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I. Introduction 

 

Economic science is systemized knowledge about the nature of social reality that 

pertains to economic matters.  No doubt, economists believe that their science is not 

fictional.  They develop theories and collect data to determine the empirical relevance 

of their theories.  They provide scientific explanations for regularities that they 

observe in their data.  And they use their theories and data to make predictions about 

the future of relevant economic phenomena and events.  However, in doing all this 

they face a problem that I believe most of them do not take seriously enough. 

 

1.1  A Serious Problem   

 

In the first chapter of his classic treatise, The Probability Approach in 

Econometrics (Haavelmo, 1944) Trygve Haavelmo makes two observations that I 

can use to explicate the nature of the problem that economic scientists are facing. 

 

(1)  ‘When [asked] about the actual meaning of [a theoretical variable, the] 

answer we might give consists, at best, of a tentative description involving words 
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which we have learned to associate, more or less vaguely, with certain real 

phenomena’ (Haavelmo 1944, 4).  

(2)  ‘It is never possible – strictly speaking – to avoid ambiguities in 

classifications and measurements of real phenomena. [In] most cases we are not even 

able to give an unambiguous description of the method of measurement to be used, 

nor are we able to give precise rules for the choice of things to be measured in 

connection with a certain theory’ (Haavelmo 1944, 4). 

   

These observations have severe implications for the kind of empirical analysis 

that Haavelmo and his many followers today are advocating.  In any empirical 

analysis in which the relevance of an economic theory matters; i.e., in a theory-data 

confrontation, the researcher in charge (RIC) is to distinguish between true, 

theoretical, and observational variables. The value of a true variable (or time function) 

is taken to be an accurate measurement of reality “as it is in fact.”  The value of a 

theoretical variable is the true measurement that RIC should make if reality actually 

were in accordance with the theoretical model (Haavelmo 1944, 5). Finally, the value 

of an observational variable is the value of the variable that RIC has observed in a 

pertinent field survey or in relevant government publications as the case may be. If 

one takes the quotes from Haavelmo at face value, the concept of a true variable 

and the true value of a theoretical variable have no definite meaning.  Also, the 

references of RIC’s observational variables are ill defined.   

Strictly speaking, the theory in an economic theory-data confrontation is a 

theory about undefined terms; e.g., about toys in a toy economy.  The names of the 

terms indicate the kind of situation in social reality about which the originator of the 

theory was theorizing. The data in a theory-data confrontation are data that RIC has 

constructed from observations that he has obtained from field surveys or government 

publications.  The references of these data belong for the most part in a socially 

constructed world of ideas.  The toy economies and economists’ world of ideas have 

little in common with social reality – a fact which renders successful searches for 

knowledge about economic aspects of social reality problematic. 

            I believe that the given problem can be handled in a reasonable way.  A proper 

understanding of the purport of an economic theory and meaningful bridge principles 

that link up theoretical variables and relevant data can enable economists to learn 

about characteristic features of social reality.  
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1.2  The Purport of an Economic Theory   

 

To me the intended interpretation of an economic theory of choice or development 

delineates the positive analogies that the originator of the theory considered sufficient 

to describe the kind of situation that he had in mind.2  For example, in an economic 

theory of the firm one learns that the manager of a firm chooses his input-output 

strategy so as to maximize the firm's profits.  This characterization provides a succinct 

description of an important characteristic feature of firm behavior in the theory’s 

reference group of firms in social reality.  Similarly, in an economic theory of a 

certain kind of financial markets the theory may insist that the family of equilibrium 

yields on the pertinent instruments are co-integrated ARIMA processes.  This 

characterization describes a characteristic feature of the probability distributions that 

govern the behavior over time of equilibrium yields in such markets.  Whether the 

positive analogies in question have empirical relevance is a query that can be 

answered only by confronting the given theories with appropriate data.

            In reading the preceding observations on the purport of an economic theory it 

is important to keep the following points in mind.  (1)  To say that profit 

maximization is a positive analogy of firm behavior is very different from saying that 

the firm behaves as if it were maximizing profits.  The managers of the firms in the 

theory’s reference group do, by hypothesis, choose their input-output vectors so as to 

maximize their firms’ profits.  (2)  Even though an accurate description of the 

behavior of a given firm would exhibit many negative analogies of firm behavior, the 

positive analogies that the theory identifies must not be taken to provide an 

approximate description of firm behavior.  (3)  The understanding of the theory and 

the data one possesses determine what kind of questions about social reality one can 

answer in a theory-data confrontation.  With the first and third point I rule out of court 

the instrumentalistic view of economic theories expounded by Friedman (1953).  With 

the second and the third point I want to distance my view from the idea that the 

theorems of an economic theory are tendency laws in the sense that Mill (1836) gave 

to this term.3
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1.3   Bridge Principles in Theory-Data Confrontations 

 

Haavelmo saw no need for the use of bridge principles in the kind of empirical 

analysis he was advocating.  If the references of the true variables differed from 

the references of the observational variables, RIC could correct his data or 

adjust his theory so as to make ‘the facts [that he considered] to be the [values of 

the] ‘true’ variables relevant to the theory’ (Haavelmo 1944: 7).  However, when 

the concept of a true variable has no definite meaning and the references of RIC’s data 

belong in a world of ideas, Haavelmo’s cavalier attitude to empirical analysis cannot 

be justified. 

 

                                     Fig. 1  A Theory-Data Confrontation 
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 To me the theory and the data in a theory-data confrontation are given and 

RIC cannot escape the problem of figuring a way to relate his theoretical variables to 

his data.  A look at the prototype of a theory-data confrontation pictured in Fig. 1 

shows what I have in mind.  On the left side of the figure are boxes that contain 
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information pertaining to the relevant theory; i.e., the theory itself, models of the 

theory, and the part of the theory that is at stake in the empirical analysis.  The last 

part comprises the ingredients by which the theory universe is constructed.  On the 

right hand side of the figure are boxes that contain information concerning the data 

generating process; i.e., the sample population on whose characteristics observations 

are based, the observations, data that the researcher has constructed, and the data 

universe in which all the pertinent data variables reside.  The two universes are 

disjoint and connected by a bridge.  The bridge consists of assertions, called bridge 

principles, that describe how variables in the theory universe are related to variables 

in the data universe.  No meaningful empirical analysis can take place before RIC has 

formulated all the relevant bridge principles. 

