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Abstract
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By contrast, the effects of sector-specific innovations are short-lived and monotoni-

cally decreasing. I build a model of investment with rational inattention to explain
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1 Introduction

A salient feature of the business cycle in the United States is the hump-shaped response

of aggregate investment to macroeconomics shocks.1 This paper establishes novel styl-

ized facts that help to shed light on the propagation mechanism underlying this empirical

regularity. I show that the response of investment to macroeconomics shocks in disag-

gregate sectoral data—and, hence, before aggregation—is protracted and hump-shaped,

just like in aggregate data. In response to an aggregate shock that leads to a 1 percent

increase on impact, sectoral investment spending in the median sector rises further to

1.2 percent at the 1-year horizon. At the 2-year horizon, sectoral investment then settles

approximately at the long-run response. By contrast, the effects of sector-specific sur-

prises on sectoral investment spending are short-lived and monotonically decreasing.2

In response to a sector-specific shock that leads to a 1 percent increase on impact, sec-

toral investment spending in the median sector falls to 0.7 percent at the 1-year horizon,

which equals approximately the long-run response. Moreover, I find that sector-specific

shocks account for 90 percent, aggregate shocks for 10 percent of sectoral investment

volatility.

Using these empirical findings as target moments, this paper proceeds by studying

a model of investment under rational inattention. Following Sims (2003), agents have

limited attention and allocate their attention optimally. Because sector-specific shocks

are more volatile than aggregate shocks in the calibrated version of the model, agents

pay more attention to the former than to the latter. This dampens the response to ag-

gregate shocks initially and smoothes sectoral capital expenditures over time, relative

to the perfect information benchmark. The response of sectoral investment to sector-

specific shocks, on the other hand, is almost identical to the perfect information bench-

mark. Hence, the model with limited attention predicts differences in sectoral capital

1See, for example, Christiano et al. (2005) and Altig et al. (2011) for monetary policy shocks and Dedola
and Neri (2007) for technology shocks.

2A monotonically decreasing impulse response peaks on impact and then decreases monotonically.
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adjustment patterns following shocks that are qualitatively consistent with my empirical

findings. This result highlights rational inattention as a new propagation mechanism of

shocks in the investment literature.

To establish my empirical results, I estimate a dynamic factor model using capital

expenditure data from US manufacturing industries. The data set contains information

about real investment spending for 462 industries at the 6-digit NAICS-level for the years

from 1958 to 2009. The statistical model for the sectoral data disentangles variations in

investment activity due to common factors and due to sector-specific error terms, which

follow an autoregressive process each. Thus, it provides a natural framework to study

the effects of aggregate and sector-specific shocks and to compute the variance shares

of each shock in sectoral investment volatility. I use Bayesian methods to estimate the

model.

The theoretical model has the following features. There is a representative produc-

tion unit in each sector. Production units operate a production function that transforms

capital services into output. Total factor productivity (TFP) consists of an aggregate and

a sector-specific component, which are both affected by shocks. Decision-makers in pro-

duction units maximize the expected discounted value of profits by choosing capital and,

thus, investment spending. They must pay attention to learn about the realizations of

TFP shocks. Paying attention reduces uncertainty about shock realizations, where un-

certainty is measured by entropy following Sims (2003). Paying attention to aggregate

and sector-specific shocks are independent activities.3 Attention is costly and decision-

makers optimally allocate their attention. I calibrate the model parameters using stan-

dard values from the investment literature.

In principle, other propagation mechanisms than rational inattention can also be con-

sistent with the empirical findings presented in this paper. Following Christiano et al.

(2005), many business cycle models feature investment adjustment costs so as to match

3Maćkowiak and Wiederholt (2009) also make this assumption.
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the hump-shaped impulse response of aggregate investment to macroeconomic shocks.4

In Appendix C, I solve an otherwise standard real business cycle model with invest-

ment adjustment costs and aggregate and sector-specific shocks. I calibrate the model

parameters using standard values from the existing literature. In partial equilibrium, the

impulse responses of sectoral investment to aggregate and sector-specific shocks are iden-

tical. In general equilibrium, these impulse responses are approximately equal. Hence,

under standard assumptions and using a standard calibration of the model parameters, a

model with investment adjustment costs has difficulties to match my empirical findings.

Fiori (2012) explores yet another propagation mechanism. He shows that if rapid

output expansion in the investment good producing sector is costly, the relative price

of investment increases in response to aggregate shocks. This general equilibrium price

response initially depresses demand for investment goods in all other sectors of the

economy. As the supply of investment goods increases over time, the relative price of

investment falls and investment demand in the rest of the economy picks up. The im-

pulse responses of sectoral investment to aggregate shocks are protracted in each sector,

as in the data, but not hump-shaped in general. Only the consumption good producing

sector displays a slowly building sectoral investment response. More importantly, in the

Online Appendix, I provide suggestive evidence that the relative price of investment in

the manufacturing sector does not move with the macroeconomic shock estimated in the

statistical model of this paper.

There are two empirical studies in the literature on price setting to which this paper

closely relates. Boivin et al. (2009) and Maćkowiak et al. (2009) examine the effects of

macroeconomic and sector-specific shocks on sectoral price indices. This paper estimates

the same impulse responses in the case of sectoral investment spending. While I use a

similar statistical model and a similar estimation methodology, there are differences that

I will describe in more detail below. Interestingly, my empirical findings bear strong

4Investment adjustment costs penalize changes in the growth rate of investment.
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resemblance to those of Boivin et al. (2009) and Maćkowiak et al. (2009). Both studies

find that aggregate shocks lead to gradual changes in sectoral price indices, whereas

adjustment to sector-specific shocks is immediate. Also, they report that the bulk of

sectoral inflation volatility is due to sector-specific shocks.

This article also adds to the literature on rational inattention following Sims (2003).5

To the best of my knowledge, this is the first paper to study the implications of in-

vestment under rational inattention.6 I show that the intertemporal problem of capital

choice reduces to a static problem of the same form as in the application to price set-

ting by Maćkowiak and Wiederholt (2009). Therefore, I can use their results to provide

analytical solutions to the investment decision problem under rational inattention. Fi-

nally, Maćkowiak and Wiederholt (2015) study business cycle dynamics under rational

inattention. However, their model abstracts from capital in production.

The remainder of this paper is organized as follows. Section 2 presents the statistical

model for the sectoral data. Section 3 describes the data. Section 4 contains the main em-

pirical results and several robustness checks. In Section 5, I build a model of investment

under rational inattention. Section 6 contains the theoretical results. Finally, Section 7

concludes.

2 Statistical Model for Sectoral Capital Expenditure Data

I use the following dynamic factor model to study sectoral capital expenditure data:

yit = Hixt + wit (1)

5See Footnote 3 in Maćkowiak and Wiederholt (2015) for additional references.
6In related work, Verona (2014) explores the implications of capital adjustment in a model with sticky

information. Under this assumption, decision-makers must pay a fixed cost to acquire new information
and, once they do so, have perfect information in the period of updating.
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where yit, i = 1, . . . , n, t = 1, . . . , T, denotes the period t log change of real investment

in sector i, xt is a single unobserved common factor, and the wit are sector-specific error

terms. The Hi are factor loadings that are possibly different across industries. In Equa-

tion (1), I omit a constant for ease of exposition and because I standardize the data in the

next section.

The factor and the sector-specific terms each follow autoregressive (AR) processes:

xt = F(`)xt−1 + vt, vt ∼ i.i.d.N (0, Q) (2)

wit = Di(`)wit−1 + uit, uit ∼ i.i.d.N (0, Ri) (3)

where F(`) and Di(`) denote lag polynomials of order three, and vt and the uit are Gaus-

sian white noise with variance Q and Ri, respectively. The uit are pairwise independent

and uncorrelated with vt. Moreover, the uit and vt are uncorrelated with initial condi-

tions, the wi0 and x0. These assumptions imply that the wit are pairwise independent

and uncorrelated with xt.

