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This paper studies the equilibrating process of several implementation
mechanisms using naive adaptive dynamics. We show that the dynamics converge
and are stable, for the canonical mechanism of implementation in Nash equi-
librium. In this way we cast some doubt on the criticism of ``complexity'' commonly
used against this mechanism. For a mechanism that implements using the iterated
deletion of dominated strategies, the dynamics converge but are less stable. Journal
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1. INTRODUCTION

The theory of implementation tries to address the problem of designing
game forms (which in this literature are called mechanisms) whose equi-
libria satisfy certain socially desirable properties but which do not
necessitate vast amounts of knowledge by the authorities to put them in
place. Instead, these social arrangements should basically self police them-
selves, and the designer should only make sure that the rules of the game
are respected by the players.
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In the past few years there have been impressive advances in the theory
of implementation. As Sjo� stro� m [25] points out, ``With enough ingenuity
the planner can implement `anything.'' This ``ingenuity'' often involves the
construction of complicated games and the choice of the solution concept.
As is often the case in economics, very little attention has been paid to the
issue of how equilibrium is reached, and whether it is stable. This situation
is worrisome given the importance of the issues at hand and the fact that
the theory makes normative recommendations. It would not be sensible to
apply these social engineering recipes without first thinking about whether
real people will achieve the desired outcomes.

Some exceptions are the papers of Muench and Walker [20] and De
Trenqualye [27] who study the conditions for local stability of the Groves
and Ledyard [11] mechanism. Walker [30] proposes a stable mechanism
yielding nearly Walrasian allocations in large economies. Jordan [15]
shows that for any mechanism which implements the Walrasian corre-
spondence in Nash equilibria with agents that are uninformed about other
agents characteristics and any dynamic adjustment process there is an
environment for which the equilibria are unstable with respect to the
dynamics. Vega-Redondo [29] proposes a mechanism for which a best-
response dynamic adjustment process is globally convergent to the Lindahl
equilibrium outcome in an economy which has one private good, one
public good and a linear production technology for the public good. De
Trenqualye [28] proposes a mechanism that is locally stable for the
implementation of Lindahl equilibria in an economy with multiple private
goods, one public good, a linear production technology for the public good
and quasi-linear preferences. Cabrales and Ponti [5] study the convergence
and stability properties of Sjo� stro� m's [25] mechanism1 under fictitious
play and when one assumes that the dynamics are monotonic in the sense
of Samuelson and Zhang [23].2

This paper studies first (a slight variation of) the canonical mechanism
for implementation in Nash equilibria (see Maskin [17], Repullo [22]).
We show that it has good dynamic properties when the assumption of
monotonicity is replaced by strict monotonicity, the possible preference
profiles and outcomes of the social choice rule are finite (although out-
comes that are not part of the social choice rule can be infinite), and some
punishments are possible. The dynamics are such that agents play the game
repeatedly and once in a while they get a chance to replace the strategies
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1 Sjo� stro� m's [25] mechanism and the one that Jackson, Palfrey and Srivastava [14] study
for separable environments are very similar and most of our results would generalize easily for
that mechanism as well.

2 A member of the class of monotonic dynamics is the replicator dynamics of evolutionary
game theory, (Taylor and Jonker [26]).



they currently use. When they do it, they put positive probability on
strategies that are best responses to the current strategy profile of the other
players' and probability zero on strategies that give lower payoff than the
one they are currently using.3 Under these assumptions the dynamics con-
verge to the set of Nash equilibria (so the social choice correspondence is
implemented) and once the dynamics converge to an equilibrium, they stay
there.

According to Jackson [13] ``A nagging criticism of the theory is that the
mechanisms used in the general constructive proofs have `unnatural'
features.'' Moore [18] also complains that the mechanisms for Nash
implementation are ``highly complex��often employing some unconvincing
device such as an integer game.'' Our result shows that even unsophis-
ticated agents using very simple adjustment rules can reach the set of
equilibria of the mechanism. Therefore the criticism is misplaced if by
``complex'' we mean that the outcome that is desired by the planner will
not be achieved by boundedly rational agents. On the other hand, it may
be that the critics are right. If ``complexity'' is associated with the issue of
the speed of convergence (which we do not explore) it may be that the
canonical mechanism is slower than others.

The structure of the general constructive mechanism is as follows. The
agents have to announce a state of the world, an outcome and an integer.
If all agents agree on a state and an outcome, the outcome is implemented.
If one agent disagrees and proposes an alternative, there is a test that
the alternative has to pass. If it passes the test, the alternative outcome
is implemented, otherwise it is not. A condition called monotonicity
(Maskin [17]) ensures that an alternative will be proposed if and only if
there is agreement on a lie. The mechanism also specifies what happens
when more than one agent disagrees. In these cases, the mechanism gives
the agent who proposed the largest integer her favorite outcome given the
state of the world she announces. No situation with more than one dis-
sident can be an equilibrium (if the best outcomes for the different agents
are different). The reason is that in that case there is always one ``loser'' and
the ``loser'' could ``win'' by announcing a high enough integer.4 This
exploitation of the non-existence of an equilibrium is one of the things that
appears more worrisome to the critics about the use of integer game
constructions.

The intuition for why there is convergence with the canonical mechanism
is simple. If in one period all the agents make a coincident announcement
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3 They may (although it is not necessary) give weight to strategies that are not a best
response but do better than the one currently used.

4 One can show that there is no equilibrium, even in mixed strategies, that gives positive
weight to strategy profiles where the integers are used to determine a winner.



that is false, some agent has an incentive to change the announcement to
the truth by monotonicity. At that point any agent can invoke the integer
game and, by choosing a large enough integer, win it. When the integer
game is invoked, announcing the truth cannot hurt any player, provided it
is accompanied by a high integer, since it only determines the preference
profile with respect to which her most preferred outcome is chosen (if she
wins the integer game). If everybody (simultaneously) announces the true
outcome, the designer's desired outcome is achieved and from that point
on, the strengthened version of monotonicity ensures that no player desires
to deviate.

