0 dI?(t))& = n(q(f))dAf,;) odB(t), (7) 

where the last equality follows from the market clearing condition, Eq. (3). Using 
Eqs. (7) and (5), 

dP(t) dP(t) + dD(t) dD(t) 
- = -- 
P(t) P(t) P(t) 
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Thus, 

dNo(t)= 

NV) 

n(M) 
z+r-- 

A’(t) 

Since q(t) is a monotonic function of volatility this last expression relates volume 
to volatility. 

To get a better intuition, assume z,(t) = n(q(t)) (i.e., co = cp = 0). Noting that 
(2 - l)A’(t) + A(t) = (2’ - Ip)/zp(l - q(t)) and letting A”(t) = (2” - ,Ip)Lp(l - 

q(t)), we have 

dN’(t) A”(t) P2 + Izp2(1 - q(t)) 
- = 
NV) 

em) 
A(t - CJ AMA’(t) 

dt 

A”(t) 

+ A(t 
dB(t). 

Note that A”(t)/A’(t) = (2 - ,Ip)Ap(l - q(t))/[A’ - (A” - AP)(l - q(t))] is de- 
creasing in q(t). We can show that both the conditional mean of volume and its 
variance are decreasing functions of q(t) if Ip(l - Ap) I A”(1 - A’), n(q(t))/o is 
large and zp 2 no.* Thus, under these conditions, since asset price volatility is 

‘If n(q(t))/a is large, then to determine whether the conditional mean of volume is a decreasing 

function of q(t) we only need to know whether n(q(t))[A’(t)/A(t)A”(t)] is decreasing in q(t). If 

x0 <: S, n(q(t)) is decreasing in q(t) and if Ap(l - AP) < A”(l - no), l/A(t) is decreasing in q(t). We 

already showed that A”(t)/A’(t) is decreasing in q(t). Thus, if rr(q(r))/a is large, no < +’ and 
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a decreasing function of q(t), asset price volatility and volume of trade are 
positively correlated. 

6. Fundamentalists and contrarians 

This section studies a model in which some agents use marketwide informa- 
tion when making their investment decisions. The first type of agent is called 
fundamentalist because agents of this type believe they know the process which 
generates the profits of the firm, and they act in a way that would be optimal if 
they were the only type of agent in the market. The second type of agent is called 
contrarian. Agents of this type subscribe to the theory that the majority of 
agents are adopting wrong positions in financial markets, and they adopt the 
opposite position. 

We consider the same economic structure and use the same notation as 
in Section 2. Let IV”(t) and PVC(t) be the total wealth of fundamentalists 
and contrarians respectively. Then the total wealth in the economy, w(t), 
is given by W F(t) + WC(t). Let IF and AC(t) be the shares of the risky asset in 
the portfolios of fundamentalists and contrarians respectively. Note that con- 
trarians follow a time-varying portfolio strategy. Contrarians assume that 
the market is wrong, and put 1 - P(t)N(t)/W(t) into the risky asset, because 
the market portfolio puts P(t)N(t)/W(t) into the risky asset. Thus, 
F(t) = 1 - P(t)N(t)/W(t). 

Let q(t) E W “(t)/[W ‘(t) + W F(t)] denote the share of total wealth held by 
the contrarians. Market clearing implies 

p!m) P(t)N(t) 
4(t) + AF(l - q(t)) = w(t) 

or 

2AF - 1 
1 - JbF +--- 

1 + q(t) > 
W(t) = P(t)N(t). (8) 

Consumption for both types of agents is assumed to be a fixed proportion of 
their wealth, cF for the fundamentalists and cc for the contrarians. Then, the 

Ip(l - ip) < A”(1 - A’), the conditional mean of volume is decreasing in q(t). The conditional 

variance of volume is A”(t)/A(t)A’(t). If Ap(l - ip) < A”(1 - I.“), the conditional variance of volume 

is decreasing in q(t). 
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evolution of wealth for each type of investor is given by 

d w itt) = + (1 - A’(t))rdt - c’dt Wi(t), (9) 

i = C. F. 

The process for instantaneous profits is again assumed to follow: 

da*(t) = (7@(t)) dt + ad&t)) W(t), 

which is used to buy back shares and/or pay dividends [i.e., Eq. (4) holds]. 
Following similar steps to those taken in Section 2 to derive Proposition 1, we 

can prove the following proposition, which establishes the process of equilib- 
rium asset returns and the contrarians share of wealth. 

Proposition 4. Let 

dP(t) + dD(t) 

P(t) 
= a(t) dt + b(t)dB(t) 

and 

dq(t) = c(t) + g(t) dB(t). 