A few remarks are in order. First, it is worth pointing out that I do not attempt to iden-

tify structural innovations. Surprise movements in the factors and in the sector-specific

terms are reduced-form and reflect a convolution of structural innovations. Second, given

xt, Equation (1) is a normal linear regression with serially correlated error term. Because

the wit are pairwise independent and uncorrelated with xt, all comovement in sectoral

investment comes from the factor xt. It follows that, given xt, Equation (1) can be es-

timated equation-by-equation for each sector. Note that sector-specific components are

allowed to have different persistence and innovation variances across industries. Third,

the dynamic response of sectoral investment to innovations in the factor, vt, can be read

off the coefficients of the infinite-order lag polynomial Hi(1− F(`)L)−1, where L denotes

the lag operator. Hence, the statistical model imposes that the impulse responses of in-

vestment to aggregate shocks are proportional across industries.7 It bears pointing out

7Maćkowiak et al. (2009) point out this insight. In the spirit of Jordà (2005), their dynamic factor model

5



that the shape of the impulse responses itself is not pinned down by the model, but

will be determined by the data. Furthermore, the model does not restrict the impulse

responses of sectoral investment to sector-specific innovations to be proportional.

This paper uses Bayesian methods to estimate the model. In particular, I use Gibbs

sampling with a Metropolis-Hastings step to sample from the joint posterior density of

the factor and the model’s parameters. Given a draw of the model’s parameters, I sample

from the conditional posterior density of the factor, xt, using the Carter and Kohn (1994)

simulation smoother. Given a draw of the factor, I sample from the conditional posterior

densities of the parameters. Equation (2) is an AR process that can be estimated using a

variant of Chib and Greenberg (1994). Equation (1) is a normal linear regression model

with AR errors, which can be estimated using the method by Chib and Greenberg (1994).

The priors for the lag polynomials F(`) and Di(`) are centered around zero at each

lag. Like the Minnesota prior, the prior precision at more distant lags is higher. The

factor loadings Hi also have zero prior mean and unit variance. For the sector-specific

innovations Ri, I use the diffuse prior by Otrok and Whiteman (1998). More details on

the estimation methodology and priors are available in Appendix A.

3 Data

The disaggregate sectoral capital expenditure data comes from the NBER-CES Manu-

facturing Industry Database. This data set contains nominal investment spending and

investment price deflators for a representative sample of the US manufacturing sector.

The sample starts in 1958 and the frequency of the data is annual. The level of aggrega-

estimates impulse responses at each horizon of interest, without the restriction of proportionality. Like
Ramey (2013), I found that this approach can lead to oscillating impulse responses of sectoral investment
that contradict economic intuition. For this reason, I use the specification where impulse responses of
sectoral investment to aggregate shocks are proportional.
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tion is the 6-digit NAICS-level.8 The data set contains a balanced panel of 462 sectors.9

The median number of establishments per sector in the population is 342.10 The data set

ends in 2009.

I compute sectoral real investment by dividing nominal capital expenditures in each

year and sector by the corresponding investment price deflator. I convert each series

into growth rates by taking log differences. Furthermore, I standardize each growth

rate series to have zero mean and unit variance. The standardization helps to abstract

from differences in the coefficients of the statistical model due to differences in sectoral

volatility. This facilitates estimation and makes impulses responses easier to compare

across sectors.

In terms of sectoral comovement, the first principal component of the standardized

real investment growth rates explains roughly 14.5 percent of their total variance. The

next four principal components add 5.46 percent, 4.15 percent, 3.82 percent, and 3.62

percent each to the total variance explained. The drop and leveling off in additional ex-

planatory power after the first principal component informally suggests the presence of

one factor, which is why I assume a single factor in the statistical model described in the

previous section. Also, the low portion of variation explained by the first principal com-

ponent already suggests that investment dynamics at the sector-level are mostly driven

by sector-specific shocks.

Aggregating over all sectors, the sample covers on average about 55 percent of US

manufacturing private, non-residential, fixed investment spending. In real terms, the

linear correlation between total investment expenditures in the sample and US manu-

facturing private, non-residential, fixed investment spending is 0.97.11 These statistics

suggest that the data is representative of the US manufacturing sector.

8As an example, “Cookie and Cracker Manufacturing” is a 6-digit NAICS industry.
9In 1997, eleven industries were reclassified into manufacturing but capital expenditure data prior to

1997 is not available for them. Therefore, I do not consider them in the analysis.
10I obtain this number from the County Business Patterns for the years from 1998 to 2001. The industry

classification used in the Country Business Patterns is different from the industry classification used in the
NBER-CES Manufacturing Industry Database in other years.

11US manufacturing private, non-residential, fixed investment spending in nominal and real terms is
available from the Bureau of Economic Analysis (BEA) Fixed Asset Accounts, Tables 4.7 and 4.8, respec-
tively. 7



4 Empirical Results

The first part of this section presents the three main empirical findings of this paper: (i)

the impulse response of sectoral investment to aggregate shocks is hump-shaped, (ii) the

effects of sector-specific shocks on sectoral investment are not hump-shaped and decrease

monotonically, and (iii) sector-specific shocks account for the bulk of sectoral investment

volatility.

The second part assess the robustness of my empirical findings by exploring whether

(i) there are multiple common factors, (ii) the results change at the 4-digit and 3-digit

NAICS industry-level, and (iii) the results are prone to the missing persistence bias

pointed out by Berger et al. (2015). I find that the results are robust along these di-

mensions.

Before I present my main empirical findings, let me give two additional results. First,

Figure 1 displays impulse responses of aggregate investment to a 1 percent innovation

over a 5-year horizon. I estimate the following AR(3) process to obtain these impulse

responses:

yt = c +
3

∑
j=1

φjyt−j + wt, (4)

where yt denotes the log change of aggregate investment and wt is Gaussian white noise.

The impulse response of the log-level of aggregate investment corresponds to the cumu-

lative impulse response of yt. Again, it is worth pointing out that this is a is reduced-form

impulse response and does not reflect the effects of a structural macroeconomic shock. I

estimate Equation (4) using three different time series.12 The blue line in Figure 1 shows

the effects on US private, nonresidential, fixed investment. In response to a 1 percent in-

novation, aggregate investment rises further to 1.6 percent at the 1-year horizon, giving

rise to a hump-shape. The green line in Figure 1 is based on aggregate manufacturing

investment data, while the blue line is based on the aggregated micro data. The effects

12See Footnote 11 for data sources of manufacturing and total economy data used in the following.
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of an innovation on aggregate manufacturing investment are in both cases slightly less

pronounced and more short-lived, but the hump-shape is nevertheless preserved. Notice

that the error bands do not contain 0.01 at the 1-year horizon.13

Second, in Figure 2 the solid blue line depicts the pointwise posterior median estimate

of the common factor. The dashed black line depicts the growth rate of value added in

the US manufacturing sector for comparison.14 The grey-shaded areas correspond to

NBER recessions. The figure suggests that the common factor is pro-cyclical. Indeed, the

correlation with US manufacturing value added growth is 0.55. Moreover, the correlation

between the factor and US manufacturing investment growth is 0.87.

In sum, these results show why the estimated statistical model for disaggregate sec-

toral capital expenditure data from manufacturing industries is useful. The impulse

responses in the manufacturing sector are very similar to that of the total economy.

Moreover, the statistical model provides a plausible estimate of the common factor.15

We can now ask what are the effects of macroeconomic shocks on sectoral investment.