We also examine a mechanism that implements the social choice rule
in the iterated deletion of dominated strategies. We show that although
convergence to the equilibria of these games can be achieved, they are not
stable when agents choose improving strategies which are not necessarily
best responses. The problem is that drift between strategies that have the
same payoff as the equilibrium payoff can destabilize the equilibrium
outcome. This result is far from being merely a theoretical curiosity. As
Binmore and Samuelson [3] point out, ``the experimental evidence is now
strong that one cannot rely on predictions that depend on deleting weakly
dominated strategies.'' The mechanism we study, which is the one proposed
by Abreu and Matsushima [2], implements the social choice rule in
iteratively weakly undominated strategies. Besides being a good example of
the literature on implementation with solution concepts different from
Nash equilibrium, it has an additional interest because it allows us to
discuss the mechanism of Abreu and Matsushima [1]. This mechanism
virtually implements the social choice rule (that is, it implements with
arbitrarily high probability) in strategies that survive the iterative deletion
of strictly dominated strategies. This would seem to be a good mechanism
from a dynamic perspective, given that iteratively strictly dominated
strategies are asymptotically eliminated for most adaptive dynamics (see
Nachbar [21], Samuelson and Zhang [23] or Cabrales and Sobel [6]).
The problem is that if the mechanism implements with very high probability
the social choice rule, then it will do so in iteratively strictly =-undominated
strategies, for = very small. This implies that as the mechanism becomes
more effective in doing its job, it becomes closer to the one in Abreu and
Matsushima [2] and thus it becomes open to the sort of instability
problems which that mechanism has. We think that this trade-off between
close implementability and stability needs to be pointed out and we
formalize it.

Section 2 describes the model and the dynamics we use. Section 3 studies
the problem of Nash implementation with adaptive dynamics. Section 4
studies the dynamics of the mechanisms of Abreu and Matsushima [2] and
Abreu and Matsushima [1]. An appendix gathers the proofs.
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2. THE MODEL AND THE DYNAMICS

There is a set I=1, ..., n of agents, and the preferences of agent i # I are
represented with a (Von Neumann�Morgenstern) utility function
vi : A_8i � R, where A is a set of alternatives and 8i specifies a finite set
of possible utility functions. An element , i of 8i is meant to represent the
preferences of agent i over A. A preference profile is a vector ,=(,1 , ..., ,n),
where ,i # 8i . The set of possible preference profiles, denoted by 1, is a
subset of 8=_i # N 8i . Since we are concerned with environments with
complete information, the preference profiles will be common knowledge
among the agents.

A social choice rule is a (possibly multi-valued) mapping F : 1 � A,
where 1/8 is the set of possible preference profiles. A mechanism is a pair
(M, g), where M=M1_ } } } _Mn and g : M � A. Mi is the message space
of agent i and g is the outcome function. A mechanism and a preference
profile define a game.

Let M&i=M1_ } } } _Mi&1_Mi+1 } } } _Mn . Given a mechanism (M, g)
and a preference profile ,, we will say that mi is a best response for player
i, to m&i # M&i if vi (g(m i , m&i), ,i)�vi (g(mi$ , m&i), ,i) for all m i$ # Mi .
A message profile m is a Nash equilibrium (NE) if mi is a best response to
m&i for all i # N. Let NE(,)=[g(m) | m is a NE at ,].

We say that a mechanism (M, g) implements a social choice rule F in
Nash equilibrium if for all , # 1, F(,)=NE(,).

We will assume now that the implementation game is played repeatedly
by the agents and that they can use the information obtained in previous
periods to modify their behavior in subsequent rounds of play. The under-
lying set-up that one can keep in mind is that of a population of agents
who play repeatedly implementation games for the provision of public
goods in different groups of a society over time. An agent lives in an apart-
ment building where the owners have to decide whether to purchase an
elevator and of what quality, or whether to paint the external surface of the
building and in what color. The agent is also the member of a sports club
where members have to decide on the level of upkeep of the tennis courts
and the putting green. She is also working in an office where workers
decide on the regulation of the temperature in the (shared) working space.
Besides, many of these decisions have to be taken repeatedly. If they were
all taken using the same implementation mechanism, there would be ample
opportunities for learning and adjusting play between repetitions.5
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5 To be completely consistent with this story, we would need to have (among other things)
a population with several individuals playing the role of each agent i, and some kind of
matching process. This modification is conceptually easy to do and the results still follow, but
it involves substantial notational complication and we omit it for expositional simplicity.



To keep the problem tractable we will make some assumptions about the
way in which the play and the updating takes place.

We will say that message mi # Mi improves upon message mi$ given the
message profile m if

vi (g(mi , m&i), , i)�vi (g(m i$ , m&i), , i).

Let =>0. We say that mi is an =U-improvement upon mi$ if

vi (g(mi , m&i), , i)&vi (g(mi$ , m&i), , i)>&=U.

We assume that agents play the game repeatedly (maintaining the role
i and preference index ,i). Each individual starts by playing some arbitrary
(pure) strategy and before each repetition of the game they have an oppor-
tunity to change their (pure) strategy with some probability. The dynamics
will be fully described when one identifies the transition probabilities
between strategies. Instead of fully describing the process we enumerate a
set of assumptions that are sufficient for the results of the paper.

(Y0) The transition probabilities depend exclusively on the present
message profile.

(Y1) All individuals are given the chance to update their strategies
with independent probabilities in the interval (0, 1).

(Y2) If the individual is given the chance to update her strategy, any
best response to the present message profile is adopted with positive prob-
ability. If there are several messages which are best responses to the current
one and they announce the same pair ,, a (as we will see, this means that
they only differ in the integer that the mechanism requires mentioning),
one of these messages is chosen with a probability bounded away from
zero.

(Y3) A strategy which does not improve upon the strategy currently
in use is adopted with zero probability.

Some alternatives to assumption (Y2) will be used in Section 4

(Y4) If the individual is given the chance to update her strategy, any
strategy that improves upon the strategy currently in use, given the present
message profile, is adopted with positive probability.

(Y5) If the individual is given the chance to update her strategy, any
strategy that is =U-improvement upon the strategy currently in use, given
the present message profile, is adopted with positive probability.

These assumptions permit us to obtain clear-cut results in a relatively sim-
ple fashion. Assumption (Y0) simplifies the analysis by making the strategy
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profile of a certain period the state variable of the system, but it is not
essential for the results. It would suffice if the system had a finite memory,
for example.

Assumptions (Y1) and (Y2) are designed to exploit a special charac-
teristic of the mechanisms. For many strategy profiles the agents have lots
of alternative strategies that yield the same payoff, and some of them are
both a best response to the prevalent strategy profile, and lead to
implementation of the social choice rule. If assumptions (Y1) and (Y2) are
satisfied there will be convergence to an equilibrium from those states. It
turns out that those states are also easily accessible from other states.
Notice that assumption (Y2) does not demand that all agents choose best
responses all the time, but only that they find them with some probability.

Assumption (Y2) does not say anything about the probabilities of
strategies that are not best responses. In particular, it does not specify what
happens with improving strategies that are not best responses. This implies
that (Y2) is a less restrictive assumption than (Y4), so any proposition that
is true with (Y2) as an assumption will also be true with (Y4). Specifically,
Proposition 1 is true with (Y2) replaced by (Y4). We discuss in Section 4
why assumption (Y4) rather than (Y2) is used in the context of implemen-
tation in iteratively undominated strategies.

