
Annals of the Institute of Statistical Mathematics manuscript No.
(will be inserted by the editor)

The Limit Distribution of weighted L
2-Goodness-of-Fit

Statistics under fixed Alternatives, with Applications

L. Baringhaus · B. Ebner · N. Henze

Received: date / Accepted: date

Abstract We present a general result on the limit distribution of weighted one-
and two-sample L2-goodness-of-fit test statistics of some hypothesis H0 under fixed
alternatives. Applications include an approximation of the power function of such
tests, asymptotic confidence intervals of the distance of an underlying distribution
with respect to the distributions under H0 and an asymptotic equivalence test that
is able to validate certain neighborhoods of H0.

Keywords Goodness-of-fit test · Weighted L2-statistic · Fixed alternative ·
Empirical transform · Asymptotic equivalence test

Mathematics Subject Classification (2000) 62G10 · 62G20 · 62G15

1 Introduction

For more than 30 years, numerous goodness-of-fit tests (GOF tests) based on
weighted L2-statistics involving empirical transforms such as the empirical char-
acteristic function (ECF), the empirical Laplace transform (ELT), the empirical
moment generating function (EMF), the empirical probability generating function
(EGF), the empirical Mellin transform (EMT) and the empirical Hankel transform
(EHT) have been proposed for various testing problems. The following list is not
exhaustive, but nevertheless shows that such statistics have gained much interest.

Epps and Pulley (1983) considered testing for univariate normality by means of
the ECF, and Baringhaus and Henze (1988) and Henze and Zirkler (1990) gener-
alized their approach to the multivariate case. Testing for the Poisson distribution
by means of L2-statistics based on the EGF was studied by Rueda et al. (1991),
Baringhaus and Henze (1992) and Gürtler and Henze (2000b). Baringhaus and
Henze (1991), Henze (1993), Henze and Meintanis (2002a), Henze and Meintanis
(2002b), Henze and Meintanis (2005) and Henze and Meintanis (2010) considered
corresponding statistics based on the ELT or the ECF for testing the hypothesis
that the underlying distribution is exponential, and Ebner et al. (2012) studied a
goodness-of-fit test for the gamma distribution. A weighted L2-statistic based on
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the ELT for testing that the underlying distribution is inverse Gaussian was studied
by Henze and Klar (2002), and Gürtler and Henze (2000a) proposed an ECF-based
statistic for testing for the Cauchy family. Meintanis (2010) employed the EMF to
test for the family of skew-normal distributions, and Meintanis and Tsionas (2010)
used the EMF to construct a GOF test for the normal-Laplace distribution. A
weighted L2-statistic using the ECF for testing GOF for normal inverse Gaussian
distributions was considered by Fragiadakis et al. (2009), and Meintanis (2008a)
employed such statistic based on the EMT to construct tests for generalized ex-
ponential laws. Moreover, Iliopoulos and Meintanis (2003) studied L2-statistics in
connection with GOF testing for the Rayleigh distribution, Meintanis (2008b) con-
sidered testing for the lognormal family by means of the EMF, and Meintanis (2007)
used the ELT for L2-based tests of fit for bivariate Marshall-Olkin distributions.
Meintanis (2004a) and Meintanis (2004b) considered L2-type statistics for testing
GOF for the Laplace and the logistic family of distributions, respectively. More re-
cently, Fermanian (2009) and Genest et al. (2011) employed L2-statistics for testing
for parametric families of copula functions. Last but not least, Alba-Fernández and
Jiménez-Gamero (2015) and Novoa-Muñoz and Jiménez-Gamero (2014) studied L2-
type statistics to test for bivariate exponential and bivariate Poisson distributions,
respectively.

A weighted L2-statistic takes the form

Tn = n

∫

M

Z2
n(t)µ(dt), (1.1)

whereM is a Borel subset of Rd, µ is a finite measure on the Borel subsets ofM and
Zn(t) = Zn(X1, . . . , Xn, t) is a real-valued measurable function of (not necessarily
independent and identically distributed (i.i.d.)) Rd-valued random (column) vectors.
For asymptotic theorems, we assume that X1, . . . , Xn is the beginning of an infinite
sequence X1, X2, . . ., where X1, X2, . . . are defined on a common probability space
(Ω,A,P). Usually, µ is given by a nonnegative weight function w defined on M ,
and we have µ(dt) = w(t) dt, where dt means integration with respect to Lebesgue
measure on R

d. The weight function w is often chosen to give Tn a simple expression
that is suitable for computations.

Each of the L2-statistics in the papers listed above has been proposed, in a
setting of i.i.d. copies X1, X2, . . . of a random vector X , to test a hypothesis of the
type

H0 : PX ∈ Q = {Qϑ : ϑ ∈ Θ}, (1.2)

where P
X denotes the distribution of X , Q is a family of d-variate distributions

indexed by some finite-dimensional parameter ϑ. Weighted L2-statistics, however,
have also been studied for testing nonparametric hypotheses, see e.g. Henze et al.
(2003), Ngatchou-Wandji (2009) and Leucht (2012) in the context of testing for
reflected symmetry about an unspecified point. The latter paper even relaxed the
i.i.d.-assumption.

As an example, we consider the now classical BHEP statistic for testing the
hypothesis H0 that X has some nondegenerate d-variate normal distribution (see,
e.g., Henze (2002), Section 6). This statistic is defined as

Tn = n

∫

Rd

∣∣∣∣ψn(t)− exp

(
−‖t‖2

2

) ∣∣∣∣
2

w(t) dt. (1.3)

Here, ψn(t) = n−1
∑n

j=1 exp(it
⊤Yn,j) is the ECF of the so-called scaled residuals

Yn,j = S
−1/2
n (Xj − Xn), j = 1, . . . , n, where Xn = n−1

∑n
j=1Xj is the sample
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mean and S
−1/2
n denotes the symmetric positive definite square root of the inverse

of the sample covariance matrix Sn = n−1
∑n

j=1(Xj−Xn)(Xj−Xn)
⊤, which exists

almost surely if n > d and the distribution of X is absolutely continuous. Moreover,
i stands for the imaginary unit, ‖ · ‖ denotes the Euclidean norm, and x⊤ is the
transpose of a column vector x. With the weight function

w(t) = wβ(t) =
1

(2πβ2)d/2
exp

(
−‖t‖2

2β2

)
, (1.4)

where β > 0 is fixed, Tn has the simple expression

Tn =
1

n

n∑

j,k=1

exp

(
−β

2

2
‖Yn,j − Yn,k‖2

)

−2(1 + β2)−d/2
n∑

j=1

exp

(
−β

2‖Yn,j‖2
2(1 + β2)

)
+ n(1 + 2β2)−d/2.

Putting

Zn(t) =
1

n

n∑

j=1

[
cos(t⊤Yn,j) + sin(t⊤Yn,j)− exp

(
−1

2
‖t‖2

)]

yields the form (1.1), where µ is the centered d-variate normal distribution with
independent components, each having variance β2.