            Formally, the Theory Universe is a pair, (ΩT, Γt), where ΩT is a subset of a 

vector space and Γt is a finite set of axioms that the members of ΩT must satisfy. The 

Data Universe is a pair (ΩP, Γp), where ΩP is a subset of a vector space and Γp is a 

finite set of axioms that the members of ΩP must satisfy.  The bridge principles, Γt,p, 

comprise a finite set of assertions concerning vectors in a subset of ΩT×ΩP that I 

denote by Ω and call the sample space.  More specifically, let ωT and ωP, respectively, 

be vectors in ΩT and ΩP, and let ω = (ωT, ωP) be a vector in ΩT×ΩP.  For all ω∈Ω, the 

members of Γt,p describe how the components of ωT are related to the components of 

ωP.   

 

      E 1.1  Consider an empirical analysis of the market for a given commodity that 

Aris Spanos describes in (Spanos 1989, 409-410).  In the associated formal theory-

data confrontation, the theory universe satisfies the conditions: 

 

            ωT ∈ ΩT only if ωT = (Qd,Qs,P,Wd,Ws,u,v), where (Qd, Qs) ∈ R+
2N, P ∈ R++

N, 

(Wd,Ws,u,v) ∈ R4N, and N = {0,1,…}.  Also, there exist triples of constants,  

(α0,α1,α2) and (β0,β1,β2), with α0 >>0, α1<0, β0 <0, and β1 >0, such that for all ωT ∈ 

ΩT and all t ∈ N 

         Qd
t = α0 + α1 Pt + α2 Wd

t ; Qs
t = β0 + β1 Pt + β2Ws

t , and  Qd
t =  Qs

t   

where Qd
t, Qs

t, Pt, Wd
t, and Ws

t denote the tth component of the respective variables.  
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As to the data universe,  

            ωP ∈ ΩP only if ωP = (q*,p*,z*d,z*s), where q* ∈ R+
N, p* ∈  R++

N, z*d ∈ RN, 

and z*s ∈ RN.   

 

Finally, the bridge principles:   

            Ω ⊂ ΩT × ΩP, and for all ω ∈ Ω and all t ∈ N,                                           

       q*t  = Qd
t + ut,  p*t = Pt

 + vt, z*d
t = Wd

t, and z*s
t = Ws

t. 

 

            In this formal market the Qd
t (and Qs

t) denotes so many units of the 

commodity in question that the agents in the market plan to buy (sell) at the price Pt; 

the Wd
t and Ws

t are variables that account for factors, other than the Q’s and the P, 

that are operative in the market; the q*t and p*t record actual sales and prises in the 

various periods; the z*d
t and z*s

t are, respectively, the observed values of Wd
t and Ws

t; 

and ut and vt are error terms.4  Except for the error terms and my insistence that the 

market in the theory universe is in equilibrium in each period, my model of the given 

market differs from Spanos’ model (cf. his equations 1a, 1b, 2a, 2b) in that the 

equations that constitute the bridge between the two universes pertain only to the 

values of the respective variables in the sample space.  The latter is a significant 

difference between the two models. 

 

            It is important to keep in mind that the bridge principles in a theory-data 

confrontation reflect RIC’s beliefs as to how his theoretical and data variables are 

related to one another.  Chances are that RIC has little empirical evidence on which to 

base his beliefs.  However, depending upon the subject matter of his theory, he may 

obtain good help from relevant economic theorems.  For example, in a study of 

consumer choice RIC may relate the price of a commodity and the commodity itself 

to a price index and a commodity index that he has constructed.  The Hicks-Leontief 

aggregation theorem tells him when such bridge principles are justified.   In a study of 

firm behaviour the theory may insist that the firm’s production function is a function 

of labor and capital and RIC must construct aggregates that he can relate to these 

theoretical variables.  Theorems in Stigum (1967 and 1968) describe aggregates that 

he can use and delineate conditions under which such bridge principles are justified. 
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1.4   Stylized Facts and Scientific Explanations 

 

Economic theory-data confrontations occur in many different situations.  In some of 

these confrontations economists try to establish the empirical relevance of a theory.  

In others econometricians search for theoretical explanations of observed regularities 

in their data.  In still others economic researchers produce evaluations of performance 

and forecasts for business executives and government policy makers.  In this paper I 

shall discuss theory-data confrontations in which the RIC searches for a scientific 

explanation of regularities in his data that economists like to identify as stylized facts; 

e.g., characteristic differences in cross-section and time-series estimates of the 

consumption function, (Friedman, 1957) and (Modigliani and Brumberg, 1955), or 

cointegration among yields on U.S. Treasury Bills (Hall et al, 1992). 

            An explanation is an answer to a why question.  It makes clear and intelligible 

something that is not known or understood by the person asking the question.  A 

scientific explanation is an explanation in which the ideas of a scientific theory play 

an essential role.  In economics this scientific theory is an economic theory, and the 

ideas of the theory are used to provide scientific explanations of regularities in RIC’s 

data. 

            The form in which the causes of events and the reasons for observed 

phenomena are listed and used in scientific explanations will differ among scientists, 

even within the same discipline.  There is, therefore, a need for formal criteria by 

which we can distinguish good from bad scientific explanations.  These criteria must 

list the necessary ingredients of a scientific explanation and explicate the ideas of a 

logically adequate and an empirically adequate scientific explanation.  I provide 

formal criteria for scientific explanations in economics and econometrics and 

exemplify their use in a laboratory test and in an analysis of the Treasury Bill market. 

 

1.4.1  Hempel’s Deductive Nomological Scheme for Scientific Explanations 

 

The most influential formal account of scientific explanation is Carl G. Hempel's 

deductive-nomological scheme (DNS) for scientific explanations (Hempel, 1965, pp. 