Both assumptions (Y4) and (Y2) remain silent as to the relative sizes of
the probabilities of transitions to best-responses versus improving strategies
that are not best responses. All that is needed in the propositions is that
there is enough drift away from strategies that are not strict best responses,
and no flow out of strategies that are strict best responses. The latter is
achieved with assumption (Y3), which makes the equilibria of the canoni-
cal mechanism absorbing states. One could even relax (Y3) by adding
small probabilities of mutations in all directions, which would make the
process ergodic, and then look at the stationary distribution. The limit of
that distribution as mutations go to zero would put weight only on the
socially desired outcomes for the canonical mechanism. It is unclear how
this would affect the results in Section 4.

The statement in assumption (Y2) about best response messages that
share the same a, , announcements is used, as we explain in Section 3,
to account for the fact that the strategy spaces are infinite but for
Proposition 1 some transition probabilities have to be bounded away from
zero.

Assumption (Y5) modifies (Y4) in a way that will be suitable to discuss
virtual implementation.

Properties (Y0) to (Y4) make our dynamics similar to the ones in Kim and
Sobel [16]. The difference here is that they require individual (sequential)
adjustments and we assume that there is positive probability of simul-
taneous adjustments. Assumption (Y2) corresponds to their assumption
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(BR), (Y4) corresponds to their assumption (R) and Assumption (Y3) to
their assumption (NL). Our dynamics are also closely related to the ones
in Hurkens [12] and Gilboa and Matsui [9].

3. NASH IMPLEMENTATION

In the first subsection we describe the mechanism and the second will
show that the dynamics described in Section 2 converge and are stable for
that mechanism.

3.1. The Canonical Mechanism (Almost)

We say that F is monotonic if for all a, ,, ,$, with a # F(,) and a � F(,$)
there is an i and a$ such that vi (a, ,)�vi (a$, ,$) and vi (a$, ,$)>vi (a, ,$).

Monotonicity is a necessary and almost sufficient condition for Nash
implementation. We use somewhat stronger assumptions,

(N1) For all a, ,, ,$, with a # F(,) and a � F(,$) there is an i and a$
such that vi (a, ,)>vi (a$, ,) and vi (a$, ,$)>vi (a, ,$).

(N2) For all i, , and a # F(,) there is a$ # A such that vi (a, ,)>
vi (a$, ,).

(N3) The set 1 is finite. So are the sets F(,) for all , # 1.

We denote by i(,, ,$) one (arbitrarily chosen) of the agents that satisfy
the condition of assumption (N1), and by a$(,, ,$) one (arbitrarily chosen)
of the outcomes such that vi(,, ,$)(a, ,)>vi(,, ,$)(a$(,, ,$), ,) and vi(,, ,$)

(a$(,, ,$), ,$)>vi(,, ,$)(a, ,$). This agent i(,, ,$) is often called the test agent
and a$(,, ,$) the test outcome in the implementation literature. Let us also
denote by ai$ (a, ,) one of the outcomes a$ in assumption (N2).

Under our dynamics, all best-responding messages are chosen with
positive probability. If the Nash equilibrium of the mechanism were such
that some agent had more than one best response, it could be easily
destabilized. To avoid this we will use two assumptions; (N1), which
demands that the test outcome be a strict improvement over the ``status
quo'' and (N2) by which it is always possible to punish a dissident who has
no reason to dissent (she is not a test agent). Assumption (N3) is used to
guarantee convergence to the desired outcome in finite time.

Assumption (N2) does not seem very restrictive, since it will be sufficient
for example that agents have strictly monotonic preferences over a private
good over which fines can be levied, or that there is an outcome which is
bad for all agents. Assumption (N1) is a slight strengthening of Maskin-
monotonicity and would be satisfied if preferences were strictly convex, for
example. Assumption (N3) limits the set of allowable preference profiles
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and the social choice rules to be finite valued, but the set of possible out-
comes A might still be infinite, so the Euclidean spaces for outcomes that
are common in economics are not excluded. This still leaves a nontrivial set
of social choice rules like the Walrasian or Lindahl correspondences which
can be implemented under reasonable subsets of preferences.

We will use a slight variation of the canonical mechanism for implemen-
tation in Nash equilibria, as described, for example in Repullo [22].

Let AF=[a # A : _, with a # F(,) or _,, ,$ with a=a$(,, ,$)].
Let Mi=AF _1_N, so that each individual announces an outcome, a

preference profile, and a positive integer; and M=M1_ } } } _Mn , and let
members of Mi and M be denoted mi and m respectively. Let the first com-
ponent of mi , that is, the outcome announced by agent i be m1

i and the
second component, the preference profile announced by agent i, be m2

i . Let
i(m) be the individual who has the lowest index among those who
announce the highest integer in the message profile m.

Let bi (,) be such that vi (bi (,), ,)�vi (a, ,) for all a # A.
To define g, let's divide M into the following regions,

D1=[m | _, # 1, a # F(,) such that for all i, m i=(a, ,, ni),

for some ni # N]

D2=[m | m i=(a, ,, ni) \i{i(,, ,$), and m i(,, ,$)=(a$(,, ,$), ,$, ni(,, ,$))]

D j
3=[m | mi=(a, ,, ni) \i{ j, and m � D1 _ D2]

D4=[m | m � D1 _ D2 _ D1
3 } } } _ Dn

3]

g(m)={
a
a$(,, ,$)
a j$ (a, ,)
b i(m)(m2

i(m))

if m # D1

if m # D2

if m # D j
3

if m # D4

This mechanism can be described in the following way. If everybody agrees
on an outcome and a state, then that outcome is implemented. If all agents
but one announce the same outcome, and the dissident is the test agent and
she announces the test outcome, then the test outcome is implemented. If
there is one dissident but she is not the test agent (or she is the test agent
but does not announce the test outcome), then the dissident is punished. If
more than one person disagrees, then the outcome is the favorite one
(under the preference profile she announces) for the agent who announces
the largest integer.

There are a couple of small differences between this mechanism and the
one in Repullo [22]. One is that we punish deviations from the equilibrium
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by agents other than the test agent, (and even punish announcements
by the test agent which are not part of the test pair). As we discussed
above, this is done to avoid having multiple best responses in equi-
librium. The other difference is that we ask that the ``allowable'' dissident,
the test agent, and the test outcome must be designated beforehand, and
the outcomes that can be announced must be either test-outcomes or out-
comes of the social choice rule for some preference profile. We do this so
that we can allow a possibly infinite set of outcomes A, while maintaining
a relatively small state space. This is important because the agents in
this model are not very sophisticated and they find their way to equi-
librium by trial and error. The smaller the state space, the faster will
convergence be.