Then, 

2AF - 1 

C?(t) = - 

s(O(1 - 4(f))+ 

2q(t)2 (r3 
(1 - AF)AF + (2AF - y1 + q(t))3 

2AF - 1 

b(t) = 
d - g@)(l + q(t))2 

q(t) ’ 
(1 - AF)AF + /IF + (21F - 1)*(1 + q(t))2 

(10) 

(11) 

c?(t) 
c(t) = 7 

[ 

2AF - 1 
r&(G) + (1 + q(t))3 s(t)* 

( 

2AF - 1 
+ l-RF+--- 

1 + q(t) ) 
( - s(t)cC - (1 - qW)cF) 
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a(t) = 

t21F - l)dt)b(t) 
(1 + m2 

1 _ IF + 21F - 1 
1 + cl@) )I 

(1 _ ~‘11” + (2RF - ‘J2q@) 
(1 + cm2 

(1 _ AF)JF + (21F - 1)22dt)2 
(1 + m3 

2AF - 1 

n(q(t)) + (1 + q(t)) 3 s(O’ 

(1 - IF)IF + ‘:::-,‘,$Q - 

cCq(t) + c”( 1 - q(t) 

2iF - 1 AF _ ___ 
1 + q(d 

+?-. 

Proof: See the Appendix. 

The expressions for c(t) and g(t) show that the drift and the diffusion terms for 
the stochastic process q(t) are functions of q(t) itself, so we can write 

W) = at (q(Q) dt + bt (qW)dW. 

The limiting properties of the process q(t) can be found again by analyzing the 
function D(q) = al(q)q(l - q)/b1(q)2. Since the function D(q) is again bounded 
and continuously differentiable in [0, 11, Proposition 2 directly applies. It can be 
shown that all four cases in the proposition are possible. Similarly to the model 
with optimists and pessimists, the different cases hold depending on the proxim- 
ity of the investment policy of fundamentalists and contrarians to the optimal 
policy of an investor with logarithmic utility and rational expectations.’ 

‘There is a version of this paper, with a full discussion of these issues, as well as complete proofs of 
the propositions, which is available upon request. 
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7. Concluding remarks 

Models with heterogeneous beliefs are potentially useful in explaining 
anomalies in the asset markets. With a few exceptions, however, the past 
literature on the asset markets with heterogeneous investors did not pay much 
attention to dynamic aspects of the models. This paper is an attempt to advance 
the research on the dynamic properties of the models of asset markets 
with heterogeneous investors, originated by De Long, Shleifer, Summers, and 
Waldmann (1991) and Blume and Easley (1992) among others. 

In this paper, we showed that the introduction of simple heterogeneity of 
beliefs into a simple model of asset pricing produces a rich dynamic of asset 
returns. Depending on the parameter values of the model, one type of investor 
may eventually have an infinitely larger wealth than the other investors, but it is 
also possible that two types of investors co-exist even in the long run while they 
keep influencing the asset returns. 

One important empirical implication from our analysis is the presence of 
smooth regime shifts in the dynamics of asset returns, which are caused by the 
changes in the distribution of wealth among heterogeneous investors. As we 
have shown in Section 4, this implication is roughly consistent with a well- 
known empirical regularity in financial markets: we often find ARCH in asset 
returns. The model also has an implication on the relation between asset return 
volatility and trading volume. We have not, however, put these implications 
through econometric tests, which is obviously an important agenda for future 
work. 

Appendix 

A. 1. Model with risk averters and risk lovers 

Suppose that we have two types of agents: one that is infinitely risk-averse and 
the other is risk-loving. There are a risky asset and a riskless asset, and the risky 
asset is assumed to have a higher expected return. Hence risk lovers only invest 
in the risky asset and the risk averters only invest in the riskless asset. There are 
no heterogeneous beliefs in this model. Both agents know that the risky asset is 
risky and has a positive mean excess return. We use L to denote risk lovers and 
A for risk averters. Let q denote the proportion of total wealth held by the risk 
lovers. We also assume that some proportion of the returns, z, is kept by the 
government. Then, 

CL& = (1 _ T)dD(c)pTt;P(c~, +$$=(I -r)rdt. 
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Profits are assumed to follow the stochastic process: 

dn*(t) = (n(q(t)) dt + a(@)) dB(t)) W(t). 

Assuming that all profits are given as dividends and noting that only L 
demand the risky asset: 

agents 

dW L(O + MqW)dt + MNWO)W(~) 
wLw 

Thus, 

!!!$?$=?@$dt+ G(t)) - dB(t). 
zq(t) 

Noting that risk averters’ wealth grows at a constant rate (1 - Z)I and using 
Itb’s formula: 

dq(t) 7@(t)) -= - 
40) 74(t) 

- q(t)r - $$$) dt + +dB(r), 

We need to assume that a(q(t)) = 0, when q(t) = 0. 
One can show that this mode1 has similar empirical implications as the ones 

obtained for the mode1 with optimists and pessimists. The mode1 also implies 
that under some parameter values, both types of agents continue to coexist in 
the market forever. 

A. 2. Proofs of propositions 

Some of the proofs are only sketched. Full proofs can be obtained from the 
authors upon request. 

Sketch of Proof of Proposition 1 

Eq. (2) implies 

L”dW”(t) + LPdWP(t) = dN(t)(P(t) + dP(t)) + N(t)dP(t). (A.1) 

Dividing Eq. (A.l) by W(t) and substituting(l), (3), and (4) into (A.l) and then 
collecting the terms that are multiplied by [dP(t) -t dD(t)]/P(t), we get Eq. (5) 
[that is, part a) of the proposition]. 
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Applying Ito’s formula to the definition of q(t) and simplifying the resulting 
expression, and then substituting Eq. (5) into the resulting expression we get part 
b) of the proposition. 