4.1 Main Results

The first empirical main result is that the impulse response of sectoral investment to

aggregate shocks is protracted and hump-shaped. To obtain this result, I first sample

randomly 1,000 parameter draws from the joint posterior density. Second, for each sec-

tor and every draw, I compute the cumulative impulse response of investment growth in

response to an aggregate shock that leads to a 1 percent increase on impact. The cumu-

lative impulse response corresponds to the impulse response of the log-level of sectoral

investment. Third, I define the median sector as the pointwise 50th percentile of the

distribution of impulse responses obtained in the previous step. Recall that the impulse

13These are 90 percent error bands obtained by direct Monte Carlo sampling from the posterior distri-
bution of the AR parameters. I take 1,000 draws and use Jeffrey’s noninformative prior in estimation.

14The data source for the US manufacturing value added series is the BEA Industry Economic Accounts.
15In the Online Appendix, I provide additional results that show convergence of the Gibbs sampling

algorithm.
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responses of investment to aggregate shocks are proportional across industries. Given

a parameter draw, the pointwise cross-sectional median of impulse responses therefore

corresponds to the same industry at all horizons. Moreover, the impulse responses are

scaled to imply an increase of investment by 1 percent on impact in each sector. It follows

that the impulse responses of investment to aggregate shocks are the same in all sectors

for a given parameter draw. The form of impulse responses across draws varies, however.

The median sector measures the central tendency of impulse responses at each horizon.

Fourth, I also compute the pointwise 16th and 84th percentiles of the distribution of

impulse responses obtained in the second step. I use these statistics to characterize pos-

terior uncertainty about the form of the impulse responses. From the above, it follows

that posterior uncertainty reflects posterior parameter uncertainty only. Figure 3 shows

the result of this procedure. In response to an aggregate shock that leads to a 1 percent

increase on impact, sectoral investment spending in the median sector rises further to

1.2 percent at the 1-year horizon, giving rise to a hump-shape. Note that the posterior

density at the 1-year horizon lies above 0.01. At the 2-year horizon, sectoral investment

then settles approximately at the long-run response.

The second empirical main result is that the effects of sector-specific shocks on sectoral

investment are short-lived and monotonically decreasing. I use the same procedure as

above to conduct posterior inference on the impulse response to a sector-specific shock

that leads to a 1 percent increase in sectoral investment. However, the median sector now

measures the central tendency of impulses responses at each horizon both across sectors

and draws. Similarly, the posterior uncertainty now reflects both posterior parameter

uncertainty and cross-sectional variation. The reason for this difference to the impulse

responses to aggregate shocks is that the statistical model does not restrict the impulse

responses of sectoral investment to sector-specific shocks to be proportional. Figure 4

depicts the result. In response to a sector-specific shock that leads to a 1 percent increase

on impact, sectoral investment spending in the median sector falls to 0.7 percent at the
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1-year horizon, which equals approximately the long-run response. In comparison to

the impulse response to aggregate shocks, the effects of sector-specific shocks on sectoral

investment are short-lived and monotonically decreasing.

The third empirical main result is that sector-specific shocks explain the bulk of sec-

toral investment volatility. To obtain this result, recall that the assumptions of the econo-

metric framework imply that the factor, xt, and the sector-specific term, wit, are uncor-

related. Hence, the variance of the sectoral investment growth rate, yit, can be written

as Var[yit] = H2
i Var[xt] + Var[wit]. The first term captures the contribution of aggregate

shocks, the second term the contribution of sector-specific shocks to sectoral investment

volatility. First, I use the posterior median estimate of F(`) to compute the unconditional

variance of the process for xt, Var[xt]. Second, I compute the unconditional variance of

the process for wit, Var[wit], using the posterior median estimates of Di(`) and Ri for each

sector. Third, I compute the variance shares of aggregate and sector-specific shocks in

sectoral investment volatility for each sector. Fourth, I define the median industry as the

50th percentile of the cross-sectional distribution of variance shares. I find that sector-

specific shocks account for about 90 percent, aggregate shocks for about 10 percent of

sectoral investment volatility.

4.2 Robustness

4.2.1 Number of Factors

The statistical model in Equation (1) assumes a single common factor. To test for the

presence of additional common factors, I study the cross-sectional correlation of the

sector-specific terms, wit. Recall that the factors account for all the comovement in the

observable data, whereas the sector-specific terms are assumed to be uncorrelated in the

cross-section. If there are additional factors omitted from Equation (1), the comovement

stemming from them has to be captured by the sector-specific terms. Therefore, I take

a random draw from the posterior distribution of the factor, xt, and the factor loading,
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Hi, to compute the wit. Next, I compute the median of the absolute value of the cross-

sectional correlation, |corr[wi, wj]|, ∀i 6= j. I repeat this procedure 1,000 times. Figure 5

displays the histogram for median absolute value cross-sectional correlation for each it-

eration. The median of this distribution is low and equals 0.1091, which means that there

is little cross-sectional correlation in the sectoral components. This exercise suggests that

there are no additional factors relevant to explain the cross-sectional comovement in the

sectoral investment.

4.2.2 Level of Aggregation

I re-estimate the model at the 4-digit and 3-digit NAICS industry level to test if the

results depend on the level of aggregation.16 Figure 6 contrasts the posterior median

estimate of the factor at different levels of aggregation. The solid blue line depicts the

estimate based on 6-digit NAICS industry data. The red dash-dot line and the green

dashed line show the estimates obtained from using 4-digit and 3-digit NAICS industry

data, respectively. Figure 6 shows that the median estimates of the factor have virtually

the same dynamics at different levels of aggregation. At higher levels of aggregation, the

factor captures more comovement in sectoral investment, which is why the volatility of

the estimates increases. Figures 7 and 8 show that the impulse responses to shocks also

do not change with the level of aggregation. Figure 7 contrasts the impulse responses of

sectoral investment to aggregate shocks at the 6-digit, the 4-digit, and the 3-digit NAICS

industry level. The line styles and colors are the same as in Figure 6. The figures shows

that the impulse responses to aggregate shocks are qualitatively and, to a large extent,

quantitatively the same and do not depend on the level of aggregation. Similarly, Figure 8

depicts the effects of sector-specific shocks on sectoral investment at different levels of

aggregation. The line styles and colors are again the same as above. In all three cases,

the effects of sector-specific shocks are monotonically decreasing. As the sectors become

more aggregate, the impulse responses become more gradual.

16I follow the approach by the BEA to aggregate chain-type quantity indices and aggregate the real
investment quantity indices to the 4-digit and 3-digit NAICS industry level.
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4.2.3 Missing Persistence Bias

Berger et al. (2015) prove that the estimated persistence of aggregate time series with

lumpy behavior at the micro level is biased towards zero at low levels of aggregation.

The reason for the bias is an identification problem: the econometrician cannot disen-

tangle the adjustment in response to contemporaneous shocks from the adjustment to

past shocks, and attributes all adjustment to the contemporaneous innovation. At higher

levels of aggregation, on the other hand, the cross-sectional correlation of adjustments

informs the econometrician and the bias vanishes. To account for this bias, Berger et al.

(2015) propose to use proxy variables.

