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1 Introduction

Should Cournot duopolists be allowed to share information about their costs of production?

The answer from the literature on information sharing in oligopoly seems to be an unambiguous

\no" (see e.g. Vives and K�uhn, 1995, and Vives, 1999 for surveys). In the �rst place, information

sharing among competing �rms decreases the consumer surplus when the two �rms compete in

quantities (Shapiro, 1986, Sakai and Yamato, 1989). Moreover, information sharing may facilitate

collusion between �rms, which also hurts consumer surplus. Hence, a policy maker, who maxi-

mizes expected consumer surplus, should prohibit agreements among Cournot duopolists to share

information about their costs.

This conclusion can be drawn in settings where �rms receive information exogenously. In this

paper we show that the policy conclusion may become ambiguous when information is endogenous,

i.e. �rms acquire information themselves. This counterintuitive result is based on the following

e�ects. Consumer surplus increases with the amount of information held by �rms. The incentives

of acquiring information are larger when �rms are allowed to share information. As previous

literature pointed out, if we take the level of information exogenously, allowing �rms to share

information has a negative e�ect (positive e�ect) on the consumer surplus (the pro�ts of the

�rms).

In the next section we describe the model. Section 3 de�nes the concept of Integral Precision

for signals. Section 4 brie
y describes the equilibrium strategies. Section 5 compares expected

consumer surplus levels in equilibrium. Section 6 presents a simple example in which the indirect

e�ect of information sharing dominates the direct e�ect. Finally, section 7 concludes the paper.

All proofs are relegated to the Appendix.

2 The Model

2.1 Preferences and Technology

Consider an industry where two risk-neutral �rms (�rms 1 and 2) compete in quantities of a

homogeneous good. The representative consumer's surplus from consuming quantity X is U(X)�
PX, with X � x1 + x2, and:

U(X) � �X � 1
2
�X2. (1)

Hence, the inverse demand function is linear in total output, i.e. P (X) = � � �X. The demand
intercept � is su�ciently high. Firms have constant marginal costs of production. The cost of

�rm i, which is unknown ex-ante, is distributed according to Fi :
�
0; �h

�
! [0; 1] with mean �i.

Firm i's pro�t of producing quantity xi is simply (for i = 1; 2):

�i(x; �i) = [P (X)� �i]xi; (2)
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with x = (x1; x2). The consumer surplus, given total consumption X, equals:

S(X) = U(X)� P (X)X =
1

2
�X2 (3)

In the remainder of the paper we make the normalization � = 1 to save on notation.

2.2 Firms' Information Structures

Firms' marginal costs are initially uncertain. Firm i can acquire a costly signal S�i about �i:

Signal S�i is characterized by the family of distributions fH�(sj�i)g�i . The parameter � orders the
signals according to their accuracy in the sense of Integral Precision (see section 3). The cost of

acquiring a signal S�i of accuracy � is denoted by c(�), where c is increasing in �.

Given the true marginal cost �i, which is a realization of random variable �i, S
�
i is represented

by the conditional distribution H�(sj�i) = Pr(S�i � sj�i = �i). The prior distribution Fi(�) and
the signal distribution, fH�(sj�i)g�i ; de�ne the information structure, i.e. the joint distribution
of (�i; S

�
i ).

We assume that H�(sj�i) admits a density h�(sj�i). The marginal distribution of S�i is denoted
by H�

i (s) and satis�es:

H�
i (s) =

Z s Z �h

0
h�(yj�)dF (�)dy:

Let F �i (�ijs�i ) and Ei[�js�i ]denote the posterior distributions and the conditional expectation of �i
conditional on S�i = s

�
i

2.3 Firms' Information Sharing Policies

If the antitrust authority allows information sharing between �rms, the �rms simultaneously

choose their information sharing policy with their competitor before they acquire the signal. We

focus on a parametric family of information-sharing policies. Firm i chooses �i 2 [0; 1], which
implies that �rm j will receive the informative message, mi = s�i (the private realization of the

signal S�i ), with probability �i and with the complementary probability, �rm j will receive the

non-informative message, mi = ?.