Unlike Repullo [22] and other papers in the literature on Nash
implementation we do not make the assumption of absence of veto power.
This assumption says that for all a # A, , # 1, if uj (a, ,)�uj (a$, ,) for all
a$ # A and for all j{i, then a # F(,). Without this assumption we can have,
for example, the situation that an outcome a, which is the best in all
players' utility functions for some preference profile ,, is not selected by the
social choice rule, (that is, a � F(,)). Under these conditions, we would
have a Nash equilibrium with outcome a, when the true preference profile
is ,. A message profile in D4 would deliver such an equilibrium, since no
agent would have an incentive to change a strategy that is already deliver-
ing the best possible outcome. The assumption of absence of veto power is
not needed in our case since such kind of Nash equilibria would not be
stable under our dynamics. We will show in Proposition 1 that from
message profiles in D4 the dynamics eventually drift into D1 (for the true
,), and by definition a � F(,).

3.2. The Dynamics of Nash Implementation

The main result in this section is that the dynamics defined in Section 2
for the game induced by the mechanism in subsection 3.1 are such that the
strategy profile will almost surely lead to one of the outcomes that the
designer wants to implement, and that outcome is then implemented
forever. In addition, if none of the outcomes that the planner wants to
implement are already being implemented, all outcomes in the social choice
rule are implemented with positive probability.

Assumption (Y2) requires that when there are several best responses
which announce the same pair ,, a, that is, they announce different
integers, one of these messages is chosen with a probability bounded away
from zero. It is then necessary that the sets of allowable pairs ,, a are finite.
This is true by assumption (N3), the fact that the announced a must belong
to AF and we single out one and only one test agent and test outcome for
every pair ,, ,$. Without this assumption it would be possible that agents
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would spend infinite amounts of time cycling around the integer game.
Because of this modification, whenever we say in the proof of the proposi-
tions that something happens with positive probability it means actually
with probability that is bounded away from zero.

Define the set Sa=[m | _,, a # F(,), such that \i; mi=(a, ,, ni)]. The set
Sa is the set of message profiles in D1 where the outcome is a.

Proposition 1. Let the true preference profile be ,. Given dynamics that
satisfy properties (Y0), (Y1), (Y2), (Y3), and given a social choice function
that satisfies (N1), (N2), (N3);

(a) If m(0) is a such that m(0) � Sa for any a # ,, then for all a # ,;
P( for some t$, m(t) # Sa , \t�t$)>0.

(b) P(�a # F(,) [ for some t$, m(t) # Sa , \t�t$])=1.

Proof. See the Appendix.

The intuition for the stability part of the result is that if all agents agree
on an outcome a and also announce the true , (so that the message profile
is in D1), the test agent does not want to change the strategy and announce
the test outcome by N1 (modified monotonicity), and any other change by
any agent would only lead to an outcome in D j

3 , which the agent who
changed would not like by N2.

The convergence result starts by showing that the message profile will go
with positive probability to D4 (where the integer game is played) if the
initial state is not one where the social choice rule is implemented. For
example, if all agents agree on an outcome and announce a false ,, the test
agent would like to change her announcement to the test outcome by N1,
and after that change, any player can announce the true preferences (which
puts the message profile in D4) and obtain her favorite outcome by
announcing a high enough integer. For similar reasons, if the initial state
is in D2 or D j

3 , any player can announce something that puts the message
profile in D4 and obtain her favorite outcome.

Once the message profile is in D4 , announcing the true , and some
a # F(,) is a best response if a high enough integer is also announced.6 If
all agents announce it simultaneously the message profile will be in D1 , and
the stability argument guarantees that the message profile becomes fixed at
that point.

Notice that a similar argument would work for modulo games. This is
important because one could reasonably argue that a practical problem
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best response, and at that point it is a best response for all agents to announce , and a # F(,).



with the canonical mechanism is that in real life the designer would have
trouble with an infinite strategy space (time constraints could preclude
describing arbitrarily high integers). But modulo games are not subject to
that criticism and have the same dynamic properties.

We have assumed that the state of the world (the preference profile)
remains unchanged while people learn. It is interesting to consider what
would happen if the state of the world changed with positive probability
while the agents were learning. In that case, a result analogous to Proposi-
tion 1 could be obtained by making the learning process operate on
strategies as functions of the state into the messages. While the dynamics
for the mechanism would still converge and be stable, this alternative
assumption of a changing state of the world would make an important dif-
ference for a couple of reasons. First of all, the increase in dimensionality
of the space in which the dynamics move would probably make con-
vergence slower. But a state that changes is also important because it
makes apparent the difference between implementation with complete and
incomplete information. In order to use a strategy where the message sent
varies with the state of the world (which is likely to be the best response
eventually), the agent needs to know the state. When the state does not
change over time, the player only needs to know the payoffs of the different
message profiles (which she can learn by trial and error),7 so the distinction
between implementation with complete and incomplete information
becomes blurred.

Another important issue is that the planner may be able to use the infor-
mation that the agents are not fully rational in the design of the
mechanism. We have already done this in part, since we have modified
Repullo's [22] mechanism to make the socially desirable equilibria stable.
But the planner may also be interested in accelerating the convergence to
equilibrium. Addressing this issue properly would require a more formal
treatment of the speed of adjustment. This, in turn, would require more
specific assumptions about the dynamics, and it is likely to be more
dependent on the particular environment than the questions of convergence
and stability. Nevertheless, we now make some conjectures about how the
planner may be able to modify the mechanism to accelerate convergence to
equilibrium using the agents' bounded rationality. Notice, however, that
while these changes may accelerate convergence, the outcomes on the way
to equilibrium may be quite bad for some agents. To properly evaluate
this tradeoff, it would be necessary to postulate preference rankings for
the planner, something that is typically avoided in the implementation
literature.
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If the probability of a change in strategy were related to the difference in
payoffs, the planner could accelerate convergence by making payoff dif-
ferences between some outcomes of the mechanism as large as possible. For
example, if there is more than one possible test outcome, a(,, ,$) should be
chosen to give the maximum utility possible for the test agent from the out-
come of the consensus announcement so that she deviates soon (and sends
play from D1 to D2). If possible, the test outcome should also be such that
agents other than the test agent are punished (maybe by having them pay
a penalty). This punishment would give them in turn more incentives to
deviate from a strategy profile in D2 and move play to D4 . Another thing
that may delay convergence is the fact that in D4 announcing the true state
, (and a high integer) so as to obtain bi (,) is a best response, but so may
be announcing some other ,$ (for example because bi (,)=bi (,$)). If that
is the case, and if there are outcomes ci (,) for all i, , with the property that
vi (ci (,), ,)>vi (ci (,$), ,) for all ,, ,$ (that is, every i prefers the ci outcome
corresponding to the ``true'' state of Nature), and vi (ci (,), ,)>vi (cj (,), ,)
(that is, every i prefers ``her own'' outcome to somebody elses'), then one
could amend the mechanism to use ci(m)(m2

i(m)) in D4 and the convergence
and stability results would be maintained, but convergence may be faster.