Theoretical results on weighted L2-statistics usually involve a nondegenerate
limit distribution of Tn under H0, the limit distribution of Tn under contiguous
alternatives to H0, and a stochastic limit of Tn/n under a fixed alternative distri-

bution. More precisely, one has (writing
P−→ for convergence in probability)

Tn
n

P−→ ∆ :=

∫

M

z2(t)µ(dt) > 0 (1.5)

for some measurable function z on M . The latter result is then used to prove the
consistency of a GOF test that rejects H0 for large values of Tn.

With very few exceptions, for example Naito (1997), Bücher and Dette (2010)
and Gürtler (2000), there is no stronger result under a fixed alternative. Naito
(1997) proved asymptotic normality for weighted L2-statistics under an i.i.d.-setting
for testing for parametric models with regular estimators using the theory of V-
statistics with estimated parameters, as given, e.g., in De Wet and Randles (1987).
Gürtler (2000) showed in the special case of the BHEP statistic for testing for
multivariate normality that, under a fixed alternative distribution satisfying a weak
moment condition, we have

√
n

(
Tn
n

−∆

)
D−→ N(0, σ2),

where σ2 > 0 depends on the underlying distribution, and
D−→ denotes convergence

in distribution of random vectors and stochastic processes.
By using a very general Hilbert space approach that carves out the quintessence

of asymptotic normality of weighted L2-statistics (see (2.1)), we will show that,
under general conditions, such statistics have centered normal limit distributions.
Applications include an approximation of the power function of a GOF test based
on Tn, an asymptotic confidence interval for the stochastic limit ∆ figuring in (1.5)
and an asymptotic ‘inverse GOF test’ which tests, for a given value ∆0 > 0, the
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hypothesis that ∆ ≥ ∆0 against the alternative ∆ < ∆0.

The paper is organized as follows. Section 2 contains the main result, the im-
plications of which are given in Section 3. Section 4 discusses some examples. In
Section 5 we show that the main result can readily be generalized to the case of
two-sample weighted L2-statistics. Section 6 contains a brief summary. For the sake
of readability, the proof of Theorem 2 is deferred to Section 7.

2 The main result

To establish our main result, write Bd for the Borel σ-field of subsets of R
d,

and let H = L2(M,Bd ∩ M,µ) be the Hilbert space of (equivalence classes of)
square integrable measurable functions on M , equipped with the scalar product
〈g, h〉 =

∫
M
gh dµ. Furthermore, let ‖h‖2L2 =

∫
M
h2 dµ. We assume that Zn fig-

uring in (1.1) is a random element of H, which implies Tn = ‖√nZn‖2L2 . In an

i.i.d. setting as stated before (1.2), we typically have
√
nZn

D−→ Z under H0,
where Z is a centered Gaussian element of H. From the Continuous mapping the-

orem, it thus follows that Tn
D−→ ‖Z‖2L2. The distribution of ‖Z‖2L2 is that of∑

j≥1 λjN
2
j , where N1, N2, . . . are i.i.d. standard normal random variables, and

λ1, λ2, . . . are the eigenvalues corresponding to eigenfunctions of the integral equa-
tion λf(s) =

∫
M
K(s, t)f(t)µ(dt) associated with the covariance kernel K of Z. Un-

der contiguous alternatives to H0, the limit distribution of Tn is that of ‖Z + c‖2L2 ,
where c is some shift function on M .

To consider the hitherto largely neglected behavior of weighted L2-statistics
under a fixed alternative to H0, notice that the stochastic limit ∆ figuring in (1.5)
is ‖z‖2L2. We thus have

√
n

(
Tn
n

−∆

)
=

√
n
(
‖Zn‖2L2 − ‖z‖2L2

)

=
√
n
〈
Zn − z, Zn + z

〉

=
√
n
〈
Zn − z, 2z + Zn − z

〉

= 2
〈√
n(Zn − z), z

〉
+

1√
n
‖
√
n(Zn − z)‖2L2. (2.1)

This decomposition of
√
n(Tn/n−∆), which in connection with the Cramér-von

Mises statistic has already been used by Chapman (1958), immediately leads to our
main result.

Theorem 1. Let (Tn)n≥1 be a sequence of weighted L2-statistic based on (not nec-
essarily i.i.d.) d-dimensional random vectors X1, X2, . . . satisfying (1.5). Putting
Wn(·) =

√
n(Zn(·)− z(·)), suppose further that, as n→ ∞,

Wn
D−→W

in H, whereW is a centered Gaussian element of H with covariance kernel K(s, t) =
E[W (s)W (t)]. Then

√
n

(
Tn
n

−∆

)
D−→ N(0, σ2),

where

σ2 = 4

∫

M

∫

M

K(s, t)z(s)z(t)µ(ds)µ(dt). (2.2)
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Proof. From (2.1) we have

√
n

(
Tn
n

−∆

)
= 2〈Wn, z〉+

1√
n
‖Wn‖2L2.

Since Wn
D−→ W and the continuous mapping theorem imply 〈Wn, z〉 D−→ 〈W, z〉

and ‖Wn‖2L2

D−→ ‖W‖2L2, it follows that

√
n

(
Tn
n

−∆

)
D−→ 2〈W, z〉.

Now, 〈W, z〉 has a centered normal distribution with variance

E
[
〈W, z〉2

]
= E

[∫

M

W (s)z(s)µ(ds)

∫

M

W (t)z(t)µ(dt)

]

=

∫

M

∫

M

E [W (s)W (t)] z(s)z(t)µ(ds)µ(dt),

proving the assertion.

The following corollary is an immediate consequence of Theorem 1 and Sluzky’s
Lemma.

Corollary 1. Suppose that, in the setting of Theorem 1, σ2 figuring in (2.2) is
positive. Suppose further that σ̂2

n = σ̂2
n(X1, . . . , Xn) is a (weakly) consistent sequence

of estimators of σ2. Then

√
n

σ̂n

(
Tn
n

−∆

)
D−→ N(0, 1). (2.3)

3 Applications

There are some immediate consequences of Theorem 1 and Corollary 1. To this
end, consider testing a hypothesis H0 : PX ∈ Q = {Qϑ : ϑ ∈ Θ} in the setting
that X1, X2, . . . are i.i.d. copies of a random vector X . Write F for the distribution
function of X under a fixed alternative distribution to H0. In what follows, assume
that the assumptions of Theorem 1 and Corollary 1 hold.

3.1 A confidence interval for ∆

Fix α ∈ (0, 1), and let uα = Φ−1(1−α/2) be the (1−α/2)-quantile of the standard
normal distribution. From (2.3) it follows at once that

In :=

[
Tn
n

− uασ̂n√
n
,
Tn
n

+
uασ̂n√
n

]
(3.1)

is an asymptotic (two-sided) confidence interval at level 1 − α for ∆, i.e., we have
limn→∞ PF (In ∋ ∆) = 1− α.