2.4 Timing

1. Initially, an antitrust authority chooses whether to allow or prohibit information sharing

between the �rms in the industry. The authority maximizes the expected consumer surplus.

2. In the second stage, �rms simultaneously choose their information-sharing policy with their

competitor, �i 2 [0; 1], taking into account the decision of the antitrust authority.1

1In other words, �rms unilaterally choose whether to precommit to information sharing. Alternative assumptions
could be to allow the �rms to precommit cooperatively to share information (through a quid pro quo agreement), or
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3. The marginal costs of �rms 1 and 2 are determined by two independent draws from their

corresponding distributions F1 and F2, respectively.

4. Firms simultaneously choose information acquisition investments: c(�i), with c increasing

in �i for i = 1; 2. Firm i's investment �i determines the precision of the �rm's cost signal

S�i . Signal S
�
i is characterized by the family of distributions fH�(sj�i)g�i .

5. Firms send messages about their signal in accordance with their information-sharing policies

in stage 2. If �rm i precommitted to share its information in accordance with �i, then �rm

j will receive an informative message mi = s
�
i (the private realization of the signal S

�
i ) with

probability �i and an uninformative message mi = ?, with probability 1� �i.

6. In the �nal stage �rms simultaneously choose their output levels, xi � 0 for �rm i, to

maximize the expected value of (2), i.e., �rms are Cournot competitors.

We solve the game backwards, and restrict the analysis to perfect Bayesian equilibria. Before

solving the model, we want to discuss how the choice of information acquisition investment �i

determines the information structure.

3 Information Criteria: Integral Precision

In this paper we assume that the parameter �i rank signals according to Integral Precision.

Precision criteria (introduced by Ganuza and Penalva, 2009) are based on the principle that an

information structure, i.e., the joint distribution of the state of the world and the signal, is more

informative (more precise) than another if it generates more dispersed conditional expectations.

This dispersion e�ect arises because the sensitivity of conditional expectations to the realized value

of the signal depends on the informational content of the signal. If the informational content of

the signal is low, conditional expectations are concentrated around the expected value of the prior.

When the informational content is high, conditional expectations depend to a large extent on the

realization of the signal which increases their variability.

In our context, given the prior distribution F (�), we assume that if �i > �0i then Ei[�jS�i ] is
\more spread out" than Ei[�jS�

0
i ]. Ganuza and Penalva (2009) introduce a di�erent precision

criteria which is de�ned by combining this approach with di�erent variability orders. In the

present paper, we will use Integral Precision which is based on the convex order:

De�nition 1 (Convex Order) Let Y and Z be two real-valued random variables with distrib-

ution F and G respectively. Then Y is greater than Z in the convex order (Y �cx Z) if for all
convex real-valued functions �, E[�(Y )] � E[�(Z)] provided the expectation exists.

to assume that �rms make strategic information sharing choices (i.e. each �rm chooses whether to share information
after it learns its signal). As it turns out, in equilibrium the information sharing choices are not a�ected by these
changes of assumptions.
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Using the convex order, Ganuza and Penalva de�ne Integral Precision to order signals in terms

of their informativeness:

De�nition 2 (Integral Precision) Given a prior Fi(�) and two signals S1 and S2: S1 is more

integral precise than S2 if Ei[�jS1] is greater than Ei[�jS2] in the convex order.

Ganuza and Penalva (2009) show that Integral Precision is weaker than (is implied by) all

common informativeness orders based on the value of information for a decision maker (Blackwell,

1951, Lehmann, 1988, and Athey and Levin, 2001). In other words, if S1 is more valuable for

a decision maker than S2, then S1 is more integral precise than S2. The following information

models are consistent with Integral Precision.

Normal Experiments: Let Fi(�) � N (�; �2v) and S�i = �i + ��, where �� � N (0; �2� ) and is
independent of �i. The variance of the noise, �

2
� , orders signals in the usual way: we assume that

� > �0 () �2� < �
2
�0 and the signal with a noise term that has lower variance is more informative

in terms of Integral Precision.

Linear Experiments: Let Fi(�) have mean �. With probability � the signal is perfectly

informative, S�i = �i, and with probability 1� � the signal is pure noise, S�i = � where � � Fi(�)
and is independent of �i. Let S

�
i and S

�0
i be two such signals. If � > �

0, i.e. S�i reveals the truth

with a higher probability than S�
0
i , then S

�
i is more informative than S

�0
i in terms of Integral

Precision.