4. UNDOMINATED AND VIRTUAL IMPLEMENTATION

4.1. Implementation in Iteratively Undominated Strategies

So far, we have only considered implementation in Nash equilibrium.
What about other equilibrium concepts? Since the seminal work of Moore
and Repullo [19], there has been considerable interest in implementation
with equilibrium concepts that are more refined than Nash equilibrium.8

The main advantage of these mechanisms is that the conditions for
implementation are weaker. In particular, monotonicity is no longer
required. This is important since in economic environments implementing
a single-valued social choice rule and requiring monotonicity is equivalent
to truthful implementation in dominant strategies (see Dasgupta, Hammond,
and Maskin [8]).9
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By comparison, implementation in undominated strategies requires
basically no restrictions. Abreu and Matsushima [2] show that ``any social
choice function is exactly implementable in iteratively weakly undominated
strategies,'' and Sjo� stro� m [25] ``in economic environments any social
choice rule can be implemented in undominated Nash equilibria.'' An addi-
tional advantage of some of these mechanisms (notably those of Abreu and
Matsushima [2] and Sjo� stro� m [25]) is that ``integer games'' or ``modulo
games'' are not used.

The purpose of this section is to show that these advances should be
viewed with some suspicion if we believe that equilibrium is the outcome
of a learning process, since the adaptive dynamic process leads to undesired
outcomes even asymptotically.

To focus the discussion we will concentrate on the mechanism proposed
by Abreu and Matsushima (henceforth AM) [2], but the results can be
extended to other mechanisms that have been proposed in the literature.

We will begin by introducing some notation and describing the
mechanism.

The first thing to notice is that AM [2] only consider single-valued
social choice rules. Another important assumption is that there is a private
good that can be used to levy (small) fines. Thus the utility function will
be vi : A_R_8i � R. We will use (as AM [2] do) for simplicity the quasi
linear utility function vi (a, T, ,i)=ui (a, ,i)+Ti . Since the fines that the
mechanism in AM [2] imposes are arbitrarily small, quasi-linearity is
used without loss of generality. Besides the outcome function g(M) the
mechanism specifies a transfer rule, T=(Ti) i # N : M � Rn. The message
space in AM [2] is,

Mi=8i_8i+1_1_ } } } _1=M &1
i _M 0

i _M 1
i _ } } } _M K

i ,

where K may have to be quite large to make the fines very small. For
expositional simplicity we will allow the fines to be large in which case it
is enough to have K=1. The arguments also go through (but notation and
proofs are more cumbersome) when we have K large and small fines. Let
then, in our case

Mi=8i_8i+1_1=M &1
i _M 0

i _M 1
i ,

M=M1 _M2 } } } _Mn ,

Mh=M h
1_M h

2 } } } _M h
n ;

and let mi , m, and mh be generic elements of Mi , M and M h.
By the lemma in AM [1] we have that there exists a function fi : 8i � A,

such that for every ,i # 8i ,

ui ( fi (,i), ,i)>u i ( f i (, i$), ,i) for all ,i$ # 8 i�[, i].

172 ANTONIO CABRALES



For any message profile m, the outcome function is,

g(m)=
e(m0, m1)

n
:
i # I

f i (m&1
i )+(1&e(m0, m1)) \(m1),

where we define \: M1 � A by

\(m1)={F(,)
b

if m1
i =, for at least (n&1) agents

otherwise, where b is an arbitrary element of A

and if we let = be a small positive number to be specified later, and m~ 0=
(m0

n , m0
1 , ..., m0

n&1), we define e: M0_M1 � R by

e(m0, m1)={=
0

if m1
i {m~ 0 for some i # I

otherwise

The outcome function g is a lottery with the following characteristics. With
a probability determined by the function e( } ) (which is nonzero when some
agent's oneth announcement differs from m~ 0) the favorite outcome of
agent i, given her m&1

i announcement, is selected with probability 1�n.
With probability 1&e( } ) an outcome given by the function \(m0, m1) is
chosen. This function says that if all but one of the m1

i announcements
coincide on ,, then F(,) is implemented, otherwise an arbitrary outcome
b is implemented.

To finish the description of the mechanism the penalty function has to be
specified. Let #, !, ' be small positive numbers to be specified later. Three
possible penalties are specified for each player i.

1. # if his zeroth announcement differs from player (i+1)'s
minusoneth announcement

2. ! if his oneth announcement differs from m~ 0.

3. ' if his oneth announcement is the only one to differ from the
other players' oneth announcements.

We will now give names to the fines

{i (m&1
i+1 , m0

i )={&#
0

if m&1
i+1 {m0

i

otherwise

di (m0, m1)={&!
0

if m1
i {m~ 0

otherwise

+i (m1)={&'
0

if for some ,, m1
i {,, but m1

j =, for all j # I�[i],
otherwise
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The total fine is thus Ti (m)={(m&1
i+1 , m0

i )+di (m0, m1)++ i (m1).
To finish with the description of the implementation game we need to

define the constants =, ', ! and #. To do this, define first,

Ei (,i)= max
m&1 # M&1, m1 # M1 } 1n :

j # I

u i ( f j (m&1
j ), , i)&ui (\(m1), ,i) }

Di (,i)= max
m1 # M1, m� i

1 # Mi
1

[ui (\(m1), ,i)&ui (\(m1
&i , m� 1

i ), , i)]

Fix = (small) and choose ', ! and # to satisfy

AM1

'>= max
i, ,

Ei (, i)

!>max
i, ,

D i (,i)+'

#>= max
i, ,

Ei (, i)+!