245-251).  According to Hempel, a scientific explanation of an event or a 

phenomenon must have four ingredients:  (1) A sentence, E, that describes the event 
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or phenomenon in question; (2) a list of sentences, C1,…,Cn, that describes relevant 

antecedent conditions; (3) a list of general laws, L1,…,Lk; and (4) arguments that 

demonstrate that E is a logical consequence of the Cs and the Ls.  Such an explanation 

is adequate if it is both logically and empirically adequate.  An explanation is 

logically adequate if at least one L plays an essential part in the demonstration that the 

explanandum E is a logical consequence of the explanans, the family of C’s and L’s.  

Moreover the explanation is empirically adequate only if (1) it is possible, at least in 

principle, to establish by experiment or observation whether the C’s that are used in 

condition 4 are satisfied, and (2) the L’s that are used in condition 4 have been 

subjected to extensive tests and have passed them all.5   

 

E 1.2:  I am to explain why Per, a human being, cannot live forever.  To do 

that I let P denote Per and let E(x) insist that x is mortal.  Then E becomes E(P).  

Next, I let C(x) assert that x is a human being and observe that C(P).  Finally, I let L 

denote a law of biology which insists that  (∀x)[C(x) ⊃ E(x)].  Now, in first-order 

logic L implies that   [C(P) ⊃ E(P)], and C(P) and [C(P) ⊃ E(P)] imply that E(P).  

Consequently, E(P) is a logical consequence of C(P) and L as required in condition 4 

of Hempel's scheme.             

 

The scientific explanation of E(P) in  E 1.2 is logically adequate since L plays 

an essential role in the proof that E(P) is a logical consequence of C(P) and L.  The 

explanation is also empirically adequate since observation alone suffices to determine 

whether P satisfies C, and since history accounts for numerous tests of L all of which 

have failed to falsify L.               

            Hempel's DNS has attractive features, and Hempel and others have used it to 

give interesting scientific explanations of events and phenomena in different sciences 

(cf. for example, Hempel, 1965, pp. 335-338 and Nagel,1961, pp. 30-32).  Even so, 

influential philosophers of science have criticized it for many failings and questioned 

the possibility of applying it in the social sciences because of the paucity of general 

laws in these sciences. 

A law is a general lawlike statement which insists that individuals or objects of 

a given kind must have certain properties or that individuals or objects of different 

given kinds must be related in a certain way.  Also a general lawlike statement is a 
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law only if it is a logical consequence of an accepted scientific theory and its truth 

value is independent of place and time. Examples are: "Copper expands when heated" 

(CEH) and "When electrones and antielectrones meet head on, they annihilate each 

other" (EAN). CEH is a theorem in thermodynamics and statistical mechanics, and 

EAN is a theorem in quantum mechanics.  Both theorems are believed to be valid 

irrespective of place and time. 

There are many economic theories and all sorts of interesting economic 

theorems.  Therefore, the claim that there are no laws in economics amounts to 

insisting that there are no theorems in economics whose empirical relevance is 

independent of time and place.  This claim cannot be true.  To wit:  Two of Nassau 

Senior's fundamental postulates of economics, the first and the last, Gresham's law, 

and Paul Samuelson's Fundamental Theorem of consumer choice (cf. Stigum, 1990, 

pp. 4, 554, and 186) are theorems of economics that economists believe are valid 

irrespective of place and time.  How prevalent such laws are in economics is, 

however, uncertain. 

            In the notion of a scientific explanation that I shall develop in this paper I will 

allow any number of economic theories to play the role of a law in Hempel's scheme.  

Consequently, the demands for logical and empirical adequacy of a scientific 

explanation on which I shall insist will appear much weaker than the DNS adequacy 

requirements.  Still my criteria for the empirical adequacy of a scientific explanation 

cannot differ that much from the criteria on which philosophers of science, today, 

insist.  Here are two observations in support of my contention:  (i)  A law of nature is 

not an assertion that has a truth value.  It is a statement that comes with a list of 

situations in which it has proven possible to apply it (Toulmin, 1953, pp. 86-87).     

(ii)  Scientists apply theories selectively in scientific explanations.  For example, they 

say that Newton's theory can be used to explain the tides even though they know that 

Newton's laws do not satisfy Hempel's critera for empirical adequacy.  Whether a 

theory explains some fact or other, is independent of whether the real world, as a 

whole, fits the theory (Van Frassen, 1980, p. 98).   
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1.4.2  Empirical Relevance and Hempel’s Symmetry Thesis 

 

A scientific explanation is empirically adequate only if the theory that is used in the 

explanation is relevant in the empirical context in which the explanation is carried out.  

In this section I explicate the two notions, empirical context and empirical relevance, 

in theory-data confrontations in which the data generating process (DGP) is 

deterministic; that is, in the kind of confrontations for which Hempel developed his 

DNS.  In Section 3 I shall discuss the meaning of the same two notions in situations 

where the data generating process is random; that is, in the kind of situations that 

econometricians usually face. .  

When the data generating process is deterministic, the empirical context in 

which the theory-data confrontation takes place is a pair, an accurate description of a 

sampling scheme and a family of data admissible models of the data universe,       

(ΩP, Γp).   A model of (ΩP, Γp) is data admissible if the actual data in the pertinent 

theory-data confrontation satisfy the strictures on which the model insists. 

Next, let (ΩT, Γt) and Γt,p denote the theory universe and the bridge principles 

in the present theory-data confrontation.  Also, let IMp denote the intended family of 

data admissible models of the data universe and let ℑp denote the family of collections 

of sentences about individuals in the data universe that are logical consequences of Γt, 

Γp, and Γt,p. There is one collection of such sentences for each member of the intended 

interpretation of (Γt, Γp , Γt,p).  The pertinent theory, is relevant in the empirical 

context that IMp delineates if and only if there is at least one member of the intended 

interpretation of Γt, Γp, Γt,p  such that  the corresponding member of ℑp has a model 

that is a member of IMp . 

 An interpretation of the theory universe comprises a family of models of  Γt.  

The requirement that there be a member of the intended interpretation of Γt, Γp, Γt,p  

such that the corresponding members of ℑP are valid in some member of IMP singles 

out one model of (ΩT, Γt) that is empirically relevant in the given theory-data 

confrontation.  I believe that the RIC ought to search for a as large as possible family 

of models of the theory universe that satisfies the required condition.    