Binary Experiments: Let �i be equal to �
h with probability q and �l with probability 1� q.

The signal, S�i , can take two values h or l, where Pr[S
�
i = kj�i = �k] = 1

2(1+ �i) for i 2 f1; 2g and
k 2 fl; hg, where 0 � �i � 1. The parameter �i orders signals in the usual way: higher � implies
greater Integral Precision.

Uniform Experiments: Let F (�) be the uniform distribution on [0; 1] and let H�(sj�i) be
uniform on [�i � 1=2�; �i + 1=2�]. For any �; �0 with � > �0, S�i is more informative than S

�0
i in

terms of Integral Precision.

Partitions: Let F (�) have support equal to [0; 1]. Consider two signals generated by two

partitions of [0; 1], A and B, where B is �ner than A.2 Using these partitions, one can de�ne

signals S�i and S
�0
i in the usual way: signal S�i [S

�0
i ] tells you which set in the partition A [B]

contains �i.
3 Assuming that a larger � means a �ner partition, � orders signals according to

Integral Precision.

4 Solving the Model: Equilibrium Strategies

First we characterize the equilibrium output levels. Second, we analyze the information ac-

quisition choices of �rms. Finally, we analyze the information sharing choices of the �rms.

2A partition, A, is obtained by dividing [0; 1] into disjoint subsets, A = fA1; ::; Akg, i.e., [kj=1Aj = [0; 1] and
Ai \ Aj = ; for all i; j = 1; ::; k with i 6= j. Partition B is �ner than A, that is for all B 2 B, there exists A 2 A
such that B � A.

3However, observing Aj [Bj ] does not allow you to distinguish between di�erent states of the world within that
set.
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4.1 Output Levels

Each �rm chooses its output level on the basis of its own information, si, and the information

received from its competitor, mj 2 fsj ;?g. In order to save notation we do not make explicit
the dependence of si over �i: The expected cost given the uninformative message mj = ? is:

Ef�j j?g = �j .
For any combination of messagesmi andmj �rm i with signal si maximizes its expected pro�t,

which yields the following �rst-order condition:

xi(si) =
1

2

�
�� Ef�ijsig � Efxj(sj)jmjg

�
(4)

for i; j = 1; 2 with i 6= j. Solving the system of equations (4) for i = 1; 2 gives the following

equilibrium output level of �rm i (for i; j = 1; 2 with i 6= j):

x�i (si;mi;mj) =
1

3

�
�� 2Ef�ijsig+ Ef�j jmjg+

1

2
[Ef�ijsig � Ef�ijmig]

�
(5)

where Ef�ijmig = EsifE(�ijsi)jmig. We can de�ne the ex-ante output level given that mi = si

with probability �i for i = 1; 2.

X�
i (si; �i; �j) =

1

3

�
�� 2Ef�ijsig+ �jEf�j jsjg+ (1� �j)�j +

(1� �i)
2

�
Ef�ijsig � �i

��
The expected equilibrium market pro�ts of �rm i with signal si, and messages mi and mj equals:

��i (si;mi;mj) = x
�
i (si;mi;mj)

2. Hence

�i(�i; �i; �j) � Esi;mi

�
Esj ;mj [x

�
i (si;mi;mj)

2]
	
� c(�i) (6)

where

Esi;mi

�
Esj ;mj [x

�
i (si;mi;mj)

2]
	
= �iEsi

�
Esj ;mj [x

�
i (si; si;mj)

2]
	
+(1��i)Esi

�
Esj ;mj [x

�
i (si;?;mj)

2]
	

and Esj ;mj [:] is de�ned likewise.

4.2 Information Acquisition

In this subsection we analyze the relationship between the information acquisition incentives

and the information sharing policy.

Lemma 1 �i(�i; �i; �j) is supermodular in (�i; �i).

In other words, for �i > �0i, �i(�i; �i; �j) � �i(�i; �0i; �j) is weakly increasing in �i for all �j ,
which implies that information-sharing �rms have a greater incentive to acquire information than

concealing �rms.