Indeed, Figure 8 suggests that the persistence of impulse responses of sectoral in-

vestment to sector-specific shocks increases with the level of aggregation. To verify the

robustness of my results, I follow Berger et al. (2015) and use proxy variables for the

shocks to re-estimate impulse responses. More specifically, I compute sectoral measures

of total factor productivity as proxy variables for aggregate and sector-specific shocks

from the NBER-CES data and decompose them into common and sectoral components

using principal components, denoted TFPAgg
t and TFPSect

t , respectively. Next, I regress

sectoral investment growth on the contemporaneous and lagged values of both compo-

nents:

yit =
5

∑
j=0

αijTFPAgg
t−j +

5

∑
j=0

βijTFPSect
t−j + εit. (5)

The impulse response of sectoral investment to aggregate and sector-specific shocks can

be read off the coefficients αij and βij, respectively. To test if sectoral investment responds

faster to sector-specific shocks than to aggregate shocks, I follow Maćkowiak et al. (2009)

and measure the speed of adjustment for each sector i by the following statistic:

τ
Agg
i =

∑1
j=0|αij|

∑3
j=2|αij|

and τSect
i =

∑1
j=0|βij|

∑3
j=2|βij|

. (6)
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For each shock, this statistic captures the short-run response of sectoral investment

spending relative to the long-run response. I define the short-run response as the aver-

age absolute effect on sectoral investment in the impact period and at the 1-year horizon.

Similarly, I take the long-run response as the average absolute effect at the 2-year and

3-year horizon.

Figure 9 plots the histogram of the cross-sectional distribution for the speed of ad-

justment. The upper panel shows the speed of adjustment to aggregate shocks, the lower

panel the speed of adjustment to sector-specific shocks. The median of the distribution

is 0.6135 in the top panel and 0.9113 in the bottom panel. This means that adjustment of

the median sector to aggregate shocks in the short run is less than two-thirds of the ad-

justment in the long run, while the adjustment to sector-specific shocks in the short run

is about as large as the adjustment in the long run. In other words, investment adjusts

relatively faster to sector-specific TFP shocks than to aggregate TFP shocks. The main

results of this paper are not prone to the missing persistence bias.

An interesting observation that emerges from this robustness checks regards the na-

ture of the aggregate shock. In Figure 10 I contrast the posterior median estimate of

the common factor with the aggregate component of TFP. The two shock measures are

very similar, the correlation between both series is 0.6. This is at least suggestive that the

estimated aggregate shock in the statistical model can be interpreted as a TFP shock. In

the theoretical model in the next section, I will therefore assume that TFP shocks are the

driving force of investment activity.

5 Investment under Rational Inattention

In this section, I build a model to explore formally the implications of rational inattention

for sectoral and aggregate investment dynamics. The model matches the novel stylized

facts described in the previous section qualitatively.
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5.1 Setup

The economy consists of a large number of sectors, which are each populated by a rep-

resentative production unit indexed by i. Time is discrete. Production unit i operates the

production function Yit = ZtEitKα
it. Here, Kit denotes the current stock of capital, Zt is

aggregate total factor productivity (TFP), and Eit is sectoral TFP.17

Production units own the capital stock, which is specific to their sector. The law of

motion for capital is Kit+1 = (1− δ)Kit + Iit, where Iit is investment and δ denotes the

rate of depreciation. Using the latter equation and the production function, the period

profit function of production unit i is given by:

π (Kit, Kit+1, Zt, Eit) = ZtEitKα
it − Kit+1 + (1− δ)Kit. (7)

The sectoral and aggregate components of TFP each follow stationary Gaussian first-

order autoregressive processes in logs:

ln Zt = ρz ln Zt−1 + et,

ln Eit = ρε ln Eit−1 + vit,

where the error terms are Gaussian white noise with distributions et ∼ N (0, σ2
e ) and

vit ∼ N (0, σ2
v ), respectively. The sector-specific shocks, vit, are pairwise independent in

the cross-section. Moreover, the vit are independent of et.

In each production unit, a decision-maker with discount factor β chooses Kit+1 to

maximize the expected net present value of current and future profits. Rewriting Equa-

tion (7) in log-deviations from the non-stochastic steady state, multiplying with βt, sum-

ming over all periods from 0 to ∞ and taking expectations conditional on information in

17Because each sector has a representative product unit, the term “sectoral” henceforth refers to the
idiosyncratic variables of the production unit in that sector.
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period −1 yields the following objective function for production unit i:

Ei,−1

{
∞

∑
t=0

βt
[
ezt+εit K̄αeαkit − K̄ekit+1 + (1− δ)K̄ekit

]}
, (8)

where lower-case letters denote log-deviations from the non-stochastic steady state and

K̄ is the steady-state level of capital.

I work with a log-quadratic approximation to the objective function around the non-

stochastic steady state. In this case the decision-maker in production unit i chooses kit+1

to maximize the expected net present value of current and future profits

∞

∑
t=0

βtEi,−1

{
1
2

(
π11K̄2

)
k2

it+1

}
+

∞

∑
t=0

βtEi,−1 {(π13K̄) kit+1zt+1}

+
∞

∑
t=0

βtEi,−1 {(π14K̄) kit+1εit+1}+ terms independent of {kit+1}∞
t=0. (9)

The parameters π11, π13, and π14 denote double partial derivatives of π (Kit, Kit+1, Zt, Eit)

evaluated at the non-stochastic steady state. Note that π13 = π14.

Under perfect information,18 the decision-maker’s profit-maximizing capital choice is

given by

k∗it+1 =
Et {π13zt+1 + π14εit+1}

|π11|K̄

Here, Et denotes the expectation operator conditioned on the history of the economy up

to and including period t. Note that the one-step ahead forecasts of zt and εit are ρzzt

and ρεεit, respectively. Under perfect information, the decision-maker knows the current

values of zt and εit. Using this information, the profit-maximizing capital choice under

perfect information is

k∗it+1 =
π13ρzzt + π14ρεεit

|π11|K̄
(10)

Given instead less than perfect information with the information set Iit, the decision-

18The definition of perfect information is that in every period t, the decision-maker knows the entire
history of the economy up to and including period t.
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maker’s actual capital choice is given by:

kit+1 = E
{

π13ρzzt + π14ρεεit

|π11|K̄
|Iit

}
= E

{
Et

{
π13ρzzt + π14ρεεit

|π11|K̄

}
|Iit

}
= E

{
k∗it+1|Iit

}
where the second equality uses the Law of Iterated Expectations to condition on the

information set under perfect information and the third equality follows from (10). The

actual capital choice is the conditional expectation of the solution to the production unit’s

problem under perfect information. The information structure of the economy which

determines Iit will be described below.

Using Equation (9), I derive the following expression for the expected profit loss

in the case of capital differing from the profit-maximizing capital choice under perfect

information:
∞

∑
t=0

βtEi,−1

{
1
2

(
π11K̄2

) (
kit+1 − k∗it+1

)2
}

. (11)

Notice that the per-period loss is static and does not depend on past or future values of

capital, even though choosing capital is an intertemporal decision. The reason for this

result is the fact that the capital choice for the next period is independent of the current

level of capital.

5.2 Information Structure

I assume that decision makers in production units have a limited amount of attention

and cannot attend to all information in the economy. They remain uncertain with respect

to the realizations of the stochastic disturbances zt and εit. Let ẑit = E {zt|Iit} and ε̂it =

E {εit|Iit}. I assume that these conditional expectations follow a stationary Gaussian

process such that {zt, ẑit, εit, ε̂it} is a stationary Gaussian process, and that the stochastic
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processes {zt, ẑit} and {εit, ε̂it} are independent.19

Following Sims (2003), I assume that limited attention is a constraint on uncertainty

reduction, where uncertainty is measured by entropy. The amount of information that

the actual capital choice, kit+1, contains about the profit-maximizing capital choice under

perfect information, k∗it+1, cannot be greater than κ. Formally,

I ({zt, εit} , {ẑt, ε̂it}) ≤ κ (12)

where the operator I is defined in Appendix B. Using the assumption that {zt, ẑit} and

{εit, ε̂it} are independent, the information flow constraint can be rewritten as

I ({zt} , {ẑt})︸ ︷︷ ︸
=κ1

+ I ({εit} , {ε̂it})︸ ︷︷ ︸
=κ2

≤ κ. (13)

The information flow constraint states that the amount of information that ẑit contains

about zt cannot exceed κ1, and that the amount of information that ε̂it contains about εit

cannot exceed κ2. I let the decision-maker decide the allocation of attention. Notice that

if the decision-maker wants to allocate more attention to aggregate TFP, the attention

allocated to sector-specific TFP must decrease.