In theory-data confrontations in which Γt,p has many models it is often the case 

that the RIC ends up checking whether there is a model of  Γt,p that will allow him to 

conclude that his theory has empirical relevance.  This may sound strange, but is in 
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accord with the condition of empirical relevance that I delineated above.  The next 

example shows what I have in mind. 

 

            E 1.3   I believe that individuals rank random prospects according to their 

expected utility and that individual utility functions are linear.  I also believe that 

people tend to overvalue low probabilities and undervalue high probabilities.  To test 

these hypotheses I face a student of mine with a large number, N, of simple prospects, 

ask for his certainty equivalents of these prospects, and construct his utility function. 

 The axioms of my test concern one undefined term, the Sample Space, Ω, that 

must satisfy the following set of axioms.  The definitional axiom is as follows: 

 

 U 1:  There are sets, ΩT and ΩP of ordered (2N+1)-tuples, ωT and ωP, such that       

Ω ⊂ ΩT × ΩP. 

 

The Γt axioms are: 

 U 2:  ωT ∈ ΩT only if ωT = (p,x,U), where (p,x) ∈ ([0,1]×[0,1000])N  and 

U(⋅):[0,1000]→[0,1]. 

 U 3:  For all ωT ∈ ΩT, U(xi)=pi, i=1,...,N, where (pi,xi) is the ith component of 

(p,x). 

 U 4:  For all ωT ∈ ΩT, xi=1000pi, i=1,...,N. 

 

The Γp axioms are: 

 U 5:  ωP ∈ ΩP only if ωP=(q,z,W), where (q,z) ∈ ([0,1]×[0,1000])N and  

W(⋅):[0,1000]→[0,1]. 

 U 6:  For all ωP ∈ ΩP, W(zi)=qi, i=1,...,N, where (qi,zi) is the ith component of 

(q,z). 

 

The Γt,p axioms are: 

 U 7:  For all (ωT,ωP) ∈ Ω, xi = zi. i=1,...,N. 

 U 8:  There is an α∈(0,0.5] such that, for all (ωT,ωP) ∈ Ω and i=1,...,N,                                          
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                                          α + α-2(qi-α)3 if 0≤qi≤α  

                                pi = 

                                          α + (1-α)-2(qi-α)3 if α<qi≤1 

 

 In the interpretation of the Γt axioms that I intend, U(⋅) is the utility function of a 

student, pi is the student’s perceived probability, and xi is his certainty equivalent of a 

random prospect which promises 1000 with (perceived) probability pi and 0 with 

(perceived) probability (1-pi).  With this interpretation of U(⋅), p, and x, it follows from   

U 3 and U 4 that, for all ωT ∈ ΩT and i=1,..,N, U(xi) = xi/1000. 

 In the intended interpretation of the ΓP axioms, qi is a probability with which I 

describe random prospects to my student, that is, 1000 with probability qi and 0 with 

probability (1-qi).  Also, for each qi, zi is the certainty equivalent of a random prospect 

that the student records.  Finally, W(⋅) is the utility function that I will construct on the 

basis of the student’s responses to my qs. 

 In the interpretation of the Γt,p axioms that I intend, U 8 describes how a student’s 

perceived probabilities vary with quoted probabilities.  The axiom delineates one way in 

which the student might overvalue low probabilities and undervalue high probabilities.  

Finally U 7 insists that I will obtain accurate observations on x. 

 From the preceding axioms I derive T 1 to test the empirical relevance of  U 2,     

U 3, and U 4.  This theorem is a proposition concerning individuals in ΩP. 

 

 T 1:  Let α∈(0,0.5] be the α of U 8.  Then, for all (ωT,ωP) ∈ Ω and i=1,...,N. 

 

                               α(1+([zi-1000α]/1000α)1/3) if 0≤zi≤1000α  

               W(zi) = 

                               α(1+((1-α)/α)([zi-1000α]/1000(1-α))1/3 if 1000α≤zi≤1000.  

 

This theorem is true in some model of U 5 and U 6 but not in all models of these axioms.  

Also T 1 is true in all models of U 1-U 8.  Hence, I can use T 1 to test the empirical 

relevance of U 2-U 4 by checking whether T 1 is true in one of the data admissible models 

of Γp that the intended interpretation of (ΩP,Γp) contains.  The intended interpretation of 

(ΩP,Γp) in the present case is determined by my student’s responses to my queries.  A 

member of this interpretation is a model of ΩP that contains the N values of qi that I 
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quoted, the corresponding certainty equivalents, zi, that my student recorded, and a 

function, W(⋅):[0,1000]→[0,1] , that satisfies the conditions, W(zi) = qi , i = 1,…,N.                 

If there is no model of Γt,p; i.e., if there is no α∈(0,0.5], such that T 1 is valid 

in a member of the intended interpretation of (ΩP,Γp), I must conclude that Γt, Γt,p or 

both lack relevance in the given empirical context 

   

            The empirical relevance of the pertinent theory has interesting implications for 

my account of scientific explanation.  According to Hempel, scientific explanation 

and prediction are two sides of the same coin.  Specifically, in an adequate DNS in 

which the C’s are valid statements the logical arguments that are used to establish the 

explanandum E constitute a potential predictor of the occurrence of E.  In my account, 

the logical arguments in a logically adequate explanation of E demonstrate that E is 

valid in any world in which the bridge principles are valid.  They do not show that E 

is valid in the Real World.6  Hence, they cannot be used as potential predictors of E.  

Hempel’s symmetry thesis concerning explanation and prediction holds in my account 

only if the explanation is both logically and empirically adequate; i.e., only if the 

theoretical arguments in the explanation are relevant in the empirical context in which 

the explanation is carried out. 