Proposition 1 (i) The information acquisition investment of a �rm is independent of the infor-

mation sharing choice �j of its competitor. (ii) The equilibrium information acquisition investment

of a �rm �i is increasing in the information sharing parameter �i.

The next section analyzes incentives of �rms to share information.
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4.3 Information Sharing

For any given precision, information sharing is a dominant strategy for each �rm (Gal-Or,

1986, Shapiro, 1986). We cannot directly apply this result since in our model the precision is not

exogenously given, but it depends on the information sharing choices of the �rms. However, it is

easy to verify that sharing information is also a dominant strategy in our framework.

Proposition 2 �i(�i; �i; �j) is increasing in �i for all �i and �j.

In the next section we analyze the e�ects of information sharing and acquisition on the expected

consumer surplus.

5 Expected Consumer Surplus

First, we characterize the expected consumer surplus levels for exogenously given information

acquisition levels. Second, we characterize the consumer surplus levels in equilibrium.

Given symmetric information acquisition investments, and the symmetric information sharing

choices, the expected consumer surplus from information sharing is as follows: First we establish

the following basic property of the consumer surplus.

S(�i; �j ; �i; �j) =
1

2
Esi;mi

�
Esj ;mj [x

�
i (si;mi;mj) + x

�
j (sj ;mj ;mi)]

2
	

Lemma 2 S(�i; �j ; �i; �j) is decreasing in �k and increasing in �k for any k 2 fi; jg.

Proposition 1 and Proposition 2 give the following interesting trade-o�. On the one hand,

for any exogenously given signals' precision (�i; �j) the expected surplus is decreasing in the in-

formation sharing parameters (�i; �j). Therefore, if the precision were exogenously given, then

information sharing should be prohibited. On the other hand, information sharing increases the

incentives to invest in information acquisition (Proposition 1). Higher investment levels increase

the expected consumer surplus. Hence, when the signal's precision is not exogenous, but de-

termined endogenously by information acquisition investments, the antitrust authority's choice

(between allowing and disallowing information sharing), will depend on the trade-o� between

these two con
icting e�ects. In fact, it is possible that the second e�ect outweighs the �rst e�ect,

as we illustrate in the next section.

6 Information Sharing May Increase Consumer Surplus

We set up our model in a binary framework with linear information acquisition costs: (i)

Firms' marginal costs have distribution Fi(�), for i = 1; 2. (ii) The information structures are

binary: si 2 f�i;?g, where Pr[si = �ij�i = �i] = �i and Pr[si = ?j�i = �i] = 1 � �i for
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i 2 f1; 2g, where �i 2 f0; 1g.4 (iii) The information-sharing policies are also binary �i 2 f0; 1g,
and mi 2 f�i;?g: (iv) Finally, the cost of information acquisition is linear, i.e. c(�) = ��.

Then, the expected cost of �rm i given signal si and investment �i is:

Ef�ijsig =
�
�i, if si = �i
�i, if si = ?

(7)

The expected cost given the uninformative message mj = ? is: Ef�j j?g = �j .
Now, we can reproduce our previous results for this speci�c framework. We �rst compare the

information acquisition incentives under information sharing �i = 1 and information concealment

�i = 0.

In this example, the expected equilibrium pro�t (6) reduces to:

�i(�i; �i; �j) = �i
�
�iE�i

�
Esj ;mj [x

�
i (�i; �i;mj)

2]
	
+ (1� �i)E�i

�
Esj ;mj [x

�
i (�i;?;mj)

2]
	�

+(1� �i)Esj ;mjfx�i (?;?;mj)
2g � ��i

with

Esj ;mj [x
�
i (si;mi;mj)

2] = �j�jE�jfx�i (si;mi; �j)
2g+ (1� �j�j)x�i (si;mi;?)2

First, we consider �rm i's marginal pro�t from information acquisition when the �rm shares

information (for �j 2 f0; 1g):

�i(1; 1; �j)��i(0; 1; �j) = E�i
�
Esj ;mj [x

�
i (�i; �i;mj)

2 � x�i (?;?;mj)
2]
	