Notice that ∆ = ∆(F ) may be regarded as some kind of ‘distance’ between the
true underlying distribution and the distributions in Q, for which ∆ = 0. Thus, In
is an asymptotic confidence interval for this ‘distance’.
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3.2 Approximation of the power function

As a second application of Theorem 1, we obtain an approximation of the power
function of a GOF test that rejects H0 for large values of Tn. As stated at the
beginning Section 2, the limit distribution of Tn under H0 is the distribution of a
sum of weighted independent χ2

1-variates. When testing for multivariate normality
and Tn is affine invariant or when testing for exponentiality and Tn is scale invariant,
the distribution of Tn under H0 does not depend on the value of the ’true’ parameter
ϑ ∈ Θ. In this case, (1−α)-quantiles of Tn are obtained by simulation. For the BHEP
statistic for testing for multivariate normality, the first three moments of the limit
distribution have been established, and a three-parameter lognormal distribution
has been fitted to the unknown limit distribution (see Henze and Wagner (1997)).
Thus, by the quantiles of the fitted lognormal distribution, alternative critical values
are available for large samples. In general, a parametric bootstrap procedure is
needed to find critical values in order to carry out the test. Suppose that H0 is
rejected if Tn > cn, and limn→∞ Pϑ(Tn > cn) = α for each ϑ ∈ Θ, where (cn) is a
sequence of constants. If F is the distribution function of an alternative distribution
satisfying the assumptions of Theorem 1 and Corollary 1, it follows that the power
of the test against this alternative can be approximated by

PF (Tn > cn) = PF

(√
n

σ

(
Tn
n

−∆

)
>

√
n

σ

(cn
n

−∆
))

≈ 1− Φ

(√
n

σ

(cn
n

−∆
))

, (3.2)

where Φ is the standard normal distribution function. If a bootstrap procedure
is used, let ϑ̂n = ϑ̂n(X1, . . . , Xn) be some suitable estimator of ϑ ∈ Θ. Denote
by L(Tn|F ) the distribution of Tn if X1 ∼ F , and by cn the (1 − α)-quantile
of L(Tn|Fϑ̂n

). In typical cases, given X1, X2, . . . with common distribution F , as
n → ∞, the weak limit µF , say, of L(Tn|Fϑ̂n

) exists almost surely, and cn → c
almost surely, where c is the (1 − α)-quantile of µF . Then, for a given alternative
distribution F satisfying the assumptions of Theorem 1 and Corollary 1 we are led
to approximate the power ot the test that rejects H0 if Tn > cn by

PF (Tn > cn) ≈ PF (Tn > c) ≈ 1− Φ

(√
n

σ

( c
n
−∆

))
.

3.3 Neighborhood-of-model validation

A third application of the main results refers to a fundamental drawback inherent
in any GOF test. If a level-α-test of H0 does not lead to a rejection of H0, the
hypothesis H0 is by no means ‘validated’ or ‘confirmed’. There is probably only not
enough evidence to reject it! Suppose on the other hand that we want to tolerate a
given ‘distance’ ∆0 and consider the ‘inverse’ testing problem

H∆0
: ∆(F ) ≥ ∆0 against K∆0

: ∆(F ) < ∆0.

Here, the dependence of ∆ on the underlying distribution has been made explicit.

From (2.3), we obtain the following asymptotic level-α-test of H∆0
againstK∆0

:
This test rejects H∆0

if

Tn
n

≤ ∆0 −
σ̂n√
n
Φ−1(1 − α).
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Using (2.3) we have for each F ∈ H∆0

lim sup
n→∞

PF

(
Tn
n

≤ ∆0 −
σ̂n√
n
Φ−1(1−α)

)

= lim sup
n→∞

PF

(√
n

σ̂n

(
Tn
n

−∆0

)
≤ −Φ−1(1−α)

)

≤ α.

Thus, the test has asymptotic level α. Moreover, we have

lim
n→∞

PF

(
Tn
n

≤ ∆0 −
σ̂n√
n
Φ−1(1− α)

)
= α

for each F such that ∆(F ) = ∆0. It is easy to see that

lim
n→∞

PF

(
Tn
n

≤ ∆0 −
σ̂n√
n
Φ−1(1− α)

)
= 1

if ∆(F ) < ∆0. Thus, the test is consistent against each alternative.
Notice that this test is in the spirit of bioequivalence testing (see, e.g., Czado et

al. (2007), Dette and Munk (2003) or Wellek (2010)), since it aims at validating a
certain neighborhood of a hypothesized model.

4 Examples

Example 1. Gürtler (2000) considered the statistics Tn figuring in (1.3) with the
weight function wβ given in (1.4), which is the BHEP statistic for testing for mul-
tivariate normality. For the sake of simplicity, we assume d = 1 in what follows.
Then, writing ϕ(x) = (2π)−1/2 exp(−x2/2) for the standard normal density,

Tn,β = n

∫ ∞

−∞

∣∣∣∣ψn(t)− exp

(
− t

2

2

) ∣∣∣∣
2
1

β
ϕ

(
t

β

)
dt

yields the statistic of Epps and Pulley (1983) for testing for normality. Let

∆β =

∫ ∞

−∞

∣∣∣∣C(t)− exp

(
− t

2

2

) ∣∣∣∣
2
1

β
ϕ

(
t

β

)
dt, (4.1)

where C(t) = E (cos(tX) + sin(tX)) and X is assumed to be standardized, i.e., we
have E(X) = 0 and V(X) = 1.

Under the additional condition E(X4) <∞, Gürtler (2000) proved that Theorem
1 holds with a centered Gaussian element W of H := L2(R,B, wβ(t)dt) having
covariance kernel

K(s, t) = R(t− s) + I(s+ t)− C(s)C(t) + tD(t)D′(s) + sD(s)D′(t) + stD(s)D(t)

+
1

2

{
tC′′(s)C′(t) + sC′′(t)C′(s)

}
+

1

2

{
tC(s)C′(t) + sC(t)C′(s)

}

+
m3

2
st
{
D(s) (R′(t) + I ′(t)) +D(t) (R′(s) + I ′(s))

}

+
1

4
(m4 − 1)stC′(s)C′(t).

Here, R(t) = E[cos(tX)], I(t) = E[sin(tX)], C(t) = R(t) + I(t), D(t) = R(t)− I(t)
and mj = E[Xj], j = 3, 4. Notice that differentiation can be carried out beneath
the expectation operator. For example, we have R′(t) = −E[X sin(tX)].
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In this case, the function z figuring in (1.5) is

z(t) = C(t) − exp

(
− t

2

2

)
,

and σ2 in (2.2) takes the form

σ2 = 4

∫∫
K(s, t)

(
C(s)−exp

(
−s

2

2

))(
C(t)−exp

(
− t

2

2

))
1

β2
ϕ

(
s

β

)
ϕ

(
t

β

)
dsdt,

where
∫

is shorthand for
∫∞
−∞ (see also Naito (1997), p. 208, for the special case

β = 1).