 

2.  Scientific Explanation in Economics  

  

In this section of the paper I shall present a formal characterization of 

scientific explanations in economics for situations in which there is no sample 

population, S, and just one model in the intended interpretation of Γp.  The situations I 

have in mind are analogues of the kind of situation for which Hempel developed his 

DNS; i.e. a situation in which the explanation can be based on physical or economic 

theories of deterministic character (cf. Hempel, 1965, p. 351).  It is, therefore, 

interesting that my characterization of scientific explanations, with the proper 

translation, can be made to fit Hempel's scheme.  I explain how in Section 2.3, 
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2.1  The Characterization 

 

I have observed certain stylized facts in a set of data and search for a scientific 

explanation of these regularities.  Formally, my search can be described as follows:                

 

SE 1:  Let (ΩP,Γp) be some given data universe.  Assume that the components 

of the vectors in ΩP denote so many units of objects that have been observed and that 

Γp delineates the salient properties of these data.   Also, let H be a finite family of 

assertions concerning ΩP, and suppose that there is a data admissible model of 

(ΩP,Γp), M, in which all the assertions of H are true.  M is taken to be the intended 

model of the data universe and it is assumed that H delineates the characteristics of 

the data that are to be explained.  Then, to give a scientific explanation of H, means to 

find a theory universe, (ΩT,Γt), a sample space, Ω ⊂ ΩT × ΩP ,and a collection of 

bridge principles, Γt,p, that in Ω link ΩT with ΩP such that H becomes a logical 

consequence of Γt, Γp, and Γt,p.   

 

Such an explanation is logically adequate, if H is not a logical consequence of Γp 

alone.  It is empirically adequate if M is a model of all the logical consequences of Γt, 

Γt,p, and Γp that concern components of ωP. 

 In SE 1 there are several things to notice and to keep in mind for later 

discussion.  Firstly, in SE 1, as in Hempel's DNS, the explanandum is a logical 

consequence of the explanans, and the explanation is logically adequate if at least one 

of the components of Γt plays an essential role in the proof of H.  As in the case of  

Hempel's DNS, the logical adequacy of a scientific explanation alone does not in my 

scheme entail the symmetry thesis.  The reason why is that I cannot assert Γt,p and 

claim that the principles it comprises are valid.  At best, I can insist that ∼�∼Γt,p ; i.e., 

that the given bridge principles are valid in some world, and hope that all the logical 

consequences of Γt , Γt,p , and Γp are valid in M. 

 Secondly, the empirical adequacy of an SE 1 scientific explanation hinges on 

the predictive powers of Γt.  Specifically, the scientific explanation of H is empirically 

adequate if Γt is relevant in the empirical context that M determines.  It is, therefore, 

not strange that the required empirical relevance of Γt entails that a logically and 

empirically adequate scientific explanation of H could have been used to predict the 
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happening of H.  Hempel' symmetry thesis does apply to logically and empirically 

adequate SE 1 explanations.  

 Thirdly, both the empirical and the logical adequacy of an SE 1 scientific 

explanation hinge on the validity of the bridge principles that are adopted.  This is an 

important aspect of SE 1 the meaning of which I explicate in discussing the modal-

logical rendition of SE 1 in section 22.3. in (Stigum, 2003). 

 

2.2   An Example7

 

My explication of scientific explanation might sound unfamiliar. So here is an 

example to fix ideas.  Suppose that I, for some student, have constructed the function, 

W(⋅):[0,1000] → [0,1], in the way I described the construction of W(⋅) in E 1.3, and 

suppose that this new W(⋅), at each observed x, satisfies equation (1). 

 

                          W(x) = 0.5(1+((x-500)/500)1/3), x ε [0,1000].                                   (1) 

 

Suppose also that I, for the same student, have constructed a function, V(⋅): [0,1000] 

→ [0,1], in the following way: I assigned the values 0 and 1, respectively, to V(0) and 

V(1000). Also, whenever V(⋅) had been defined at x and y, I let V(C(x,y)) = (1/2)V(x) 

+ (1/2)V(y), where C(x,y) equaled the student's certainty equivalent of the option, x 

with probability 1/2 and y with probability 1/2.  Finally, suppose that, for all x ε 

[0,1000] at which I have defined V(⋅ ), I have found that it satisfies the relation:  

                                           V(x) = x/1000,  x ε [0,1000].                                            (2) 

Now, I am asked to give a scientific explanation of equations (1) and (2) and the 

inequalities in equation (3). 

                                               > W(x) if x ε (0, 500), and 

                               V(x) is                                                                                           (3) 

                                               < W(x) if x ε (500,1000). 

To do that I must describe the data universe, (ΩP,Γp), formulate the assertion to be 

explained, H, find the required theory universe, (ΩT,Γt), and delineate the bridge 

principles that are to connect ΩT with ΩP. 
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The Data Universe and the Explanandum, H 

 

I begin by letting ΩP be a set of seventuples, ωp, that satisfy the following axioms: 

      

      EB 1:  ωP ε ΩP only if ωP = (q,x,W,y,z,C,V), where q ε [0,1], x,y,z ε [0,1000], 

W(⋅):[0,1000] → [0,1], y ≤ z,V(⋅): [0,1000] → [0,1], V(0) = 0, V(1000) = 1, and 

C(⋅):[0,1000]2 → [0,1000]. 

      EB 2:  For all ωP ε ΩP, W(x) = q, and V(C(y,z)) = (1/2)V(y) + (1/2)V(z). 

      EB 3.  If (q,x,W,y,z,C,V) ε ΩP , then (q,x,W,0,1000,C,V) ε ΩP.  Also, there exist 

two uniquely determined pairs of numbers in [0,1000], (vy,wy) and (vz,wz), that are 

independent of q and x and satisfy the relations, y = C(vy,wy), z = C(vz,wz), 

(q,x,W,vy,wy,C,V) ε ΩP, and (q,x,W,vz,wz,C,V) ε ΩP.  If y = 0, (vy,wy) = (0,0), and  if     

z = 1000, (vz,wz) = (1000,1000).  Otherwise, vy < wy and vz < wz. 

 

When reading these axioms, observe that the uniqueness of the pairs, (vy,wy) and 

(vz,wz), on which I insist in EB 3, is a characteristic of the sampling scheme that I 

used in the construction of V(⋅).  It is not a property of certainty equivalents as such.  

With that in mind, I can state the explanandum, H, as follows : 

 

      H:  For all ωP ε ΩP, (i) the value of W(⋅) at x satisfies equation (1) with q instead 

of p; (ii) the values of V(⋅) at y, z, and C(y,z) satisfy equation (2); and (iii) the value of 

W(⋅) at x and the value of V(⋅) at C(y,z) satisfy the inequalities in equation (3) 

whenever x = C(y,z). 