� �

= �2
3
E�i

��
�i � �i

�
Esj ;mj [x

�
i (�i; �i;mj) + x

�
i (?;?;mj)]

	
� �

=
4

9
E�i

��
�i � �i

�
�i
	
� � = 4

9
var(�i)� � (8)

The pro�t-maximizing choice of information acquisition depends on the trade-o� between the

marginal revenue, 49var(�i), and marginal cost of information acquisition, �. The comparison of

marginal revenue and cost gives the following information acquisition choice for �rm i in equilib-

rium (for any �j , with i; j = 1; 2 and i 6= j):

��i (1; �j) =

�
1, if � � 4

9var(�i)
0, otherwise

(9)

Second, �rm i's marginal pro�t from information acquisition when the �rm conceals informa-

tion is (for �j 2 f0; 1g):

�i(1; 0; �j)��i(0; 0; �j) = E�i
�
Esj ;mj [x

�
i (�i;?;mj)

2 � x�i (?;?;mj)
2]
	
� �

= �1
2
E�i

��
�i � �i

�
Esj ;mj [x

�
i (�i;?;mj) + x

�
i (?;?;mj)]

	
� �

=
1

4
E�i

��
�i � �i

�
�i
	
� � = 1

4
var(�i)� � (10)

4That is, the information structure is a special case of: (1) the linear experiment with �i 2 f0; 1g, or (2)
partitions, where �i = 0 gives the degenerate partition [0; �h], and �i = 1 gives an in�nitely �ne partition of the
interval [0; �h].
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The evaluation of (10) gives the following information acquisition choice in equilibrium (for any

�j , with i; j = 1; 2 and i 6= j):

��i (0; �j) =

�
1, if � � 1

4var(�i)
0, otherwise

(11)

Information acquisition choices (9) and (11) compare as follows. First, the equilibrium invest-

ments are always extreme (i.e., ��i (0; �j); �
�
i (1; �j) 2 f0; 1g). Second, information sharing gives �rm

i a greater or equal incentive to acquire information as information concealment (i.e., ��i (1; �j) �
��i (0; �j) for any i, �j , and �). In particular, if � < var(�i)=4 of � > 4var(�i)=9, then the informa-

tion acquisition choice is not a�ected by information sharing, i.e., ��i (1; �j) = ��i (0; �j) 2 f0; 1g.
By contrast, if var(�i)=4 < � < 4var(�i)=9, then an information-sharing �rm acquires information

whereas an information-concealing �rm acquires no information, i.e., ��i (1; �j) = 1 > 0 = �
�
i (0; �j).

Lemma 1 and Proposition 1 follow immediately from the comparison of (8) and (10). Hence,

information-sharing �rms have a greater incentive to acquire information than concealing �rms.

As we will see below, this ranking of information equilibrium investments plays a major role in

the ranking of the expected consumer surpluses.

Following Proposition 2 we know that it is a dominant strategy for the �rms to share informa-

tion (i.e., �i = 1 for i = 1; 2), if they are allowed to do so. Now, we have to compare the consumer

surplus levels in equilibrium when we allow to share information (i.e., �i = �j = 1), and when it

is forbiden to do so (i.e., �i = �j = 0).

As we show above, the expected consumer surplus from information sharing is as follows:

S(�1; �2; 1; 1) � 1

2
Es1Es2

8<:
 

2X
i=1

x�i (si; si; sj)

!29=; (12)

=
1

2

24�1�2E�1E�2
8<:
 

2X
i=1

x�i (�i; �i; �j)

!29=;
+
X
i6=j

�i(1� �j)E�i
n�
x�i (�i; �i;?) + x�j (?;?; �i)

�2o

+ (1� �1)(1� �2)
 

2X
i=1

x�i (?;?;?)

!235
If sharing information is not allowed, then the expected consumer surplus from information con-

cealment is:

S(�1; �2; 0; 0) � 1

2
EsiEs2

8<:
 

2X
i=1

x�i (si;?;?)

!29=; (13)

=
1

2

24�1�2E�1E�2
8<:
 

2X
i=1

x�i (�i;?;?)

!29=;
+
X
i6=j

�i(1� �j)E�i
n�
x�i (�i;?;?) + x�j (?;?;?)