A consistent estimator σ̂2
n of σ2 is obtained if in the above expression K(s, t) is

replaced with Kn(s, t) and C(u) with Cn(u), u ∈ {s, t}. Here, Kn results from K
stated above by replacing R with Rn, I with In, C with Cn, D with Dn m3 with
m3,n and m4 with m4,n, where

Rn(s) =
1

n

n∑

j=1

cos(sYj), In(s) =
1

n

n∑

j=1

sin(sYj),

Cn(s) = Rn(s)+ In(s), Dn(s) = Rn(s)− In(s), ml,n = n−1
∑n

j=1 Y
l
j , l ∈ {3, 4}, and

Yj = (Xj −Xn)/(n
−1
∑n

l=1(Xl −Xn)
2)1/2, j = 1, . . . , n.

All the resulting integrals may be expressed in terms of

J1(Yj) = (1 + β2)−d/2 exp

(
−

β2Y 2
j

2(1 + β2)

)
,

J2(Yj , Yk) =
1

2

[
exp

(
−β

2

2
(Yj − Yk)

2

)
+ exp

(
−β

2

2
(Yj + Yk)

2

)]
,

J3(Yj , Yk) =
1

2

[
exp

(
−β

2

2
(Yj − Yk)

2

)
− exp

(
−β

2

2
(Yj + Yk)

2

)]
,

J4(Yj) =
Yjβ

2

(1 + β2)1+d/2
exp

(
−

β2Y 2
j

2(1 + β2)

)
.

By tedious calculations one obtains

σ̂2
n = 4·

{
K1n+K2n(K3n−K2n)−1

4
K2

3n+K
2
5n+K5n (2K4n+K6n) +K9n

(
K7n+

1

4
K8n

)}
.
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Here,

K1n =
1

n

n∑

j=1

{(
1

n

n∑

k=1

J2(Yj , Yk)− J1(Yj)

)2

+

(
1

n

n∑

k=1

J3(Yj , Yk)

)2}

+
2

n

n∑

j=1

{
1

n

n∑

k=1

J3(Yj , Yk)

}{
1

n

n∑

k=1

J2(Yk, Yk)− J1(Yj)

}
,

K2n =
1

n2

n∑

j,k=1

exp

(
−β

2

2
(Yj − Yk)

2

)
− 1

n

n∑

j=1

J1(Yj),

K3n =
β2

n2

n∑

j,k=1

Yj(Yk − Yj) exp

(
−β

2

2
(Yk − Yj)

2

)
+

1

n

n∑

j=1

YjJ4(Yj),

K4n =
1

n

n∑

j=1

YjJ1(Yj)−
1

n2

n∑

j,k=1

Yj exp

(
−β

2

2
(Yj − Yk)

2

)
,

K5n =
1

n

n∑

j=1

J4(Yj) +
β2

n2

n∑

j,k=1

(Yk − Yj) exp

(
−β

2

2
(Yk − Yj)

2

)
,

K6n =
1

n2

n∑

j,k=1

YjY
3
k J4(Yj) +

β2

n3

n∑

i,j,k=1

YjY
3
k (Yi − Yj) exp

(
−β

2

2
(Yi − Yj)

2

)
,

K7n =
1

n

n∑

j=1

Y 2
j J1(Yj)−

1

n2

n∑

j,k=1

Y 2
j exp

(
−β

2

2
(Yj − Yk)

2

)
,

K8n =
1

n2

n∑

j,k=1

YjY
4
k J4(Yj) +

β2

n3

n∑

i,j,k=1

YjY
4
k (Yi − Yj) exp

(
−β

2

2
(Yi − Yj)

2

)
,

K9n =
1

n

n∑

j=1

YjJ4(Yj) +
β2

n2

n∑

j,k=1

Yj(Yk − Yj) exp

(
−β

2

2
(Yk − Yj)

2

)
.

For the following alternative distributions, considered by Gürtler (2000), we take
β = 1 and put ∆ := ∆1 (see (4.1)). The first alternative to the normal distribu-
tion is the uniform distribution U[−1/

√
3, 1/

√
3], the second alternative the Laplace

distribution L(0, 1√
2
) with density f(x) = exp(−

√
2|x|)/

√
2, x ∈ R, and the third

is a mixture of the normal distributions N(
√
8
3 ,

1
9 ) and N(−

√
8
3 ,

1
9 ) with equal mix-

ing probabilities, abbreviated by NMIX(±
√
8
3 ,

1
9 ). Notice that these distributions are

standardized. The values of∆ are 0.00647 for U[−1/
√
3, 1/

√
3], 0.00660 for L(0, 1√

2
)

and 0.02005 for NMIX(±
√
8
3 ,

1
9 ).

Table 1 shows the empirical coverage probabilities of the confidence interval (3.1)
for ∆, each based on 10 000 replications, for the three alternatives and the sample
sizes n = 20, n = 50, n = 100 and n = 200. The nominal level is 1− α = 0.9.

Obviously, these empirical values are close to the nominal value 0.9 even for
small sample sizes.

Table 2 displays the empirical power of the BHEP test for normality, rounded
to two decimal places and denoted by MC, against the three alternatives discussed
above. The nominal level is 0.9, and each value is based on 10 000 replications.
Critical values cn for Tn have been taken from Henze (1990). The columns denoted
by App show the corresponding approximations given by the right-hand side of
(3.2). Obviously, the approximation seems to be a lower bound for the true power.
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n U[−1/
√
3, 1/

√
3] L(0, 1√

2
) NMIX(±

√
8
3 ,

1
9 )

20 0.91 0.89 0.92
50 0.90 0.87 0.90
100 0.91 0.88 0.90
200 0.90 0.89 0.90

Table 1 Empirical coverage probabilities of In for ∆ (nominal level 0.9, 10 000 replications)

U[−1/
√
3, 1/

√
3] L(0, 1√

2
) NMIX(±

√
8
3 ,

1
9 )

MC App MC App MC App
n = 20 0.27 0.06 0.35 0.24 0.96 0.86
n = 50 0.73 0.58 0.62 0.55 1.0 1.0
n = 100 0.98 0.94 0.88 0.78 1.0 1.0
n = 200 1.0 0.99 0.99 0.91 1.0 1.0

Table 2 Empirical power and approximation (3.2) against selected alternatives

As a second class of alternatives we consider standard normal distributions that
are contaminated by the Laplace distribution L(0, 1/

√
2). In this case, X has the

same distribution as (1 − U)N + UL, where U,N and L are independent, P(U =
1) = ε = 1− P(U = 0), N ∼N(0, 1), and L ∼ L(0, 1/

√
2), i.e., X has the density

fε(x) = (1 − ε)
1√
2π

exp

(
−x

2

2

)
+ ε

1√
2
exp

(
−
√
2|x|

)
, x ∈ R,

where 0 ≤ ε ≤ 1. Notice that E(X) = 0 and V(X) = 1.

Since I(t) = E[sin(tX)] = 0, we have

C(t) = E [cos(tX) + sin(tX)] = (1− ε) exp

(
− t

2

2

)
+ ε

2

2 + t2

and

z(t) = C(t) − exp

(
− t

2

2

)
= ε

(
2

2 + t2
− exp

(
− t

2

2

))
.