Substituting for kit+1 and k∗it+1 in Equation (11) and using the fact that {zt, ẑit} and

{εit, ε̂it} are independent and stationary, the problem of the decision-maker can be stated

as:

max
ẑit,ε̂it

{(
π13

|π11|K̄
ρz

)2

Ei,−1

{
(zt − ẑit)

2
}
+

(
π14

|π11|K̄
ρε

)2

Ei,−1

{
(εit − ε̂it)

2
}}

(14)

subject to the information flow constraint in Equation (13), {zt, ẑit, εit, ε̂it} being a station-

ary Gaussian process, and {zt, ẑit} and {εit, ε̂it} being independent.20

19Maćkowiak and Wiederholt (2009) make a similar assumption in the benchmark version of their model.
See their Section II.

20For ease of exposition the constant of proportionality 1
2
(π11K̄2)

1−β is omitted in Equation (14).
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For a given allocation of attention, choosing ẑit and choosing ε̂it is a tracking problem

of the same form as in Section 4 in Sims (2003). If the variable to be tracked follows an

AR(1) process, Proposition 3 in Maćkowiak and Wiederholt (2009) provides an analytical

solution for the optimal action. In the context of this paper, we have:

kit+1 =
∞

∑
l=0

[
ρl

z −
1

22κ1

( ρz

22κ1

)l
]

σeet−l +
∞

∑
l=0

√
1

22κ1

22κ1 − 1
22κ1 − ρ2

z

( ρz

22κ1

)l
σeε1t−l

+
∞

∑
l=0

[
ρl

ε −
1

22κ2

( ρε

22κ2

)l
]

σvvt−l +
∞

∑
l=0

√
1

22κ2

22κ2 − 1
22κ2 − ρ2

ε

( ρε

22κ2

)l
σvε2t−l. (15)

Here, ε1t and ε2t follow stationary Gaussian white noise processes with unit variance

that are mutually independent, independent across firms, and independent of et and vit.

They also provide an analytical solution to the expected profit loss at the solution. In the

context of this paper, it is proportional to

(
π13

|π11|K̄
ρz

)2

σ2
z

1− ρ2
z

22κ1 − ρ2
z
+

(
π14

|π11|K̄
ρε

)2

σ2
ε

1− ρ2
ε

22κ2 − ρ2
ε

, (16)

where σ2
z = σ2

e
1−ρ2

z
and σ2

ε = σ2
v

1−ρ2
ε

and the constant of proportionality is given by 1
2 β|π11|K̄2.

To solve for the allocation of attention, I compute the marginal values of attention to

the aggregate and the idiosyncratic shocks from Equation (16) and equate them to arrive

at:

κ1 =
1
2

log2

( σzπ13ρz
σεπ14ρε

√
1− ρ2

z2κ +
√

1− ρ2
ε ρ2

z
σzπ13ρz
σεπ14ρε

√
1− ρ2

zρ2
ε 2−κ +

√
1− ρ2

ε

)
(17)

5.3 Calibration

To illustrate the qualitative implications of investment under rational inattention, I cali-

brate the model parameters to standard values from the investment literature. A period

in the model corresponds to a year. The parameters for β and δ are chosen to match

empirical moments reported by Khan and Thomas (2008). The discount factor β is set

to imply discounting of future profits by decision makers at an annual real interest rate
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of 4 percent, which gives β = 0.9615. The depreciation rate is δ = 0.10, which implies

that the steady-state investment-to-capital-ratio equals 10 percent. Bachmann et al. (2013)

estimate the value-added-weighted average persistence and value-added-weighted aver-

age standard deviation of sectoral TFP from Solow residuals measured using the same

data source as this paper, which leads to the values ρε = 0.55 and σv = 0.0501. Khan

and Thomas (2008) estimate the persistence and volatility of aggregate TFP from Solow

residuals and find ρz = 0.8590 and σe = 0.0140. Because the production function of pro-

duction units implicitly reflect the output of a whole sector, the assumption of constant

returns to scale in capital seems plausible. However, for the steady state level of capital

to be uniquely defined, some curvature in production is required. For this reason, the

parameter α is set to 0.99. Finally, the parameter κ is set to imply 1 bit of information

processing per period.

6 Model Results

The main result from the theoretical model is that the effects of aggregate shocks on sec-

toral investment are protracted, whereas the effects of sector-specific shocks on sectoral

investment are short-lived.

Figure 11 displays the impulse response of sectoral investment to aggregate and

sector-specific shocks over a 5 year horizon. The solid black lines in both panels show

the case of investment under perfect information. The dashed blue lines in both panels

show the case of investment under rational inattention. The size of each shock is scaled

to imply a 1 percent increase of sectoral investment under perfect information.

Without the constraint on information flow, a decision-maker optimally chooses in-

stantaneous adjustment of capital to its desired level. Sectoral investment consequently

spikes on impact. Shocks are persistent but mean-reverting, such that the desired level

of capital decreases over time. In response to aggregate shocks, the amount of depreci-
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ation per period roughly corresponds to the decrease in the desired capital level, which

is why sectoral investment is essentially zero one year after the shock. Because sector-

specific shocks are less persistent, the desired level of capital decreases faster, which is

why sectoral investment turns negative at the 1-year horizon.

Now consider the case with the information flow constraint binding. Relative to the

perfect information case, the impulse response of sectoral investment to aggregate shocks

is dampened. Moreover, the effects of aggregate shocks are protracted; there is still some

positive investment at the 1-year horizon. On the other hand, the impulse response of

sectoral investment to sector-specific shocks is almost identical to the perfect information

case. The reason for this result is that the decision-maker allocates a large share of

attention to sector-specific shocks (about 2/3). The information flow about sectoral TFP

closely resembles the one under perfect information. This comes at the cost of less precise

information about aggregate TFP. On impact the decision-maker dampens the response

of sectoral investment because of higher uncertainty about the shock realization. At

the 1-year horizon there is further reduction of uncertainty about the realization of the

aggregate shock that hit the economy in the previous period. The decision-maker makes

up for the too low level of capital by investing more.

To illustrate the sensitivity of these results with respect to the calibration of the in-

formation flow constraint, I solve the theoretical model for a different value of κ. For

simplicity, I set κ = 3. Figure 12 contrasts the impulses responses of sectoral investment

to aggregate and sector-specific shocks under this calibration with those under the base-

line calibration. A higher value of κ relaxes the constraint on per-period information

flow. The decision-maker has more information and again allocates more attention to

sector-specific shocks. For these reasons, the impulse response of sectoral investment to

sector-specific shocks almost lies on top of that in the perfect information case. Further-

more, a higher value of κ implies that the impulse response to aggregate shocks becomes

less dampened and more short-lived. In sum, the theoretical model needs a sufficiently
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low value of κ in order to match the protracted effects of aggregate shocks on sectoral

investment I document in the data.

7 Conclusion

This paper shows that, in the median US manufacturing sector, the impulse response

of sectoral investment to aggregate shocks is protracted and hump-shaped, whereas the

effects of sector-specific shocks are short-lived and monotonically decreasing. I solve

a model of investment under rational inattention. The theoretical model predicts that

sectoral investment reacts slowly to aggregate shocks and fast to sector-specific shocks

and therefore matches my empirical findings qualitatively.