�2o
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+ (1� �1)(1� �2)
 

2X
i=1

x�i (?;?;?)

!235
Following Lemma 2, we can show that both expected consumer surplus functions are increasing

in the information acquisition investment �i, i.e. @S=@�i > 0.

@S(�1; �2; 1; 1)

@�i
=

1

2

24�jE�1E�2
8<:
 

2X
k=1

x�k(�k; �k; �l)

!2
�
�
x�i (?;?; �j) + x�j (�j ; �j ;?)

�29=;
+ (1� �j)E�i

8<:�x�i (�i; �i;?) + x�j (?;?; �i)�2 �
 

2X
k=1

x�k(?;?;?)

!29=;
35

=
1

18
var(�i) > 0

Similarly,

@S(�1; �2; 0; 0)

@�i
=

1

2

24�jE�1E�2
8<:
 

2X
k=1

x�k(�k;?;?)

!2
�
�
x�i (?;?;?) + x�j (�j ;?;?)

�29=;
+ (1� �j)E�i

8<:�x�i (�i;?;?) + x�j (?;?;?)�2 �
 

2X
k=1

x�k(?;?;?)

!29=;
35

=
1

8
var(�i) > 0

Now we come back to the equilibrium investments in information acquisition. The equilibrium

investments are either identical (i.e., ��i (1; 1) = �
�
i (0; 0) for all i), or at opposite extreme points of

the investment domain (i.e., ��i (1; 1) = 1 > 0 = �
�
i (0; 0) for all i). In the former case the consumer

surpluses are equal. In the latter case the consumer surplus is greater under information sharing,

since the surplus comparison reduces to the following:

S(1; 1; 1; 1) =
1

2
E�1E�2

8<:
 

2X
i=1

x�i (�i; �i; �j)

!29=;
>

1

2

 
2X
i=1

x�i (?;?;?)

!2
= S(0; 0; 0; 0)

where the inequality follows from the convexity of the expected consumer surplus function.

7 Conclusion

We have shown that given that the incentives of acquiring information are larger when �rms

are allowed to share information. This is a important remark regarding the antitrust authority's

decision of whether or not to allow to share information. Because contrary to conventional wisdon,

consumer surplus could be larger when �rms are allowed to share information.
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Hwang (1995) makes a related observation about the importance of information acquisition

incentives for the welfare comparison between perfect competition, oligopoly, and monopoly. Al-

though perfect competition yields the highest expected welfare for any exogenously given precision

of information, it may fail to do so when the precision is determined endogenously, since �rms

in perfectly competitive markets may have a lower incentive to acquire information. Whereas

Hwang changes the mode of competition while keeping information sharing constant, we do the

opposite. Persico (2000) makes a related observation for auction models with a�liated values.

For a given information structure the second price auction yields a higher expected revenue to

an auctioneer than the �rst price auction. But the �rst price auction gives a greater incentive to

acquire information, which may reverse the expected revenue ranking.
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A Appendix

We make repeated use of the following result.

Lemma 3 If � ranks signals according to Integral Precision, then the variance of Ei[�jS�i ] is
increasing on �.

Proof of Lemma 3:

var(Ei[�jS�i ]) = Ef(Ei[�jS�i ]� �i)2g = EfEi[�jS�i ]2g � �i
2
:

Given that (Ei[�jS�i ] � �i)2 is a convex function, the result is a direct implication of the
de�nitions of the convex order and integral presion.

Notice that

var(Ei[�jS�i ]) = Ef(Ei[�jS�i ]� �i)2g = EfEi[�jS�i ]2g � �i
2
:

Then by Lemma 3, EfEi[�jS�i ]2g is increasing on �:
Proof of Lemma 1:

�i(�i; �i; �j)��i(�i; �0i; �j) = (�i��
0
i)
�
Esi

�
Esj ;mj [x

�
i (si; si;mj)

2]
	
� EsifEsj ;mj [x

�
i (si;?;mj)

2]g
�

Remenber that

x�i (si;mi;mj) =
1

3

�
�� 2Ef�ijsig+ Ef�j jmjg+

1

2
[Ef�ijsig � Ef�ijmig]