From

∫ +∞

−∞

1

t2 + y2
e−xt2 dt =

2π

y
exy

2
(
1− Φ

(√
2xy

))
, x > 0, y > 0, (4.2)

see, e.g. Magnus et al. (1966), p.350, we obtain

∆ = ε2
∫ +∞

−∞

(
2

2 + t2
− e−

t2

2

)2

ϕ(t) dt

= ε2
(
1−

√
πe
(
1− Φ

(√
2
))

− 4
√
πe2 (1− Φ(2)) + 3−

1

2

)

= ε2 · 0.006602033.
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We calculate σ2 only for the case ε = 1, i.e., for the Laplace distribution. In this
case, the covariance kernel takes the form

K(s, t) =
1

1 + 1
2 (s− t)2

− 1

1 + 1
2s

2

1

1 + 1
2 t

2
+

1
4s

3t3 − st

(1 + 1
2s

2)2(1 + 1
2 t

2)2

− 1

2

{
t2

(1 + 1
2 t

2)2

3
2s

2 − 1

(1 + 1
2s

2)3
+

s2

(1 + 1
2s

2)2

3
2 t

2 − 1

(1 + 1
2 t

2)3

}

− 1

2

{
t2

(1+ 1
2s

2)(1+ 1
2 t

2)2
+

s2

(1 + 1
2s

2)2(1+ 1
2 t

2)

}
+

5

4

s2t2

(1+ 1
2s

2)2(1+ 1
2 t

2)2
.

We have

σ2 = 4

(
I1 − I22 − I3I4 − I3I2 +

5

4
I23

)
,

where

I1 = I1,1 − 2I1,2 + I1,3,

I2 = I2,1 − I2,2,

I3 = I3,1 − I3,2,

I4 = I4,1 − I4,2.

Here, writing
∫
for
∫∞
−∞,

I1,1 =

∫∫
1

1 + 1
2 (s− t)2

1

1 + 1
2s

2

1

1 + 1
2 t

2
ϕ(s)ϕ(t) dsdt,

I1,2 =

∫∫
1

1 + 1
2 (s− t)2

1

1 + 1
2s

2
e−t2/2 ϕ(s)ϕ(t) dsdt,

I1,3 =

∫∫
1

1 + 1
2 (s− t)2

e−(s2+t2)/2ϕ(s)ϕ(t) dsdt,

I2,1 =

∫ (
1

1 + 1
2s

2

)2

ϕ(s) ds = 1−
√
πe
(
1− Φ

(√
2
))

,

I2,2 =

∫
1

1 + 1
2s

2
e−s2/2 ϕ(s) ds = 2

√
πe2 (1− Φ(2)) ,

I3,1 =

∫
s2

(1 + 1
2s

2)3
ϕ(s) ds =

1

2

(
3− 7

√
πe
(
1− Φ

(√
2
)))

,

I3,2 =

∫
s2

(1 + 1
2s

2)2
e−s2/2 ϕ(s) ds = 10

√
πe2 (1− Φ(2))− 2

√
2,

I4,1 =

∫ 3
2s

2 − 1

(1 + 1
2s

2)4
ϕ(s) ds =

25

12

√
πe
(
1− Φ

(√
2
))

− 13

12
,

I4,2 =

∫ 3
2s

2 − 1

(1 + 1
2s

2)3
e−s2/2 ϕ(s) ds =

8√
2
− 20

√
πe2 (1− Φ(2)) .

The values of last six integrals are obtained by equating corresponding partial
derivatives of the expressions on the left and the right hand side of (4.2) with
respect to x and y. Moreover,

I1,1 =
1√
2

∫
ℓ2(w)e−

√
2|w| dw,
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where

ℓ(w) =

∫
cos(sw)

1

1 + 1
2s

2
ϕ(s) ds

=

∫
1√
2

(∫
cos(sw) cos(sv)e−

√
2|v| dv

)
ϕ(s) ds

=
1√
2

∫ (∫
cos(sw) cos(sv)ϕ(s) ds

)
e−

√
2|v| dv

=
1√
2

∫
e−(w−v)2/2 e−

√
2|v| dv

=
√
πe((1− Φ(−w +

√
2)) exp(−

√
2w) + Φ(−w −

√
2) exp(

√
2w)), w ∈ R.

By numerical integration we obtain I1,1 = 0.41736219895. Moreover,

I1,2 =
1√
2

∫ (∫
cos(sw)

1 + 1
2s

2
ϕ(s) ds

)(∫
cos(tw) e−t2/2 ϕ(t) dt

)
e−

√
2|w| dw.

From
∫
cos(tw)e−t2/2ϕ(t) dt = e−w2/4/

√
2, w ∈ R, we deduce

I1,2 =
1

2

∫
ℓ(w)e−w2/4 e−

√
2|w| dw.

By numerical integration we get I1,2 = 0.39748434972. Finally,

I1,3 =
1√
2

∫
1

2
e−w2/2e−

√
2|w| dw =

1√
2

∫ ∞

0

e−w2/2−
√
2w dw =

√
πe
(
1− Φ

(√
2
))

.

Putting pieces together we obtain σ2 = 0.00231562626. Based on a sample of size
n = 1000 from simulated realizations of X1, . . . , Xn where X1 ∼ L(0, 1/

√
2), we

observed the value 0.002848655.

Table 3 shows the empirical coverage probabilities of the confidence interval (3.1)
for ∆, each based on 10 000 replications, for several values of ε and the sample sizes
n = 20, n = 50, n = 100 and n = 200. The nominal level is 1−α = 0.9. Notice that
the values for ε = 1 are also given in Table 1.

ε

0.25 0.5 0.75 1

n = 20 0.96 0.97 0.94 0.89

n = 50 0.99 0.96 0.91 0.87

n = 100 0.99 0.92 0.89 0.88

n = 200 0.97 0.91 0.89 0.89

Table 3 Empirical coverage probabilities of In for ∆ (normal distribution contaminated by
Laplace, nominal level 0.9, 10 000 replications)

In contrast with Table 1, the coverage probabilities seem to be much higher
than the nominal value, and they seem to increase as ε decreases. Table 4 shows
the empirical power of the test for normality based on Tn,1. The nominal level is
0.9. As was to be expected, the power increases as ε increases.
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ε 0.25 0.5 0.75 1.0
n = 20 0.14 0.20 0.27 0.35
n = 50 0.17 0.29 0.46 0.62
n = 100 0.22 0.44 0.69 0.88
n = 200 0.28 0.65 0.91 0.99

Table 4 Power Study for the normal distributions contaminated by the Laplace distribution

Example 2. Let X,X1, X2, . . . be i.i.d. positive random variables. Motivated by
a characteristic differential equation for the Laplace transform of an exponential
distribution, Baringhaus and Henze (1991) considered the test statistic

Tn,a = n

∫ ∞

0

Z2
n(t)e

−at dt (4.3)

for testing the hypothesis H0 that the distribution of X is some exponential distri-
bution. Here,

Zn(t) =
1

n

n∑

j=1

e−tYj (1− (1 + t)Yj) ,

Yj = Xj/Xn, j = 1, . . . , n, and a > 0 is a fixed positive number. Notice that Tn,a is
scale invariant. Straightforwardmanipulations of integrals gives the computationally
simple form

Tn,a =
1

n

n∑

i,j=1

[
(1− Yi)(1− Yj)

Yi + Yj + a
+
Yi(Yj − 1) + Yj(Yi − 1)

(Yi + Yj + a)2
+

2YiYj
(Yi + Yj + a)3

]
.