With these three inequalities AM [2] show the following lemmas,10

Lemma 1. Let any mi , and m� i=(,i , m0
i , m1

i ). Under AM1, for all m&i ,

vi (g(m� i , m&i), T(m� i , m&i), ,i)�vi (g(m), T(m), ,i)

Lemma 2. Under AM1, for all m with m&1
i =,i and all i, if we let

m� i=(,i , ,i+1 , m1
i ),

vi (g(m� i , m&i), T(m� i , m&i), ,i)>vi (g(m), T(m), ,i)

Lemma 3. Under AM1, for all m with m&1
i =,i and m0

i =, i+1 if we let
m� 1

i =, then,

vi (g(m� i , m&i), T(m� i , m&i), ,i)>vi (g(m), T(m), ,i)

Lemma 1 says that announcing the true preference index at m&1
i and

keeping the rest of the strategy constant is weakly dominant. Lemma 2 says
that if the true preference index is announced at m&1

i then announcing the
true preference profile at m0

i and keeping the rest of the strategy constant,
is strictly dominant. Lemma 3 says that if the true preference index is
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announced at m&1
i and m0

i , then announcing the true preference profile at
m1

i is strictly dominant.
We now show that if the lemmas are true, the dynamics will go with

positive probability to a state where the social choice rule is implemented.

Proposition 2. Let the true preference profile be ,. Given dynamics that
satisfy properties (Y0), (Y1), (Y2), if Lemmas 1, 2 and 3 are satisfied,

P(for some t, m(t) # SF(,))>0.

Proof. See the Appendix.

The intuition of the result is simple. Lemma 1 shows that in a best
response one has to tell the truth at m&1

i from any initial position.
Lemma 2 shows that in a best response one must tell the truth at m0

i once
the truth is announced at m&1

i and then telling the truth at level m1
i is part

of a best response by Lemma 3. Given this, assumptions (Y2) and (Y1)
guarantees that these strategy switches take place.

This shows that the mechanism of AM [2] will lead to implementation
of the social choice rule. Unfortunately, it is also possible to diverge from
the equilibrium in which the social choice rule is implemented.

Proposition 3. Let the true preference profile be ,. Given dynamics that
satisfy properties (Y0), (Y1), (Y3), (Y4), if m(t) # SF(,) , then P( for some
t$�t, m(t$) # SF(,� ))>0 for any ,� .

Proof. See the Appendix.

The intuition for this proposition is that starting from a message profile
where the true preferences are announced at all levels, switching to
announcing a false preference index at m&1

i does not hurt agent i (it's a
best-response to the current strategy profile). But if i changes the announ-
cement of m&1

i , then for agent i&1 switching to a false preference index
(but consistent with m&1

i ) at m0
i&1 is improving. And given the previous

steps, switching to the new m0 at level m1
j is improving for all agents.

Notice that a difference between Proposition 1 (and 2) and 3 is that the
latter uses assumption (Y4), while the former uses (Y2). From the proof of
Proposition 3 one can see that the first change away from implementing
the social choice rule (announcing a false preference index at m&1

i ) is a best
response. After that, agent i&1 changes m0

i&1 to best respond to the new
m&1

i , but then the probability e(m0, m1)==>0, which makes optimal
announcing the true preferences at level m&1

i . Agent i, however, does not
modify its announcement of m&1

i on the way to the new equilibrium, so her
changes are improving, but not best responses. Assumption (Y4) guarantees
that this can happen, and therefore that other (not socially desirable)
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equilibria are reached. In the absence of (Y2) the first deviation by i and
then the deviation by i&1 are possible, but from then on it is not clear
how far from the desired equilibrium the process can go, without further
assumptions.

Notice that even with (Y2) the i&1 agent has to pay a # fine as a result
of the deviation by i. In principle the # could be very small, but then the
= would also be very small (see AM1). In that case, the use of (Y4) would
be more acceptable, because the improving strategies that are not best
responses used on the way to the new equilibrium differ from the best
responses by an amount that is of the order of magnitude of =. This choice
between a large penalty that has to be paid with high probability and a
higher likelihood of ending up in the ``wrong'' outcome will appear again
in subsection 4.2.

An implication of Proposition 3 is that while (our version of) the canoni-
cal mechanism is robust in the presence of agents who use improving
strategies, the mechanism in AM [2] is not. We have concentrated on
sufficient conditions for divergence from the desired equilibrium because
our purpose was to highlight the relatively higher robustness of the Nash
mechanism, but it is not hard to think of sufficient conditions to guarantee
that the process converges and is stable at the ``right'' equilibrium. Suppose
we have an initial condition where m1

i {m~ 0 for some i # I, that agents only
change strategies if there is a strict improvement, and that they always
choose a best response to the past message profile with probability one.
Then, the dynamics would converge and be stable at the socially desired
outcome.11

4.2. Virtual Implementation
The idea behind virtual implementation is that to obtain implementability

results under weaker sufficient conditions on the domain of preferences one
can relax the notion of implementation (instead of strengthening the equi-
librium concept). After all, the planner may well be satisfied as long as the
social choice rule is implemented with a high probability. AM [1] show
that if the planner only requires that the social choice rule is implemented
with arbitrarily high probability, basically any social choice rule can be
implemented, even with such a simple solution concept as iterative strictly
undominated strategies.

This result would appear very congenial with the spirit of this paper.
Since the solution concept is iterative strictly undominated strategies, both
convergence and stability would be expected not only under the dynamics
of this paper, but in a variety of evolutionary and learning models (see
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Nachbar [21], Samuelson and Zhang [23] or Cabrales and Sobel [6]).
There is a problem, however, if the planner wants to implement a social
choice rule which is =-close to the original social choice rule. In that case
some of the dominated strategies which have to be eliminated for the pro-
cess to converge are only =-strictly dominated. In fact, we will show that if
the agents can switch between strategies whose utilities are =-close, then the
same instability problem of the mechanism of the previous subsection is
reproduced here. This assumption is not unreasonable given the idea
behind virtual implementation that the planner does not care too much if
the social choice rule is not implemented, as long as the function that is
actually implemented is =-close to the original social choice rule.

Following AM [1], we say that social choice rules x and y are =-close
if for all preference profiles, x and y map to lotteries that are =-close.
A social choice rule x is virtually implementable in iterative strictly
undominated strategies if for all =>0, there exists a social choice rule y
which is =-close to x and which is exactly implementable in iterative strictly
undominated strategies.

To make the presentation a little simpler, we will not use the same
mechanism that AM [1] use but a modification based on AM [2]. As
before, we use the quasi linear utility function vi (a, T, ,i)=ui (a, ,i)+Ti .
Besides the outcome function g(M ) the mechanism specifies a transfer rule,
T=(Ti) i # N : M � Rn. The message space will again be,

Mi=8i_8i+1_1=M &1
i _M 0

i _M 1
i

Let mi=(m&1
i , m0

i , m1
i ), and m1=(m1

1 , ..., m1
n). The only change in the

mechanism is that for any message profile m, the outcome function is now,

g(m)=
=
n

:
i # I

f i (m&1
i )+(1&=) \(m1),

where we define \ : M1 � A as in the previous subsection and = is a small
positive number as in the definition of virtual implementation. The penalty
functions are also as specified in the previous subsection.