 

This assertion is true in some model of (ΩP,Γp), but it is not a logical consequence of         

EB 1, EB 2, and EB 3. 

 

The Theory Universe  . 

 

Next I must search for a useful theory universe, (ΩT,Γt). Here is one possibility.  Let 

ΩT be a set of sextuples, ωT, that satisfy the following axioms: 
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     EB 4:  ωT ε ΩT only if ωT = (p,r,U,s,t,Ĉ), where p ε [0,1], r,s,t ε [0,1000],                             

U(⋅): [0,1000] → [0,1], s ≤ t, and Ĉ(⋅):[0,1000]2 → [0,1000]. 

     EB 5:  For all ωT ε ΩT , U(r) = p and U(Ĉ(s,t)) = (1/2)U(s) + (1/2)U(t). 

     EB 6:  For all ωT ε ΩT, r = 1000p, and Ĉ(s,t) = (1/2)s + (1/2)t. 

 

In these axioms the triple (p,r,U) plays the same role as the triple, (p,x,U), played in 

section 17.3.1 (cf. axioms U 2-U 4).  Also, Ĉ(s,t) is to be interpreted as the certainty 

equivalent of the random option, s with perceived probability 1/2 and t with perceived 

probability 1/2.  In its intended interpretation, (ΩT, EB 4-EB 6) is the universe of a 

theory in which the decision maker orders prospects according to their perceived 

expected value. 

 

The Bridge Principles 

 

Finally, I must describe how, in the sample space, the individuals in ΩT are related to 

the individuals in ΩP.  I shall insist that I have accurate observations on r,s,t, and Ĉ. 

Also, I shall assume that the given student's perceived probabilities, in an appropriate 

way, overvalue low probabilities and undervalue high probabilities. 

 

     EB 7:  The sample space, Ω, is a subset of ΩT x ΩP. 

     EB 8:   For all (ωT,ωP) ε Ω, r = x, s = y, t = z, and Ĉ(s,t) = C(y,z). 

     EB 9:  For all (ωT,ωP) ε Ω, p = 0.5 + 4(q-0.5)3 . 

     EB 10:  If (ωT,ωP) ε Ω and (ωT,ωP) = (p,r,U,s,t,Ĉ,q,x,W,y,z,C,V), then 

(p,r,U,0,1000,Ĉ,q,x,W,0,1000,C,V) ε Ω, (p,r,U,vy,wy,Ĉ,q,x,W,vy,wy,C,V) ε Ω, and 

(p,r,U,vz,wz,Ĉ,q,x,W,vz,wz,C,V) ε Ω, where the pairs, (vy,wy) and (vz,wz), are as 

described in EB 3.  

     

If I pick (ΩT,Γt) and Γt,p as described above, I can show by simple algebra that, 

for all (ωT,ωP) ε Ω, the value of W(⋅) at x must satisfy equation (1).  Moreover, I can 

show, first by simple algebra, that C(y,z) = (1/2)y + (1/2)z, and then, by an obvious 

inductive argument, that the value of V(⋅) at y,z, and C(y,z) must satisfy equation (2).  

But if that is so, the value of W(⋅) at x and the value of V(⋅) at C(y,z) must satisfy the 
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inequalities in equation (3) whenever x = C(y,z).  Hence, (ΩT,Γt) and Γt,p provide the 

required scientific explanation of H.  

 The explanation of H that I have delineated is obviously logically adequate.  

Since I have no relevant data, I cannot determine whether the explanation is 

empirically adequate. 

 

2.3   Sundry Remarks 

 

There are several striking features of the preceding example of a scientific explanation 

that I should point out.  According to expected utility theory (EUT), the relation, V(x) 

= W(x),   x ε [0,1000], must hold if the student's perception of probabilities are 

veridical.  This is true, moreover, regardless of whether W(⋅) is linear.  Also, the 

relationship between V(⋅) and W(⋅) depicted in equation (3) seems to be a general 

feature; i.e., a stylized fact, of experimental results that Maurice Allais and his 

followers have recorded during the last fifty years (cf. for example Allais 1979, pp. 

649-654).  Note, therefore, that I use EUT to provide a scientific explanation of 

equations (1)- (3).  In contrast, Allais and his followers have used the necessity of the 

equality of V(⋅) and W(⋅) and equation (3) to discredit the descriptive power of EUT 

in risky situations.  My analysis shows that they had good reasons for their disbelief 

only if their subjects' perception of probabilities was veridical. 

            A logically and empirically adequate SE 1 explanation differs in interesting 

ways from an adequate DNS explanation.  Hempel's Cs, Ls, and E concern individuals 

in one and the same universe.  This universe is in SE 1 my data universe.  There the 

members of Γp play the roles of Hempel's Cs, the translated versions of  the members 

of Γt play the roles of Hempel's Ls, and H has taken the place of Hempel's E.  Hence, 

with the proper translation, an SE 1 explanation can be made to look like a DNS 

explanation.  Still, there is a fundamental difference.  Hempel's criteria for a DNS 

explanation to be empirically adequate insist that his Ls must have been subjected to 

extensive tests and have passed them all.  I only insist that my Ls, the members of Γt, 

be relevant in the given(!) empirical context in which the explanation is carried ouit.   

There is an interesting second way in which an SE 1 explanation differs from a 

DNS explanation.  This difference enables a logically and empirically adequate SE 1 

explanation to reason away one of the most serious problems that Hempel's DNS  has 
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faced (cf. my remarks at the end of section 22.1).  The problem arises when the same 

question calls for different answers depending on the circumstances in which it is 

asked.  Then an adequate DNS explanation may be good in one situation and 

meaningless in another.  In logically and empirically adequate SE 1 explanations this 

problem does not arise.  The reason why is that the meaning of H in SE 1 varies with 

the empirical context, M.  H may have the same meaning in two different Ms.  Also, 

the same M may be a model of two different Γps.  In SE 1 H and M are given in 

advance.  Different Ms and/or different Γps might call for different Γts and Γt,ps in the 

explanation of H. 