Proof of Proposition 2 

The proof requires establishing two lemmas. 

Lemma I. a) Zj D(0) 2 1, Ii is injinite. b) Zf D(0) < 1, I1 is jinite. c) Zf 

D(1) < - 1, Z2 is injnite. d) ZjD(1) > - 1, I2 is Jinite. 

Sketch of Proof for Lemma I 

a) and b) For qae(O, l), I, can be written 

Ii =exP( - jzq’&dq){ j:exp [j:&dq]dx) 

but for qa sufficiently close to zero. 

--dq]dx g j:exp[l;ydq]dX = ~~($hoht’dx, 

which is infinite if D(0) 2 1 and finite if D(0) -C 1. Since D(x) is bounded, 

jqyexp[ - j:--$$$dq]dx and exp[ - jzqa&dq] 

are strictly positive and bounded. Thus, Ii is infinite if D(0) 2 1 and finite if 
D(0) < 1. 

One can show c) and d) in a similar fashion. 

Lemma 2. ZfD(0) > 1 and D(1) < - 1, ji M(x)dx is jinite. 
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Sketch of Proof of Lemma 2 

For 1 > qa, > qa, > 0, one can write: 

s 1 

M(x) dx = exp 
[S 

‘*I D(q) 

0 z 
--dq]{[~&exp[ - (~‘-$$-$q]dx~ 
4u - 4) 

’ (-q;,&exp[ - j-~‘&dq]dx}. 
But for qal sufficiently close to 0, 

= j~‘&+p[ - D(O)I,($‘)]dx < K, j;‘ydx, 

where K1 is a positive bounded constant. This is finite if D(0) - 2 > - 1. 
When qaz is sufficiently close to 1, 

for some bounded positive constant K1. This is finite when - D(1) - 2 > - 1. 
Since 

are all finite, the lemma follows, because D(x) is bounded and z, qa,, and qa2 are 
in (0, 1). 

Lemma 1 and Lemma 2 establish the proposition. 
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Sketch of Proof of Proposition 3 

By Eq. (1) the evolution of wealth is given by 

dW’(t) = n,(t) 
dP(t) + dD(t) 

P(r) 
+ (1 - ni(t))rdt - c’(t)dt 

> 
wi(t), 64.2) 

i= 1, 2. 

Let h(t) = log(W’(t)/W*(t)). By It8’s lemma and Eq. (A.2) 

h(t) = h(0) + ,-((k&)* - h(s)*) - k+(s) - c*(s))) 
1 

ds 

+ s ’ (4 (4 - MW(4 W4. 
0 

Let j? > l/?(s)1 > p, Vs, and I> j&(s) - n,(s)1 > k*, Vs. By Gihman and 
Skorohod’s (1972) Theorem 1.1, 

1 

-s 

z”+l 

S (2”)*4 0 
EC@,(s) - ,42(s))2B(s)2] ds I q. 

Applying Chebyshev’s inequality and the Borel-Cantelli lemma we have 

1 ’ 
lim - 

s 
(n,(s) - n,(s))/I(s) dB(s) + 0, a.s. (A-3) 

f’cc t 0 

By the assumption of the proposition, 

- kI(s)*) - (c+(s) - c*(s))) 1 ds I - $(k*)’ - c* < 0. 

(A.4) 
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Eqs. (A.3) and (A.4) imply that almost surely 

Therefore h(t) + - co almost surely, which implies that W ‘(t)/W ‘(t) -+ 0 
almost surely. 

Sketch of Proof of Proposition 4 

Using It6’s rule on Eq. (8), substituting 
expression, and dividing by W(t) we get 

2AF - 1 

- (1 + q(t))Zdq(t) + (1 + q(t))3 
2’F - ’ (dq(t))’ 

Eqs. (8) and (4) into the resulting 

2AF - 1 dW(t) 

- (I + q(0)2 
dq@)- 

W(t) 

= - z(q(t))dt - odB(t) + 
dP(t) + dD(t) 

P(t) 
1 - AF + S). (A.5) 

Since d W(t) = d W ‘(t) + d W F(t), using Eq. (9) and combining the result with 
Eq. (8), we obtain 

dW(O dP(t)+dDt -= 
W(t) P(t) - 

rdr I _IF+2AF-1 

1 + q(t) > 

+ rdt - q(t)ccdt - (1 - q(t))cFdt. (A.6) 

Substituting (lo), (ll), and (A.6) into (AS) and collecting the terms that 
multiply [dP(t) + dD(t)]/P(t), we get the expression for [dP(t) + dD(t)]/P(t) in 
terms of q(t) and the coefficients in (10) and (11). Substituting the result into the 
expression for dq(t) which is obtained by applying ItG’s rule to the definition of 
q(t), and then identifying coefficients in the resulting expression with (10) and 
(1 l), the proposition follows. 
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