There are three different ways in which I will explore the theoretical model further

in future research. First, I will investigate whether the interaction of traditional capital

adjustment costs as in Hayashi (1982) and rational inattention explains the hump-shaped

response of sectoral and aggregate capital expenditures. Second, I will introduce a house-

hold sector to examine feedback effects of the equilibrium real interest rate on investment

activity. Third, I will formally estimate the model by matching impulse responses of the

theoretical model with impulse responses from the statistical model.
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Figure 1 – Impulse Response of Aggregate Investment in Total Economy and Manufacturing.
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Figure 2 – Pointwise Posterior Median Estimate of Common Factor.
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Figure 3 – Impulse Responses of Sectoral Investment to Aggregate Shocks.
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Figure 4 – Impulse Responses of Sectoral Investment to Sector-Specific Shocks.
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Figure 5 – Histogram of |corr[wi, wj]|, ∀i 6= j.
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Figure 6 – Pointwise Posterior Median Estimate of Common Factor by NAICS-Level.
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Figure 7 – Impulse Responses to Aggregate Shocks in Median Sector by NAICS-Level.
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Figure 8 – Impulse Response to Sector-Specific Shocks in Median Sector by NAICS-Level.
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Figure 9 – Cross-Sectional Dispersion of Speed of Adjustment Measure.
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Figure 10 – Median Estimate of Common Factor and Aggregate TFP Measure.
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Figure 11 – Impulse Responses to Aggregate and Sector-Specific Shocks
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Figure 12 – Sensitivity of Impulse Responses for Different Values of κ

0 1 2 3 4 5
−5

0

5

10
x 10

−3 Impulse Responses to Aggregate Shocks

Horizon

0 1 2 3 4 5
−5

0

5

10
x 10

−3 Impulse Responses to Sector−Specific Shocks

Horizon

 

 
Perfect Information
Rational Inattention: κ = 1
Rational Inattention: κ = 3

28



A Econometric Appendix

This appendix provides further details about the statistical model for the sectoral capital

expenditure data. For the reader’s convenience, I first restate the dynamic factor model

from Section 2. The second part describes how I achieve identification of the unobserved

factors and the unobserved loadings. The appendix then moves on to explain the estima-

tion methodology, which closely follows Del Negro and Schorfheide (2011). Specifically,

I use the Gibbs sampling algorithm to sample from the joint posterior of the factors and

the model’s parameters. This algorithm draws alternately from their respective condi-

tional distributions to generate a sample from the joint distribution. I lay out the priors

and write down the conditional posterior densities. Importantly, I do not condition on

initial observations but use the full conditional distributions in the Gibbs sampling al-

gorithm. A minor difference between this paper and the estimation methodology by

Del Negro and Schorfheide (2011) is that I switch the ordering of conditional distribu-

tions in the algorithm. In particular, I first sample from the conditional posterior density

of the factors and then from the conditional posterior density of the model’s parameters.

The appendix concludes by describing how I initialize the Gibbs sampling algorithm.

Model Consider the dynamic factor model

xt = F(`)xt−1 + vt, vt ∼ i.i.d.N (0, Q) (18)

yit = Hixt + wit (19)

wit = Di(`)wit−1 + uit, uit ∼ i.i.d.N (0, Ri) (20)

where yit, i = 1, . . . , n, t = 1, . . . , T, denotes the standardized period t sector i log change

of real investment, xt is an unobserved factor, the Hi are factor loadings, and the wit are

sector-specific components. Both xt and wit follow AR processes, F(`) and Di(`) denote

lag polynomials of order three, and vt and the uit are Gaussian white noise with variance
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Q and Ri, respectively. Assume that the uit are pairwise independent and uncorrelated

with vt.

Identification Stacking Equation (19) over all i gives

yt = Hxt + wt (21)

where yt, wt, and H are column vectors of length n. Because the factor and the loadings

are unobserved, their sign and scale are not identified from the data. Therefore, I assume

that the first element in H is positive and that Q in Equation (18) is a known constant.

These assumptions are standard in the literature on dynamic factor models and uniquely

identify the space spanned by the factors.

Priors The prior distribution for the coefficients of F(`) is N (φ0, Φ−1
0 )ISF , where N

denotes the multivariate Normal distribution with mean φ0 and second moment Φ−1
0 ,

and ISF is an indicator function for stationary of xt implied by F(`). Similarly, the prior

for the coefficients of Di(`) is N (θ0, Θ−1
0 )ISD . I choose prior means φ0 and θ0 equal to

column vectors of zeros of length three. The prior precisions are small but increase with

lag length as in the case of the Minnesota prior. In particular, following Robertson and

Tallman (1999), I set the lag l prior precisions implied by Φ0 and Θ0 equal to (exp(cl −

c))−1, where c matches a quarterly harmonic decay rate at lag three. The prior for

each Ri is IG(ν0/2, δ0/2), where IG denotes the inverse gamma distribution. Following

Otrok and Whiteman (1998), I set ν0 = 6 and δ0 = 0.001, which implies a diffuse prior

distribution. Finally, the prior on each loading Hi is N (β0, B−1
0 ). I choose β0 = 0 and

B0 = 1.

Sample factors, conditional on parameters and data In general, let px and pw denote

the order of the lag polynomials F(`) and Di(`), respectively. To sample from the condi-
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tional posterior density of the factors given the parameters and the data, I follow Carter

and Kohn (1994). Given Di(`) and Hi, define y∗it = (1− Di(`)L)yit and the lag polyno-

mial h∗i (`) = (1− Di(`)L)Hi of order pw and, using Equation (20), rewrite Equation (19)

as y∗it = hi(`)
∗xt + uit. Let H∗i the (pw + 1)× 1 column vector which stacks all the coeffi-

cients of h∗i (`) and define the (pw + 1)× 1 column vector x∗t =
[

xt xt−1 ... xt−pw
]T. Thus, we

can express the equation for y∗it as y∗it = H∗Ti x∗t + uit. Stacking each of these n equations,

we can write down the state-space representation:

x∗t = F∗x∗t−1 + v∗t (22)

y∗t = H∗x∗t + ut (23)

where v∗t is the (pw + 1)× 1 vector v∗t =
[

vt 0 ... 0
]T, H∗ is an n× (pw + 1) matrix, and F∗

is the (pw + 1)× (pw + 1) matrix

F∗ =

 F 01×((pw+1)−px)

Ipw 0pw×1

 (24)

where F is the 1× px row vector which corresponds to the first row of the companion

form matrix of F(`). Note that this notation assumes pw + 1 ≥ px and that Equation (23)

starts from t = pw + 1 instead of t = 1 because y∗0 , . . . , y∗−pw+1 are unobserved. The

variance-covariance matrix of v∗t , Q∗, is (pw + 1)× (pw + 1), the first element on the main

diagonal corresponds to Q, and all other elements equal zero. The variance-covariance

matrix of ut is given by R = diag(R1, . . . , Rn). Conditional on F∗, Q∗, H∗, R, and the data,

the Carter and Kohn (1994) simulation smoother draws a whole sample of the xt, t =

pw + 1, . . . , T, from the corresponding conditional posterior density function. For the sake

of brevity, I omit the conditioning arguments below. Let F̃∗ denote the first row of F∗.

Following Kim and Nelson (1999), I recursively sample from the conditional distributions
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x∗T ∼ N (x∗T|T, PT|T) and x∗t | xt+1 ∼ N (x∗t|t,xt+1
, Pt|t,xt+1

), t = T − 1, . . . , pw + 1, where

x∗t|t,xt+1
= x∗t|t + Pt|t F̃

∗T(F̃∗Pt|t F̃
∗T + Q)−1(xt+1 − F̃∗x∗t|t) (25)

Pt|t,xt+1
= Pt|t − Pt|t F̃

∗T(F̃∗Pt|t F̃
∗T + Q)−1F̃∗Pt|t (26)

and x∗t|t and Pt|t are the conditional mean and the conditional variance of x∗t obtained

from Kalman filtering. The first element of each draw x∗t corresponds to a draw of xt.