 

2.4   A Potential Criticism 

 

Judging from my reading of Bas Van Frassen's wonderful book on The Scientific 

Image (Van Frassen, 1980), Van Frassen would not be satisfied with SE 1  and its 

demands for logical and empirical adequacy.  He would agree that it is correct to 

require that the scientific theory on which  the explanation is based  be empirically 

relevant in the context in which the explanation is carried out.  However, in order that 

this requirement be meaningful, the description of the "context" must be adequate.  

Van Frassen would fault my description on two accounts.   It fails to provide criteria 

by which a person can judge the contextual relevance of the theory.  It also fails to 

specify a contrast class for H.  These qualms about SE 1 are interesting.  So I shall 

take time to explain what Van Frassen has in mind. 

First, the contextual relevance of the theory in SE 1:  Van Frassen believes that a 

person who is asked to explain the occurrence of an event or an observed 

phenomenon will start by looking for salient features of the cause of the event or 

salient reasons for the existence of the phenomenon.  What appears salient to a given 

person depends on his orientation, his interests, and various contextual factors.  For 

example, the cause of a youngster's death might be 'multiple hemorrhage' to a 

physician, 'negligence on the part of the driver' to a barrister,  and 'a defect in the 

construction of the car brakes' to a car mechanic (Van Frassen, 1980, p. 125).  

Therefore, the reasons why one theory is chosen instead of another ought to appear in 

the description of the context in which the given person carries out his scientific 

explanation.     
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Then the required contrast class for H.  A contrast class for the explanandum is a 

finite family of assertions, {H, A, B, …, K}, that concern individuals in the data 

universe and have the property that H and the negations of all the other assertions in 

the class are logical consequences of the pertinent explanans.  Van Frassen believes 

that the singling out of salient causal factors of an event or salient reasons of a 

phenomenon depends on the range of contrasting alternatives to the explanandum.   

For example, it makes a difference in explaining why a given person has paresis 

whether the contrast class is his brother or the members of his country club all of 

whom have a history of untreated syphilis (Van Frassen, 1980, p. 128).   By 

specifying a contrast class, the scientist can communicate to interested parties what 

question he is out to explain. 

The given ideas of Van Frassen about the pragmatics of scientific explanation 

have important bearings on SE 1.  I shall mention two of them.  Firstly, the axioms of 

the theory in SE 1 need not constitute more than a small part of the axioms of a 

complete theory.  For example, in 2.1 the axioms of the relevant complete theory are 

the axioms of von Neumann and Morgenstern's expected utility theory together with 

the additional assumption that the utility function is linear.  The axioms of the theory 

universe in 2.1 postulated only the latter assumption.  By delineating an appropriate 

contrast class for H, I can introduce the complete theory, so to say, via the back door.  

In 2.1, for example, I can insist that the contrast class of H is{H, [W(x) = x/1000], 

[W(x) = V(x)]}.  Besides H, this contrast class contains two assertions on which the 

expected utility theory insists. 

  Secondly, in my theory of scientific explanations I have been content to come 

up with one possible explanation of the explanandum.  It is often the case that 

different scientific theories can be used to provide an explanation of one and the same 

explanandum.   If two different theories can explain a given H, then some of the 

predictions of one are likely to constitute a contrast class for the other and vice versa.  

The two contrast classes might give us reasons to prefer one of the explanations over 

the other.  Such uses of contrast classes appear in my discussion of testing one theory 

against another in chapter 18 of (Stigum, 2003). 
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3.  Scientific Explanation in Econometrics 

 

The situation envisaged in SE 1 is similar to the experimental tests of physical 

theories which Pierre Duhem described in his book, The Aim and Structure of 

Physical Theory (cf. Duhem, 1954, pp.144-147).  It differs, however, from the 

situations econometricians usually face when they search for the empirical relevance 

of economic theories.  In SE 1 H is a family of sentences each one of which has a 

truth value in every model of (ΩP,Γp), and all of which are true in some model of 

(ΩP,Γp).  In contrast, in enconometrics H is often a family of statistical relations.  One 

H might insist that "on the average, families with high incomes save a greater 

proportion of their incomes than families with low incomes."  Another H might claim 

that "the prices of soybean oil and cottonseed oil vary over time as if they were two 

cointegrated ARIMA processes."  These assertions are about properties of the data 

generating process.  They need not have a truth value in a model of (ΩP,Γp).   

When H is a family of statistical relations, a scientific explanation of H must 

be based on statistical arguments.  Before I can describe the characteristics of 

scientific explanation in such cases I must, first, sketch the formal structure of theory-

data confrontations in which the data generating process is random and discuss what it 

means for the relevant theory to be empirically relevant in such a case. 

 

3.1  Theory-data Confrontations with random data generating Processes 

.   

The structure of a theory-data confrontation in which the data generating 

process is stochastic has four parts.  The first three are the two universes and the 

bridge between them.  However, in this case the data universe is not taken to be an 

independent entity.  Instead, it forms one part of a triple, ((ΩP,Γp), ℑp, Pp(⋅)), where 

ℑp is a family of subsets of ΩP and Pp(⋅): ℑp→[0,1] is a probability measure. Subject 

to the conditions on which Γp insists, Pp(⋅) induces a joint probability distribution of 

the components of ωP that I denote by FP.  In a formalized theory-data confrontation 

with a random data generating process, FP plays the role of the true probability 

distribution of the components of ωp.   

The fourth part of the formal structure comprises three elements: a sample 

population, S, a function, Ψ(⋅):S→Ω, and a probability measure, P(⋅):ℵ→ [0,1] on 
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subsets of Ω.  I imagine that the pertinent econometrician is sampling individuals in S, 

for example, firms or historical data.  S is usually a finite or a countably infinite set.  