Note that with the modification made in the mechanism, Lemma 1 is
now true with a strict inequality.

Lemma 4. Under AM1. Let any mi , and m� i=(, i , m0
i , m1

i ), then for
all m&i ,

vi (g(m� i , m&i), T(m� i , m&i), ,i)>vi (g(m), t(m), ,i)
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Proof. Trivial from the proof of Lemma 1, and the definition of the
mechanism. K

Lemma 4, plus Lemmas 2 and 3 imply that the implementation solution
concept is the iterative deletion of strictly undominated strategies. Note
also that the function exactly implemented now is =-close to F. Since = can
be made arbitrarily small, this mechanism virtually implements F. Let's
denote the social choice rule that is actually implemented for each value
of =, F= .

Proposition 4. Let the true preference profile be ,. Given dynamics that
satisfy properties (Y0), (Y1), (Y2), and (Y3), for all m(0) there exists t$ such
that P(for all t�t$, m(t) # SF=(,))=1.

Proof. A straightforward modification of the proof of Proposition 2
shows that with Probability 1 there exists t$ such that s(t$) # SF=(,) and the
message mi=(,i , ,i+1 , ,) is sent by all players. Lemmas 4, 2 and 3 show
that for all m� i {mi ,

vi (g(m� i , m&i), T(m� i , m&i), , i)&vi (g(m), T(m), ,i)>0

so by Assumption Y3 P(for all t�t$, s(t) # SF=(,))=1. K

The mechanism proposed guarantees convergence and stability to a
message profile that implements the social choice rule with arbitrarily high
probability, under assumptions (Y0), (Y1), (Y2) and (Y3).

The problem arises if assumption (Y2) is replaced by (Y5), with
U=maxi, ,, ,$ ui ( f (,$), ,).12 We can then show,

Proposition 5. Let the true preference profile be ,. For all =�0, given
dynamics that satisfy properties (Y1), (Y3), (Y5) if m(t) # SF(,) , then P ( for
some t$�t, m(t$) # SF(,� ))>0 for any ,� .

Proof. If s(t) # SF(,) , then if agent n changes m&1
n to some ,$n {,n ,

her payoff does not change by more than =U by the definition of the
mechanism. Thus, Y1 and Y5, and the definition of =-improvement guaran-
tees that this happens with positive probability. The rest of the proof
retraces the steps of Proposition 3 closely. K

This result implies that the agents have to care about the outcomes of
the implementation process orders of magnitude more than the planner to
avoid the instability of the mechanism. While this may be justified under
certain circumstances, it is by no means clear that it will always be so.
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Notice also that in the Nash mechanism we proposed earlier the
equilibria are strict, so as long as = is small, the equilibria are stable even
if assumption Y5 holds.

This note of caution about virtual implementation is different from the
one in Glazer and Rosenthal [10]. They think unlikely that agents will do
many rounds of deletion of strictly dominated strategies, especially in
circumstances where some alternatives to the social choice outcome are
focal (like when an alternative outcome Pareto-dominates the social choice
outcome).13 We, on the other hand, are worried that even if agents reach
the social choice outcome, the near indifference between that outcome and
some alternatives will destabilize it.

5. CONCLUSIONS

The main message of this paper is that thinking explicitly about the equi-
librating process in the implementation problem can be a fruitful
experience. We hope that these results encourage more work into the
implementation problem using dynamic tools. An important question that
should be answered is how sensitive are our conclusions to the dynamics
postulated. Also, we have not examined the question about the speed of
adjustment; reaching the socially desirable outcome may be irrelevant if it
takes a very long time (and the outcomes achieved on the way are
undesirable). These considerations suggest the need for additional theoreti-
cal work, but no real progress can be made unless more empirical and
experimental investigation is done in this field.

6. APPENDIX

Proof of Proposition 1. The proof will proceed through two lemmas.
First we will show that a message profile which does not implement any
social choice function outcome can lead to all profiles whose outcomes are
outcomes of the social choice rule, and then we will show that a message
in Sa , where everybody announces the true preference profile cannot exit
that set.

Lemma 5. Let the true preference profile be , and let m(t$) � �a # F(,) Sa .
Then, for all a # F(,), P(for some t>t$, m(t) # Sa)>0.

Proof. The proof will proceed by dividing the possible initial states into
a series of subsets.
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Claim 1. For a given ,, if m(t$) � Sa , for any a # F(,) and m(t$) # D1 ,
then P(for some t>t$, m(t) # D4)>0.

Since m(t$) # D1 and m(t$) � Sa all agents must be announcing a
preference profile ,${,. By assumption (N1) and the definition of the
mechanism, it is a best response for agent i(,, ,$) to announce (,, a$(,, ,$)).
Then with positive probability, by assumptions (Y1) and (Y2), agent
i(,, ,$) will have a chance to update and will choose to announce ,. After
agent i(,, ,$) changes her announcement, any agent i{i(,, ,$) announcing
state , will move the message profile to a state in D4 . If at the same time
she announces a high enough integer so that i=i(m), then it will be a best
response to do so. Therefore this will happen with positive probability
by (Y2).

Claim 2. Let m(t$) # D2 . Then P(for some t>t$, m(t) # D4)>0.

If m(t$) is in D2 , and the consensus is a, ,$, there is some ," such that
the dissident is i(,$, ,"). Any agent j other than i(,$, ,") can move the
message profile to D4 by announcing the true preference profile , and a (if
,=,") or a(,$, ,"), (if ,"{,). In either case there will be three different
messages, so the message profile will be in D4 . If j also chooses an integer
high enough, she can obtain bj (,), which is a best response to the current
strategy. Assumptions (Y1) and (Y2) guarantee that this happens with
positive probability.

Claim 3. Let m(t$) # D j
3 . Then P(for some t>t$, m(t) # D4)>0.

If m(t$) is in D j
3 , mi (t$)=(a$, ,$, ni) for all i{ j. Any agent other than j

can move the message profile to D4 by announcing a different outcome
than a$, and by choosing an integer high enough, and the true preference
profile , (which may or may not be equal to ,$), she can obtain bj (,),
which is a best response to m(t$). Assumptions (Y1) and (Y2) guarantee
that this happens with positive probability.