Following Del Negro and Otrok (2008), I use the density of x∗pw conditional on the

model’s parameters and the data to initialize the Kalman filter. Specifically, rewrite Equa-

tion (21) as

yt =

≡H̃︷ ︸︸ ︷[
H 0n×pw

]
x∗t + wt (27)

and substitute x∗t = (F∗)tx∗0 + ∑t−1
j=0(F∗)jv∗t−j for x∗t . Stacking the first pw observations

gives

≡ypw ...1︷ ︸︸ ︷
ypw

...

y1

 =

≡A︷ ︸︸ ︷
H̃(F∗)pw

...

H̃(F∗)

 x∗0 +

≡B︷ ︸︸ ︷

H̃ H̃F∗ · · · H̃(F∗)pw−1

0n ×(pw+1) H̃ · · · H̃(F∗)pw−2

... . . . ...

0n ×(pw+1) · · · · · · H̃



≡(v∗)pw ...1︷ ︸︸ ︷
v∗pw

...

v∗1

 +

≡wpw ...1︷ ︸︸ ︷
wpw

...

w1

(28)

x∗pw = (F∗)pw x∗0 +
[
I(pw+1) F∗ · · · (F∗)pw−1

]
︸ ︷︷ ︸

≡C

(v∗)pw ...1 (29)

The joint distribution of the pw initial observations of the data and the (pw + 1) initial
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observations of the factors, conditional on the data, therefore reads

ypw ...1

x∗pw

 ∼ N



 AE{x∗0}

(F∗)pw E{x∗0}

 ,

AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1 •

(F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT (F∗)pw Σx∗0 ((F∗)pw)T + CΣ(v∗)pw ...1CT




where E{x∗0} and Σx∗0 are the unconditional mean and variance covariance matrix of x∗0 ,

respectively, Σ(v∗)pw ...1 denotes the variance covariance matrix of (v∗)pw ...1, and Σwpw ...1 is

the variance covariance matrix of wpw ...1.

From the properties of the multivariate normal distribution, it follows that x∗pw |

ypw ...1 ∼ N with first and second moment given by

E{x∗pw | ypw ...1} = (F∗)pw E{x∗0}+ ((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)

(AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1)−1(ypw ...1 − AE{x∗0}) (30)

V{x∗pw | ypw ...1} = ((F∗)pw Σx∗0 ((F∗)pw)T + CΣ(v∗)pw ...1CT)− ((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)

(AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1)−1((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)T (31)

where Σ(v∗)pw ...1 = Ipw ⊗Q∗. To work out Σwpw ...1 , rewrite the process for wt in companion

form


wt

...

wt−pw+1

 =



diag(D1) diag(D2) · · · diag(Dpw)

In · · · 0n

... . . . ...

0n · · · In 0n


︸ ︷︷ ︸

≡D


wt−1

...

wt−pw

+


ut

...

0n

 (32)

where diag(Di) is a n × n diagonal matrix with the coefficients on the ith lag for each

33



sector on the main diagonal and ut ∼ N (0n, R). Hence, under stationarity, we have

vec(Σwpw ...1) = (I(npw)2 − D⊗ D)−1 vec(


R · · · 0n

... . . . ...

0n · · · 0n

) (33)

Finally, under stationarity of the factors, E{x∗0} = 0(pw+1)×1 and vec(Σx∗0 ) = (I(pw+1)2 −

F∗ ⊗ F∗)−1 vec(Q∗). For numerical robustness, I use the method by Bai and Wang (2015)

to compute the conditional variance covariance matrix.

To initialize the Kalman filter in the Carter and Kohn (1994) simulation smoother, I use

the conditional mean F∗E{x∗pw | ypw ...1} and conditional variance F∗V{x∗pw | ypw ...1}(F∗)T +

Q∗. The pw initial observations of xt are drawn from x∗pw | ypw ...1 ∼ N with first and sec-

ond moment given by Equation (30) and (31), respectively. The last element of xpw , x0, is

discarded.

Sample parameters of state equation, conditional on parameters in observation equa-

tion, factors and data Abusing notation, write Equation (18) in companion form x∗t =

F∗x∗t−1 + v∗t where F∗ denotes the px × px companion form matrix of F(`) and vt ∼

N (0px , Q∗). Suppose that this process is stationary and that the initial observation x∗0 =[
x0 x−1 ... x−px+1

]T is drawn from the stationary distribution x∗0 ∼ N (0px , QΣx) where

vec(Σx) = (Ip2
x
− F∗ ⊗ F∗)−1 + vec(e1(px)e1(px)T) with e1(px) =

[
1 0 ... 0

]T denoting the

px × 1 unit vector. Let e the T − px × 1 column vector containing xt, t = px + 1, . . . , T

and E the T − px × px matrix with tth row given by
[

xt−1 ... xt−px
]
. Given Q, H, R,

and the data, Chib and Greenberg (1994) show that the full conditional posterior of the

parameters of the lag polynomial F(`) is given by F ∝ ΨF(F) × N (φ̂, Φ−1
n )ISF , where

φ̂ = Φ−1
n (Φ0φ0 + Q−1ETe), Φn = (Φ0 + Q−1ETE), and

ΨF(F) = |Σx(F)|−1/2 exp
[
− 1

2Q
xT

0 Σ−1
x (F)x0

]
(34)
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To sample from the conditional distribution, Chib and Greenberg (1994) use a Metropolis-

Hastings step. That is, in the jth iteration of the Gibbs sampler, I generate a candidate

draw F′ from the distribution N (φ̂, Φ−1
n )ISF and use it for the next iteration with prob-

ability min(ΨF(F′)/ΨF(F(j−1)), 1). With probability (1 − min(ΨF(F′)/ΨF(F(j−1)), 1)), I

retain the current value F(j−1).

Sample parameters of observation equation, conditional on factors and data To sam-

ple from the conditional posterior density of the observation equation’s parameters, note

that the Equations (19) are independent regressions with AR(pw) errors, given the fac-

tor (Otrok and Whiteman, 1998). I follow the method by Chib and Greenberg (1994) to

sample from the posterior equation-by-equation.

Write Equation (20) in companion form w∗it = D∗i w∗it−1 + u∗it, where D∗i denotes the

pw × pw companion form matrix of Di(`), and u∗it ∼ N (0pw , R∗i ), R∗i = diag(Ri, 0, . . . , 0).

Suppose that this process is stationary and that the initial observation w∗0 =
[

w0 w−1 ... w−pw+1
]T

is drawn from the stationary distribution w∗0 ∼ N (0pw , RiΣw), where vec(Σw) = (Ip2
w
−

D∗i ⊗ D∗i )
−1 + vec(e1(pw)e1(pw)T) with e1(pw) =

[
1 0 ... 0

]T denoting the pW × 1 unit

vector. Let y∗i1 = P−1yi1, x∗1 = P−1x1, where P solves PPT = Σw. Define y∗i2 and x∗2

with typical element (1− Di(`)L)yit and (1− Di(`)L)xt, t = pw + 1, . . . , T, respectively.