�
We can factorize Esi

�
Esj ;mj [x

�
i (si; si;mj)

2]
	
and Esi

�
Esj ;mj [x

�
i (si; si;mj)

2]
	
in the following

way:

Esi
�
Esj ;mj [x

�
i (si; si;mj)

2]
	
= Esi

�
Esj ;mj [(a� b)2]

	
= Esi

�
Esj ;mj [(a

2 � 2ab+ b2)]
	

and,

Esi
�
Esj ;mj [x

�
i (si;?;mj)

2]
	
= Esi

�
Esj ;mj [(a� c)2]

	
= Esi

�
Esj ;mj [(a

2 � 2ac+ c2)]
	

where,

a =
1

3
(�� 2Ef�ijsig+ Ef�j jmjg) +

1

2
Ef�ijsig; b =

1

6
Ef�ijsig; and c =

1

6
�i:

Then

Esi
�
Esj ;mj [x

�
i (si; si;mj)

2]
	
� Esi

�
Esj ;mj [x

�
i (si;?;mj)

2]
	

= Esi
�
Esj ;mj [(�2ab+ b2 + 2ac� c2)]

	
= Esi

�
Esj ;mj [(2a(c� b) + b2 � c2)]

	
= Esi

�
Esj ;mj [(�2a+ b+ c)(b� c)]

	
= Esi

�
Esj ;mj [(�2a+ b)(b� c)]

	

11



In this last simpli�cation, we use that Esi
�
Esj ;mj [(b� c)]

	
= Esi

�
Esj ;mj [

1
6(Ef�ijsig � �i)]

	
=

0: Then, any constant multiply by Esi
�
Esj ;mj [(b� c)]

	
will be also equal to 0. Using this fact

Esi
�
Esj ;mj [x

�
i (si; si;mj)

2]
	
� Esi

�
Esj ;mj [x

�
i (si;?;mj)

2]
	

= Esi

�
Esj ;mj [(

7

6
Ef�ijsig) � (

1

6
(Ef�ijsig � �i))

�
=

7

36
(EsifEf�ijsig2g � �i

2
)

Therefore

�i(�i; �i; �j)��i(�i; �0i; �j) = (�i � �
0
i)
7

36
(EsifEf�ijsig2g � �i

2
)

= (�i � �
0
i)
7

36
var(Ei[�jS�i ])

This expresion is increasing in � by Lemma 1.

Proof of Proposition 1: The result follows from Theorem 4 of Milgrom and Shanon (1994)

and Lemma 1.

Proof of Proposition 2:

Direct from the proof of Lemma 1.

@�i(�i; �i; �j)

@�i
= [Esi

�
Esj ;mj [x

�
i (si; si;mj)

2]
	
� EsifEsj ;mj [x

�
i (si;?;mj)

2]

=
7

36
(EsifEf�ijsig2g � �i

2
) =

7

36
var(Ei[�jS�i ]) � 0:

Proof of Proposition 2:

S(�i; �j ; �i; �j) =
1

18
[�i�jEsi;mj

�
Esj ;mj [2�� Ef�ijsig � Ef�j jsjg]2

	
+(1� �i)�jEsi;mj

�
Esj ;mj [2�� 2Ef�ijsig � Ef�j jsjg+ Ef�ig+

1

2
[Ef�ijsig � Ef�ig])]2

�
+�i(1� �j)Esi;mj

�
Esj ;mj [2�� Ef�ijsig � 2Ef�j jsjg+ Ef�jg+

1

2
[Ef�j jsjg � Ef�jg])]2

�
+(1� �i)(1� �j)Esi;mj

�
Esj ;mj [2�� 2Ef�ijsig � 2Ef�j jsjg+ Ef�ig+ Ef�jg+

1

2
[Ef�j jsjg � Ef�jg]

+
1

2
[Ef�ijsig � Ef�ig])]2]

�
=

1

18
[�i�jEsi;mj

�
Esj ;mj [2�� Ef�ijsig � Ef�j jsjg]2

	
+(1� �i)�jEsi;mj

�
Esj ;mj [(2�� Ef�ijsig � Ef�j jsjg)�

1

2
[Ef�ijsig � Ef�ig]]2

�
+�i(1� �j)Esi;mj

�
Esj ;mj [2�� Ef�ijsig � Ef�j jsjg �

1

2
[Ef�j jsjg � Ef�jg])]2

�
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+(1� �i)(1� �j)Esi;mj

�
Esj ;mj [

�
2�� Ef�ijsig � Ef�j jsjg �

1

2
[Ef�j jsjg � Ef�jg]

�
�1
2
[Ef�ijsig � Ef�ig]]2

�
For obtaining the result, it is enough to show that the second term is larger than the �rst,

and the four term is larger than the third. We start by comparing the �rst and second.