Under a fixed alternative distribution with finite expectation (which, because of
scale invariance, is taken to be 1), we have

Tn,a
n

P−→ ∆ :=

∫ ∞

0

z2(t)e−at dt, (4.4)

where
z(t) := E

[
e−tX (1− (1 + t)X)

]
, t ≥ 0. (4.5)

Notice that ∆ depends on a, although this dependence has not been made explicit.

To state the limiting normal distribution of Tn,a under a fixed alternative to
H0, let Wn(t) :=

√
n(Zn(t) − z(t)), t ≥ 0. The process Wn = (Wn(t), t ≥ 0)

can be regarded as a random element of the Hilbert space H := L2([0,∞),B1 ∩
[0,∞), e−atdt).

Theorem 2. If X has mean 1 and positive finite variance τ2, then

Wn
D−→W in H.

Here, W is a centered Gaussian process on H having covariance kernel

K(s, t) = L(s+ t) + (2 + s+ t)L′(s+ t) + (1 + s)(1 + t)L′′(s+ t)− z(s)z(t)

+ (L′(s) + (1 + s)L′′(s) + z(s))w(t)

+ (L′(t) + (1 + t)L′′(t) + z(t))w(s)

+ τ2g(s)g(t), s, t ≥ 0,

where L(t) = E[e−tX ] is the Laplace transform of X and

g(t) = E
[
Xe−tX ((1 + t)(tX−1)−t)

]
= (2t+ 1)L′(t) + t(1 + t)L′′(t), t ≥ 0. (4.6)
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Proof. The proof of Theorem 2 is given in Section 7.

From Theorem 1 we thus have

√
n

(
Tn,a
n

−∆

)
D−→ N(0, σ2),

where

σ2 = 4

∫ ∞

0

∫ ∞

0

K(s, t)z(s)z(t)e−a(s+t) dsdt. (4.7)

Notice that, like ∆, also σ2 depends on a.

To estimate σ2, we replace L,L′, L′′, g, z and τ2 by their respective empirical
counterparts

Ln(t) =
1

n

n∑

i=1

e−tYi , L′
n(t) = − 1

n

n∑

i=1

Yie
−tYi , t ≥ 0,

L′′
n(t) =

1

n

n∑

i=1

Y 2
i e

−tYi , zn(t) =
1

n

n∑

i=1

(1− Yi − tYi)e
−tYi , t ≥ 0,

gn(t) = − 1

n

n∑

i=1

Yie
−tYi(1− t(Yi − 2)− t2Yi), τ̂2n =

1

n

n∑

i=1

(Yi − 1)2,

based on the scaled random variables Y1, . . . , Yn. Denoting by Kn the resulting
estimator of K, the estimator σ̂2

n of σ2 is

σ̂2
n = 4

∫ ∞

0

∫ ∞

0

Kn(s, t)zn(s)zn(t)e
−a(s+t) dsdt.

Putting

S1n =

∫∫
Ln(s+ t)zn(s)zn(t)e

−a(s+t) dsdt,

S2n =

∫∫
(2 + s+ t)L′

n(s+ t)zn(s)zn(t)e
−a(s+t) dsdt,

S3n =

∫∫
(1 + s)(1 + t)L′′

n(s+ t)zn(s)zn(t)e
−a(s+t) dsdt,

S4n =

∫
z2n(t)e

−at dt,

S5n =

∫
(L′

n(t) + (1 + t)L′′
n(t)) zn(t)e

−at dt,

S6n =

∫
gn(t)zn(t)e

−at dt,

where
∫
is shorthand for

∫∞
0

, we have

σ̂2
n = 4

{
S1n + S2n + S3n − S2

4n + 2S5nS6n + 2S4nS6n + τ̂2nS
2
6n

}
.

Defining

Tij =
1

Yi + Yj + a
, 1 ≤ i, j ≤ n,
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tedious, but straightforward calculations yield

S1n =
1

n3

∑

i,j,k

TijTik(1 − Yj − YjTij)(1 − Yk − YkTik),

S2n = − 1

n3

∑

i,j,k

YiTijTik

(
2(1− Yj − YjTij)(1− Yk − YkTik)

+ Tij(1−Yj−2YjTij)(1−Yk−YkTik)+Tik(1−Yj−YjTij)(1−Yk−2YkTik)
)
,

S3n =
1

n3

∑

i,j,k

Y 2
i TijTik

(
1−Yj+(1−2Yj)Tij−2YjT

2
ij

)(
1−Yk+(1−2Yk)Tik−2YkT

2
ik

)
,

S4n =
1

n2

∑

i,j

Tij

(
(1− Yi)(1 − Yj)− (Yi + Yj − 2YiYj)Tij + 2YiYjT

2
ij

)
,

S5n = − 1

n2

∑

i,j

YiTij

(
(1 − Yi)(1− Yj)− (Yi + Yj − 2YiYj)Tij + 2YiYjT

2
ij

)
,

S6n =
1

n2

∑

i,j

YiTij

(
Yj−1+(3Yj+Yi−YiYj−2)Tij+2(Yi+2Yj−2YiYj)T

2
ij−6YiYjT

3
ij

)
.

In the sums above, each of the indices runs from 1 to n.

As an alternative to the exponential distribution, we consider the Gamma dis-
tribution G(β, β) with shape parameter β and scale parameter β, which has the
density fβ(x) = ββxβ−1 exp(−βx)/Γ (β), x > 0, and fβ(x) = 0, otherwise. The
expectation of this distribution is 1, its variance is τ2 = 1/β.

In what follows, the parameter a figuring in (4.3) is chosen to be 1. To calculate
∆ defined in (4.4) and σ2 given in (4.7) in case of the distribution G(β, β), notice
that, for t ≥ 0,

L(t) =

(
β

β + t

)β

, L′(t) = −
(

β

β + t

)β+1

, L′′(t) =
β + 1

β

(
β

β + t

)β+2

.

Moreover, z(t) figuring in (4.5) and g(t) defined in (4.6) are given by

z(t) =
(1 − β)t

β

(
β

β + t

)β+1

, g(t) =
t2(1 − β) + β(t+ 1)

β + t

(
β

β + t

)β+1

,

respectively. Straightforward calculations now yield

σ2 = 4

(
I1 + I2 −∆2 + 2(I3 +∆)I4 +

I24
β

)
,
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where

I1 =

∫ ∞

0

∫ ∞

0

(L(s+ t) + (2 + s+ t)L′(s+ t)) z(s)z(t)e−a(s+t) dsdt

=

∫ ∞

0

(∫ u

0

z(u− t)z(t) dt

)
(L(u) + (2 + u)L′(u)) e−au du,

I2 =

∫ ∞

0

∫ ∞

0

(1 + s)(1 + t)L′′(s+ t)z(s)z(t)e−a(s+t) dsdt

=

∫ ∞

0

(∫ u

0

(1 + (u− t))(1 + t)z(u− t)z(t) dt

)
L′′(u)e−au du,

I3 =

∫ ∞

0

(L′(t) + (1 + t)L′′(t))z(t)e−at dt,

I4 =

∫ ∞

0

g(t)z(t)e−at dt.