Stacking all transformed observations gives y∗ =
[

y∗Ti1 y∗Ti2

]T and x∗ =
[

x∗T1 x∗T2

]T. Let

et = yit − Hixt and define e =
[

epw+1 ... eT
]T and the T − pw × pw matrix E with typi-

cal row given by
[

et−1 ... et−pw
]T, t = pw, . . . , T. Chib and Greenberg (1994) give the full

conditional posterior densities

Hi | Ri, Di(`)∼ N (B−1
n (B0β0 + R−1

i X∗Ty∗i ), B−1
n ), (35)

Ri | Hi, Di(`)∼ IG((vo + n)/2, (δ0 + d1)/2), (36)

Di(`) | Hi, Ri ∝ ΨD(Di)×N (θ̂, Θ−1
n )ISDi

, (37)

where Bn = B0 + R−1
i X∗TX∗, θ̂ = Θ−1

n (Θ0θ0 + R−1
i ETe), Θn = (Θ0 + R−1

i ETE), d1 =
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‖y∗ − X∗β‖2, and

ΨD(Di) = |Σy(Di)|−1/2 exp
[
− 1

2Ri
(y1 − X1β)TΣ−1

y (Di)(y1 − X1β)
]

(38)

To sample from the conditional distribution, Chib and Greenberg (1994) use a Metropolis-

Hastings step. That is, in the jth iteration of the Gibbs sampler, I generate a candidate

draw D′i from the distribution N (θ̂, Θ−1
n )ISD and use it for the next iteration with prob-

ability min(ΨD(D′i)/ΨD(D(j−1)
i ), 1). With probability (1−min(ΨD(D′i)/ΨD(D(j−1)

i ), 1)),

I retain the current value D(j−1)
i .

Initialization In order to initialize the Gibbs sampling algorithm, I use the first prin-

cipal component of the data to obtain an estimate for the factor. Given this estimate, I

run an OLS regression on its own px lags to initialize F(`). I compute the variance of the

error term of this regression and use it throughout as the constant (by assumption) value

of Q. For each Hi, I obtain the OLS estimate from a regression of yit on the principal

components factor estimate. On the residuals of this regression, I run an OLS regression

on its own pw lags to initialize the Di(`). Using the residuals of this regression in turn, I

compute their variance to set the initial value of Ri.

The Gibbs sampling algorithm Using the initial values for the model’s parameters de-

scribed in the previous paragraph, I sample the factors using their conditional posterior

density from above. Next, I first draw the parameters of state equation and then the pa-

rameters of the observation equation from their respective conditional posterior density

as explained in this appendix. Using the parameter draws from this iteration, I repeat the

algorithm and sample the factors again. In total, I run 20,000 iterations and discard the

first 5,000 draws to ensure that the algorithm has converged to its ergodic distribution.
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B Modeling Limited Attention

This appendix provides further details on how I model limited attention of decision-

makers in firms. Following Sims (2003), I assume that limited attention is a constraint on

uncertainty reduction, where uncertainty is measured by entropy. Entropy is a measure

of uncertainty from information theory, defined as

H(X) = −E {log2 (p (X))} ,

where X is a random vector. For example, if X is a T × 1 multivariate normal random

vector with variance-covariance matrix Σ, then it has entropy

H(X) =
1
2

log2

[
(2πe)T det Σ

]
.

Similarly, given two T × 1 multivariate normal random vectors X and Y, the condi-

tional entropy of X given Y is

H(X|Y) = 1
2

log2

[
(2πe)T det ΣX|Y

]
,

where ΣX|Y denotes the conditional variance-covariance of X given Y.

Define uncertainty reduction as

I(X; Y) = H(X)− H(X|Y).

This measure is also called mutual information. It quantifies by how much uncertainty

about X reduces having observed Y. If {Xt}∞
t=0 and {Yt}∞

t=0 are two stochastic processes,

we can define the average per-period uncertainty reduction

I({Xt} ; {Yt}) = lim
T→∞

1
T
(H(X1, . . . , XT)− H(X1, . . . , XT|Y1, . . . , YT)) .
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C Model with Investment Adjustment Costs

This appendix outlines a model with investment adjustment costs and perfect informa-

tion. The physical environment of this economy is the same as in the model with rational

inattention presented in Section 5. In addition, there are adjustment costs that penalize

changes in the growth rate of investment following Christiano et al. (2005) and labor is

an additional factor in production. On the other hand, there is no constraint on infor-

mation flow and agents have perfect information. I calibrate the model using reasonable

parameter values from the existing investment literature. In partial equilibrium the ef-

fects of aggregate and sector-specific shocks on sectoral investment are identical. If, in

addition, a household sector closes the model in general equilibrium, the impulse re-

sponses are approximately similar. Therefore, under standard assumptions and using

a standard calibration of the model’s parameters, a model with investment adjustment

costs is inconsistent with my empirical findings.

Setup The economy consists of a unit measure of sectors, which are each populated

by a representative production unit indexed by i. Time is discrete. Production unit i

operates the production function Yit = ZtEitKα
itN

ν
it. Here, Kit denotes the current stock of

capital, Nit denotes labor input, Zt is aggregate TFP, and Eit is sectoral TFP.

Production units own the capital stock, which is specific to their sector. The law

of motion for capital is Kit+1 = (1− δ)Kit +
(

1− S
(

Iit
Iit−1

))
Iit, where Iit is investment,

δ denotes the rate of depreciation, and S
(

Iit
Iit−1

)
are investment adjustment costs. The

function S is monotonically increasing and convex.

The sectoral and aggregate components of TFP each follow stationary Gaussian first-

order autoregressive processes in logs:

ln Zt = ρz ln Zt−1 + et,

ln Eit = ρε ln Eit−1 + vit,
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where the error terms are Gaussian white noise with distributions et ∼ N (0, σ2
e ) and

vit ∼ i.i.d.N (0, σ2
v ), respectively. The sector-specific shocks, vit, are pairwise independent

in the cross-section. Moreover, the vit are independent of et.

In equilibrium production units discount future profits between period t and period 0

using the stochastic discount factor βtλt. Conditional on information at time 0, their

objective function reads

max
{Nit,Kit+1,Iit}∞

t=0

E0

∞

∑
t=0

βtλt [ZtεitKα
itN

ν
it −ωt − Iit]

subject to the capital accumulation equation, the stochastic processes for aggregate and

sectoral TFP, and given an initial capital stock Ki0.

The household sector of this economy is deliberately simple. A representative house-

hold consumes, buys shares of production units, receives dividends, trade in a risk-free

bond, and supplies labor. Market are complete. Households maximize lifetime utility,

their instantaneous utility function is U(Ct, Nh
t ) and their discount factor is β. Their

optimality conditions are given by:

λt ≡ UC(Ct, Nh
t )

ωt = −
UN(Ct, Nh

t )

UC(Ct, Nh
t )

λt = Etβλt+1rt

The real wage ωt equals the marginal rate of substitution, where UX denotes the partial

derivative of the utility function with respect to the argument X. The last equation is a

pricing kernel for the risk-free bond, where rt denotes its return.
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Figure 13 – Impulse Responses in Investment Adjustment Cost Model.
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Market clearing and aggregation require the following:

∫ 1

0
Yitdi = Ct +

∫ 1

0
Iitdi

Nh
t =

∫ 1

0
Nitdi

Kt =
∫ 1

0
Kitdi

Aggregate output equals consumption and aggregate investment expenditures. Labor

supply equals aggregate labor demand. Aggregate capital equals the integral over each

production’s unit capital stock.

I solve this model by taking a log-linear approximation to the agent’s optimality

conditions, the resource constraint, and the market clearing conditions. The parameter

values are similar to the calibration in Section 5.

Results Figure 13 shows the impulse responses of sectoral investment. The left panel

depicts the effects of aggregate shocks and the right the effects of idiosyncratic shocks.

Blue lines with circles show the impulse responses of the model calibrated to quarterly

data, red lines with triangles correspond to the impulse responses time-aggregated to

yearly frequency.
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