Claim 4. Let the true preference profile be , and a # F(,). Let
m(t) # D4 . Then P(for some t$>t, m(t$)=(a, ,, ni))>0.

If m(t) # D4 , we can study two cases. In the first case no agent can move
the message profile outside of D4 by changing the announcement to
(a, ,, } ). In that case it is a best response for all agents to choose (a, ,, ni)
if ni is sufficiently high. Assumptions (Y1) and (Y2) guarantee that this
happens with positive probability.

In the second case some agent can move the message profile outside of
D4 by changing the announcement to (a, ,, } ). This happens if all but two
agents are announcing (a, ,, } ). In that case it is a best response for one of
the agents j who announce (a, ,, } ) to change to (a$, ,, nj), for a${a as
long as nj is large enough. It is also a best response for the rest of the
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agents to maintain their announcements about outcome and preference
profile as long as they announce a high enough integer. Assumptions (Y1)
and (Y2) guarantee that this change by j to a$ and the other agents not
changing happens with positive probability. But once this has occurred no
single agent can move the message profile outside of D4 by changing the
announcement to (a, ,, } ) so we are in the previous case.

Lemma 6. Let the true preference profile be , and let m(t) # Sa for
a # F(,) and m1

i (t)=,, for all i. Then m(t$) # Sa for all t$>t.

Proof. If m(t) # Sa , all message profiles are in D1 and the outcome is a.
The only replacements that can change something will lead to a profile in
D2 or D j

3 . Since m2
i (t)=, for all i, assumptions (N1) and (N2) guarantee

that these replacements do not mean an improvement for any agent, since
a test agent announcing a test outcome for another profile ,$ will obtain
vi (a(,, ,$), ,)<vi (a$, ,) by (N2) and any other deviating announcement
(a$, ,$) obtains vi (ai$ (a, ,), ,)<vi (a, ,) by (N3). Since deviating messages
produce strict losses, assumption (Y3) guarantees that they will not be
sent. K

Lemma 5 establishes part (a) of Proposition 1. With the addition of
Lemma 6 we have that from any message profile there is a lower bound
=>0 on the probability of reaching �a # F(,) Sa and staying there forever in
a number of steps smaller than some fixed and finite k. So the probability
of not reaching �a # F(,) Sa in kn steps is bounded above by (1&=)kn. Since
limn � � (1&=)kn=0, part (b) follows. K

Proof of Proposition 2. Let an arbitrary m(0) � SF(,) . Then with
positive probability the players will change their messages so that
m&1

i (t&1)=, i for all i and some t&1>0. That is, the minusoneth announ-
cement of all players will be their true preferences. This happens because by
Lemma 1 announcing the agent's own type truthfully in the minusoneth
position is weakly dominant so assumptions Y1 and Y2 guarantee this will
happen with positive probability. Similarly Lemma 2 and assumption Y1
and Y2 guarantee that with positive probability there is a t0>t&1 such that
m&1

i (t0)=,i , m0(t0)=,i+1 for all i and Lemma 3 and assumption Y1 and
Y2 guarantee that there is a time period, t1>t0 such that m&1

i (t1)=, i ;
m0

i (t1)=, i+1 and m1
i (t1)=, for all i. K

Proof of Proposition 3. If m(t) # SF(,) , then if agent n changes m&1
n to

some ,$n {,n , her payoff does not change by the definition of the
mechanism. Y1 and Y4 guarantee that this happens with positive probabil-
ity. Let ,� be such that ,� n=,$n and ,� i=,i for all i{n. Through a series of
claims we show that with positive probability the population message
profile goes to SF(,� ) that is, F(,� ) is implemented.
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Claim 1. If m&1=,� , m0
i =, i+1 for all i # I and m1

i =, for all i # I, then

vn&1(g(m� n&1 , m&(n&1)), T(m� n&1 , m&(n&1)), ,n&1)

&vn&1(g(m), T(m), ,n&1)>0

where m� n&1=(,� n&1 , ,� n , ,� )

vn&1(g(m� n&1 , m&(n&1)), T(m� n&1 , m&(n&1)), ,n&1)

&vn&1(g(m), T(m), ,n&1)

=&'+
=
n

:
i # I

f (,� i)+(1&=) F(,)&(&#+F(,))>0

where the equality follows from the definition of the mechanism and the
inequality follows from AM1.

Claim 2. If m&1=,� , m0
i =,� i+1 for all i # I and m1

i # [,� , ,] (with at
least m1

n&1=,� ) and m1
i =, for all i # I, then

vi (g(m� i , m&i), T(m� i , m&i), , i)&vi (g(m), T(m), ,i)>0

where m� i=(,� i , ,� i , ,� )
If m1

i =,� only for i=n&1, then for i{n&1,

vi (g(m� i , m&i), T(m� i , m&i), , i)&vi (g(m), T(m), ,i)

=
=
n

:
i # I

f (,� i)+(1&=) b&\&!+
=
n

:
i # I

f (,� i)+(1&=) F(,)+>0

If m1
i =,� for more than 1 but less than n&2 individuals, then for i with

m1
i =,,

vi (g(m� i , m&i), T(m� i , m&i), , i)&vi (g(m), T(m), , i)

=
=
n

:
i # I

f (,� i)+(1&=) b&\&!+
=
n

:
i # I

f (,� i)+(1&=) b+>0

If m1
i =,� for n&2 individuals, then for i with m1

i =,

vi (g(m� i , m&i), T(m� i , m&i), , i)&vi (g(m), T(m), ,i)

=
=
n

:
i # I

f (,� i)+(1&=) F(,� )&\&!+
=
n

:
i # I

f (,� i)+(1&=) b+>0
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If m1
i =,� for n&1 individuals, then for i with m1

i =,

vi (g(m� i , m&i), T(m� i , m&i), , i)&vi (g(m), T(m), ,i)

=F(,� )&\&!&'+
=
n

:
i # I

f (,� i)+(1&=) F(,)+>0

where the equalities follow from the definition of the mechanism and the
inequalities follow from AM1.

The claims show that SF(,� ) is attained with positive probability because
they show a series of changes in the messages, all of which are improving.
Thus assumptions Y1 and Y4 guarantee that the sequence will take place
with positive probability.

We have shown that there is positive probability of a transition between
SF(,) and SF(,� ) where ,� differs from , only in ,$n {,n . But if the m(t) #
SF(,� ) , it is costless for individual n&1 to change m&1

n&1=,$n&1 {,n&1 . By
applying analogs of Claims 1 through 4 we can then show that with
positive probability there is a time t$ such that m(t$) # SF(,� ) , where ,� =
(,1 , ..., ,$n&1 , ,$n). If we iterate this argument, the result follows. K
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