For β ∈ {0.1, 0.25, 0.5, 1.5, 2, 3}, the integrals I1, I2, I3, I4 and∆ =
∫∞
0 z2(t)e−t dt

have been calculated by numerical integration. The corresponding values of ∆ and
σ2 are shown in Table 5. In addition, Table 5 exhibits realizations of 1

nTn and σ̂2
n,

based on a sample of size n = 1000 from simulated observations of X1, . . . , Xn.

β 0.1 0.25 0.5 1.5 2 3

∆ 0.34770 0.12380 0.02640 0.00547 0.01354 0.02659
1
nTn 0.35816 0.11310 0.02897 0.00928 0.01474 0.02693

σ2 0.30788 0.09987 0.01516 0.00107 0.00179 0.00192

σ̂2
n 0.32819 0.09182 0.01640 0.00154 0.00176 0.00187

Table 5 Expectation ∆ and variance σ2 of the limit distribution in case where the alternative
distribution is G(β, β), and simulated observations of the estimators 1

n
Tn and σ̂2

n
; n = 1000

Table 6 shows the empirical coverage probabilities of the confidence interval (3.1)
for ∆, each based on 10 000 replications, for several values of β and the sample sizes
n = 20, n = 50 and n = 100. The nominal confidence level is 1−α = 0.9. Likewise,
Table 7 displays the empirical power, based on 10 000 replications, of the goodness-
of-fit test for exponentiality that rejects the null hypothesis for large values of Tn.1.
The nominal level is 0.1. Critical values have been obtained by simulations based
on 100 000 replications. Moreover, Table 7 shows the approximation (3.2) (denoted
by App), to the power. The quality of this approximation is quite promising. Notice
that, in Tables 6 and 7, there are no entries for the sample size n = 200, since the
calucations are extremely time consuming due to the fact each of S1n, S2n and S3n

is a triple sum.

5 Two-sample weighted L
2-statistics

In the following we show that the results obtained so far are by no means confined
to one-sample weighted L2-statistics, but immediately carry over to two-sample
weighted L2-statistics of the type

Tm,n =
mn

m+ n

∫

M

Z2
m,n(t)µ(dt), (5.1)
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β

0.1 0.25 0.5 1.5 2 3

n = 20 0.83 0.82 0.78 0.81 0.81 0.81

n = 50 0.87 0.86 0.84 0.84 0.86 0.86

n = 100 0.88 .88 0.87 0.86 0.88 0.88

Table 6 Empirical coverage probabilities of In for ∆ (distribution G(β, β), nominal level 0.9,
10 000 replications)

β = 0.1 β = 0.25 β = 0.5 β = 1.5 β = 2 β = 3

MC App MC App MC App MC App MC App MC App

n = 20 1.0 1.0 0.99 0.91 0.70 0.71 0.35 0.37 0.70 0.61 0.97 0.95

n = 50 1.0 1.0 1.0 0.99 0.96 0.90 0.65 0.59 0.98 0.94 1.0 1.0

n = 100 1.0 1.0 1.0 1.0 1.0 0.98 0.90 0.79 1.0 1.0 1.0 1.0

Table 7 Empirical power and approximation (3.2) of the test for exponentiality against selected
alternatives from the G(β, β)-family

where M and µ retain their meanings from Section 1, and Zm,n(t) is based on two
samples X1, . . . , Xm, Y1, . . . , Yn, i.e., Zm,n(t) = Zm,n(X1, . . . , Xm, Y1, . . . , Yn, t).

As an example, suppose that the Xi, Yj are independent d-dimensional random
vectors, where X1, . . . , Xm are i.i.d. and Y1, . . . , Yn are i.i.d. To test the semipara-
metric ‘location shift’ hypothesis H0 that Y1 has the same distribution as X1 + µ
for some unspecified µ ∈ R

d, Henze et al. (2005) studied the weighted L2-statistic
(5.1) with M = R

d and

Zm,n(t) = U (1)
m,n(t)− U (2)

m,n(t),

where

U (1)
m,n(t) =

1

m

m∑

j=1

{
cos(t⊤(Xj + µ̂)) + sin(t⊤(Xj + µ̂))− Ψ(t)

}
,

U (2)
m,n(t) =

1

n

n∑

j=1

{
cos(t⊤Yj) + sin(t⊤Yj)− Ψ(t)

}
,

Ψ(t) = E
[
cos(t⊤Y1) + sin(t⊤Y1)

]
,

and µ̂ = µ̂m,n(X1, . . . , Xm, Y1, . . . , Yn) is some location equivariant regular estima-
tor of µ, e.g., µ̂ = Y n −Xm. The measure µ figuring in (5.1) was chosen to be the
spherically symmetric d-variate normal distribution Nd(0, β

2Id), where β > 0 is a
parameter and Id is the unit matrix of order d.

Two-sample weighted L2-statistics have also been employed by Gupta et al.
(2004) in the context of testing for affine equivalence of elliptically symmetric dis-
tributions and by Baringhaus and Franz (2010), who considered a general class of
consistent multivariate rigid motion invariant homogeneity tests. Meintanis (2005)
studied permutation tests for homogeneity based on the empirical characteristic
function. Moreover, Baringhaus and Kolbe (2015) dealt with two-sample weighted
L2-statistics based on empirical Hankel transforms. All these papers derive the limit
distribution under the respective null hypothesis H0 by showing that, under H0,

√
mn

m+ n
Zm,n

D−→ Z as m, n→ ∞
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in H = L2(M,M ∩ Bd, µ), where Z is some centered Gaussian process on H. In
dealing with asymptotics for two-sample problems, sometimes the additional con-
dition

there is some p ∈ (0, 1) such that
m

m+ n
→ p (5.2)

is imposed.

The following result shows that, under general conditions, two-sample weighted
L2-statistics have a limiting normal distribution.

Theorem 3. Let (Xj)j≥1 and (Yj)j≥1 be sequences of d-dimensional random vec-
tors on some probability space (Ω,A,P) such that, as m,n→ ∞,

m+ n

mn
Tm,n

P−→ ∆ :=

∫

M

z2(t)µ(dt) > 0 (5.3)

for some function z ∈ H := L2(M,M ∩ Bd, µ). Suppose further that

√
mn

m+ n
(Zm,n − z)

D−→W as m,n→ ∞ (5.4)

in H, where W is a centered Gaussian process on H having covariance kernel K.
Then

√
mn

m+ n

(
Tm,n
mn
m+n

−∆

)
D−→ N(0, σ2),

where σ2 is given in (2.2).