Esi;mj

�
Esj ;mj [2�� Ef�ijsig � Ef�j jsjg]2

	
�Esi;mj

�
Esj ;mj [(2�� Ef�ijsig � Ef�j jsjg)�

1

2
[Ef�ijsig � Ef�ig]]2

�
= Esi;mj

�
Esj ;mj [+2[(2�� Ef�ijsig � Ef�j jsjg)][

1

2
[Ef�ijsig � Ef�ig]]�

1

4
[Ef�ijsig � Ef�ig]2

�
= Esi;mj

�
Esj ;mj [[�Ef�ijsig2 + Ef�ig2]�

1

4
[Ef�ijsig � Ef�ig]2

�
< 0:

Now, we follows by comparing the fourth and the third.

Esi;mj

�
Esj ;mj [2�� Ef�ijsig � Ef�j jsjg �

1

2
[Ef�j jsjg � Ef�jg])]2

�
�Esi;mj

�
Esj ;mj [

�
2�� Ef�ijsig � Ef�j jsjg �

1

2
[Ef�j jsjg � Ef�jg]

�
� 1
2
[Ef�ijsig � Ef�ig]]2

�
= Esi;mj

�
Esj ;mj [[2�� Ef�ijsig � Ef�j jsjg �

1

2
[Ef�j jsjg � Ef�jg] [Ef�ijsig � Ef�ig]

�1
4
[Ef�ijsig � Ef�ig]2]

�
= Esi;mj

�
Esj ;mj [[�Ef�ijsig2 + Ef�ig2]�

1

4
[Ef�ijsig � Ef�ig]2

�
< 0:

This concludes the proof of point (i). To prove point (ii) we have to show that all terms are

increasing on �: We start by showing the �rst one.

Esi;mj

�
Esj ;mj [2�� Ef�ijsig � Ef�j jsjg]2

	
= Esi;mj

�
Esj ;mj [[4�

2 + Ef�j jsjg2 + Ef�ijsig2 � 2[2�Ef�ijsig+ 2�Ef�j jsjg]� Ef�ijsigEf�j jsjg]2
	

Notice that everything is independent of �i but Esi;mj

�
Esj ;mj [Ef�ijsig2]

	
that is increasing.

The second term

Esi;mj

�
Esj ;mj [(2�� Ef�ijsig � Ef�j jsjg)�

1

2
[Ef�ijsig � Ef�ig]]2

�
)

= Esi;mjfEsj ;mj [[(2�� Ef�ijsig � Ef�j jsjg)]2 � [(2�� Ef�ijsig � Ef�j jsjg)] [Ef�ijsig � Ef�ig]]

+
1

4
[Ef�ijsig � Ef�ig]2])g
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we know that Esj ;mj [[(2�� Ef�ijsig � Ef�j jsjg)] is increasing on �i, and Esi;mj

�
Esj ;mj [�[(2�� Ef�ijsig � Ef�j jsjg)] [Ef�ijsig � Ef�ig]]

	
simpli�es to Esi;mj

�
Esj ;mj [Ef�ijsig2 � Ef�ig2]

	
which is increasing on �i. Finally, Esi;mj

n
Esj ;mj [

1
4 [Ef�ijsig � Ef�ig]

2]
o
)

simpli�es also to 1
4Esi;mj

�
Esj ;mj [Ef�ijsig2 � Ef�ig2]

	
:

For the third (fourth) term we can make a similar decomposition as we did for the �rst (second)

term to show that it is increasing in �i, since
1
2 [Ef�j jsjg � Ef�jg] is independent of �i.
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