Proof. Let am,n =
√
mn/(m+ n). Proceeding as in the proof of Theorem 1, we

have

am,n

(
Tm,n

a2m,n

−∆

)
= 2〈am,n(Zm,n − z), z〉+ 1

am,n
‖am,n(Zm,n − z)‖2L2.

The assertion now follows from (5.4), the continuous mapping theorem and the fact
that am,n → ∞ as m,n→ ∞.

Remark 1. Notice that Theorem 3 is fairly general, since there is no assumption
regarding independence or identical distributions among X1, X2, . . . or Y1, Y2, . . ..
Of course, (5.3) postulates the validity of some sort of large numbers for Tm,n. The
additional condition (5.2), although sometimes imposed, can at second sight often
be dispensed with, and it clearly does not restrict the scope of possible applications.

It goes without saying that, in a two-sample setting with independent vectors
X1, . . . , Xm, Y1, . . . , Yn, where the X1, . . . , Xm are i.i.d with unknown distribution
function F and Y1, . . . , Yn are i.i.d. with unknown distribution functionG,∆ figuring
in (5.3) will depend on F and G. Then, in the same way as was done in Section 3,
Theorem 3 can be used to construct an asymptotic confidence interval for ∆(F,G)
or to establish an inverse goodness-of-fit test of H∆0

: ∆(F,G) ≥ ∆0 versus K∆0
:

∆(F,G) < ∆0, where ∆0 is a given positive number, provided that we have a
consistent estimator σ̂2

m,n of σ2.
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6 Concluding remarks

We have shown that, under general conditions, weighted one- and two-sample L2-
statistics are asymptotically normally distributed. It is easy to see that the approach
also encompasses the multisample case, which was considered by Hušková and Mein-
tanis (2008) in connection with tests for the multivariate k-sample problem based
on the ECF. As the examples show, one has to work out the covariance structure
of the limiting Gaussian process and the resulting variance of the limiting normal
distribution. If the latter can be estimated consistently, this opens the ground for
asymptotic confidence intervals for the distance of an underlying distribution with
respect to a hypothesized family, and for asymptotic tests that are able to vali-
date neighborhoods of hypothesized models. We hope that this paper will stimulate
interest in this important problem, which is in the spirit of bioequivalence testing.

7 Proof of Theorem 2

To derive the limit distribution of Wn, put

W̃n(t) :=
1√
n

n∑

j=1

{
e−tXj − E

[
e−tX

]
− (1 + t)

(
Xje

−tXj − E
[
Xe−tX

])

− E
[
Xe−tX ((1 + t)(tX − 1)− t)

]
(Xj − 1)

}
, t ≥ 0.

We first show

‖Wn − W̃n‖L2

P−→ 0. (7.1)

To this end, define the processes A = (An(t), t ≥ 0), Ãn = (Ãn(t), t ≥ 0), Bn =

(Bn(t), t ≥ 0) and B̃n = (B̃n(t), t ≥ 0), where

An(t) =
1√
n

n∑

j=1

{
e−tYj − E

[
e−tX

] }
,

Ãn(t) =
1√
n

n∑

j=1

{
e−tXj − E

[
e−tX

]}
+
√
n(Xn − 1)E

[
tXe−tX

]
,

Bn(t) =
1√
n

n∑

j=1

{
(1 + t)

(
Yje

−tYj − E
[
Xe−tX

]) }
,

B̃n(t) =
1√
n

n∑

j=1

{
(1 + t)

(
Xje

−tXj − E
[
Xe−tX

]) }

+
√
n(Xn − 1)E

[
Xe−tX(1 + t)(tX − 1)

]
.

Notice that

Wn − W̃n = (An − Ãn)− (Bn − B̃n). (7.2)

A one-term Taylor expansion with integral remainder gives

An(t)− Ãn(t) =
√
n(Xn − 1) (R1,n(t) +R2,n(t) +R3,n(t)) , t ≥ 0, (7.3)
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where

R1,n(t) = t

(
1

Xn

− 1

)
E
[
Xe−tX

]
,

R2,n(t) =
t

Xn

(
1

n

n∑

j=1

Xje
−tXj − E

[
Xe−tX

])
,

R3,n(t) =
t

Xn

∫ ∞

0

(
1

n

n∑

j=1

Xj

[
e
−tXj

(
1+τ

(
1

Xn
−1

))

− e−tXj

])
dτ.

By the law of large numbers,
∫∞
0 R2

i,n(t)e
−at dt → 0 P-a.s. for i = 1, 2. Putting

R̃3,n(t) =
t

Xn

1

n

n∑

j=1

Xj

∣∣∣e−tXj
1

Xn − e−tXj

∣∣∣ , t ≥ 0,

the relation

sup
0≤τ≤1

∣∣∣∣e
−tXj

(
1+τ

(
1

Xn
−1

))

− e−tXj

∣∣∣∣ =
∣∣∣e−tXj

1

Xn − e−tXj

∣∣∣

yields 0 ≤ R3,n(t) ≤ R̃3,n(t), t ≥ 0. Invoking the law of large numbers again, we have∫∞
0 R̃2

3,n(t)e
−at dt→ 0 P-a.s. and thus

∫∞
0 R2

3,n(t)e
−at dt→ 0 P-a.s. Therefore, (7.3)

and
√
n(Xn−1)

D−→ N(0, σ2) give ‖An−Ãn‖L2

P−→ 0. Likewise, ‖Bn−B̃n‖L2

P−→ 0.
In view of (7.2), this proves (7.1).

From the central limit theorem for random elements in the Hilbert space H,
see, e.g., Ledoux and Talagrand (2011), there is a centered Gaussian process W =

(W (t), t ≥ 0), which can be regarded as random element of H, such that W̃n
D−→W

and thus, due to (7.1), also Wn
D−→W .

The covariance function K ofW can be expressed in terms of the Laplace trans-
form L(t) = E

[
e−tX

]
, t ≥ 0, of X. For, noting that z(t) defined in (4.5) takes the

form z(t) = L(t) + (1 + t)L′(t), t ≥ 0, the definition of g(t) given in (4.6) gives

K(s, t) = E

[ (
e−sX − (1 + s)e−sX − z(s)− g(s)(X − 1)

)

(
e−tX − (1 + t)e−tX − z(t)− g(t)(X − 1)

) ]
, s, t ≥ 0.

Due to

E

[ (
e−sX − (1 + s)Xe−sX − z(s)

) (
e−tX − (1 + t)Xe−tX − z(t)

) ]

= L(s+ t) + (2 + s+ t)L′(s+ t) + (1 + s)(1 + t)L′′(s+ t)− z(s)z(t), s, t ≥ 0,

and

E

[(
e−sX−(1 + s)Xe−sX−z(s)

)
g(t)(X−1)

]
= (L′(s)+(1+s)L′′(s)+z(s)) g(t),

s, t ≥ 0, we obtain the representation of K(s, t) given in Theorem 2. ✷
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