With each point s ∈ S I associate a pair of vectors, (ωTs,ωPs) ∈ Ω.  I denote this pair 

by Ψ(s) and insist that Ψ(s) is the value at s of the function, Ψ(⋅).  I also imagine that 

there is a probability measure, Q(⋅), on a σ-field of subsets of S, ℵS, that determines 

the probability of observing an s in the various members of ℵS.  The properties of Q(⋅) 

are determined by Ψ(⋅) and the probability measure, P(⋅), that assigns probabilities to 

subsets of Ω in ℵ.   Specifically, ℵS is the inverse image of ℵ under Ψ(⋅) and, for all 

B∈ℵ, 

                Q(Ψ-1(B)) = P(B ∩ range(Ψ))/P(range(Ψ)), 

where range(Ψ) = {ω∈Ω:ω=Ψ(s) for some s∈S}.  Finally, I imagine that the 

econometrician has obtained a sample of N observations from S, s1,..., sN, in 

accordance with a sampling scheme, ξ.  P(⋅) and ξ determine a probability distribution 

on subsets of ΩN.  The marginal distribution of the components of ωP determined by 

P(⋅) and Γt,p I denote by MPD.  The marginal distribution of the sequence of ωPss 

determined by P(⋅), Γt,p and ξ, I refer to as the pseudo data generating process and 

denote it by PDGP.  The true data generating process I identify with the joint 

distribution of the ωPss that is induced by FP and ξ, and I denote it by DGP.8       

 Strictly speaking, in a formalized economic theory-data confrontation in which 

the data generating process is taken to be stochastic, the empirical context in which 

the theory-data confrontation takes place is a triple, an accurate description of a 

sampling scheme, the intended interpretation of the data universe, (ΩP, Γp), and the 

true probability distribution of the components of ωP, FP.  I shall refer to this 

empirical context by the name, Real World.  The empirical context in which the 

theory-data confrontation actually takes place is a different triple, a not-necessarily 

accurate description of a sampling scheme, the intended interpretation of (ΩP, Γp), and 

an interpretation of MPD, the marginal probability distribution of the components of 

ωP.  I like to think of this empirical context as one of the worlds in which all the 

bridge principles are valid.   

As to the relevance of the theory.  Let the core structure of the theory-data 

confrontation be as described above, and let IMp and IMMPD , respectively, denote the 

intended family of data admissible models of the data universe and the MPD.  For 
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simplicity I shall assume that the members of IMMPD are parametric.  Next, let ℑp 

denote the family of collections of sentences about individuals in the data universe 

that are logical consequences of Γt, Γp, and Γt,p. There is one collection of such 

sentences for each member of the intended interpretation of (Γt, Γp , Γt,p).  Finally, let 

ℑMPD denote the family of collections of sentences about the parameters of the MPD 

that are logical consequences of Γt, Γp, Γt,p  and the axioms that determine the 

characteristics of P(⋅).  Each member of ℑMPD is a collection of sentences about the 

parameters of the MPD that is determined by a member of the intended interpretation 

of Γt, Γp, Γt,p  and the axioms that determine the characteristics of P(⋅).  Now, the 

theory is relevant in the empirical context that IMp and IMMPD delineate if and only if 

there is at least one member of the intended interpretation of Γt, Γp, Γt,p  and the 

axioms that determine the characteristics of P(⋅) such that (1) the corresponding 

member of ℑp has a model that is a member of IMp , and (2) the corresponding 

member of  ℑMPD  is valid in some member of IMMPD. 

 

3.2 A Characterization of Scientific Explanation for Econometrics 

 

With that much said about the formal structure of a theory-data confrontation in which 

the data generating process is random I can provide a succinct characterization of 

scientific explanations in such cases.  To wit SE 2.   

  

SE 2:  Let (ΩP,Γp) be some given data universe; let ℵP be a σ-field of subsets 

of ΩP; let Pp(⋅): ℵP → [0,1] be a probability measure; and let FP denote the joint 

probability distribution of the components of the vectors in ΩP which, subject to the 

conditions on which Γp insists, is determined by Pp(⋅).  Also, let H1 and H2 , 

respectively, be a finite family of assertions concerning the characteristics of the 

vectors in ΩP and the FP, and let ℑ1 and ℑ2 , respectively, be a family of data 

admissible models of H1 and (ΩP,Γp) and of H2 and the FP.  Finally, suppose that ℑ1 is 

the intended interpretation of H1 and (ΩP,Γp) and that ℑ2 is the intended interpretation 

of H2 and the FP. Then, to give a scientific explanation of the pair, (H1 , H2 ), means 

to find a theory universe, (ΩT,Γt), a sample space, Ω ⊂ ΩT × ΩP , a finite set of bridge 

principles, Γt,p, that in Ω relates members of ΩT to members of ΩP, a probability 
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measure, P(⋅), on subsets of Ω, and a probability distribution, MPD, of the 

components of the vectors in ΩP  that is determined by Γt , Γp, Γt,p , and the axioms of 

P(⋅) such that H1 becomes a logical consequence of Γt , Γp, and Γt,p , and such that the 

given MPD has the characteristics of FP on which H2 insists.  

 

Such an explanation is logically adequate if the pair, (H1 , H2 ), is not a logical 

consequence of Γp and the axioms of Pp(⋅).  The explanation is empirically adequate if 

there is a model of Γt, Γt,p, Γp, and the axioms of P(⋅) and an associated model of the 

MPD that have the following properties: (1) The logical consequences of Γt, Γt,p, and 

Γp that concern characteristics of the vectors in ΩP has a model that is a member of ℑ1 

; and (2) there is a member of ℑ2 whose associated FP shares with the model of MPD 

the characteristics on which the logical consequences of Γt, Γt,p, Γp, and the axioms of 

P(⋅) insist.  

 

It might seem strange that the sample population, S, plays no role in SE 2.  

The reason is simple.  In SE 2 I imagine that I have data of one of three kinds: (i) 

Cross-section data; i.e., a finite sequence of vectors of observations on different 

individuals that pertain to some given point in time; (ii) time series of vectors of 

observations on some individual or some aggregate of individuals; and (iii) panel 

data; i.e., a time series of vectors of observations on more than one individual.  For 

the purposes of the explanation in SE 2 the data are given, and so are H1 and H2.  

Hence, in an SE 2 explanation I can work directly with P(⋅) and Pp(⋅) without 

involving Q(⋅), ℵS, and S.   

I will need Q(⋅), ℵS, and S when I investigate the empirical adequacy of an SE 

2 explanation.  Since I do not know ℑ1 and ℑ2, I cannot establish that a given 

scientific explanation is empirically adequate.  The best I can hope for is that I have 

reasons to believe that the likelihood that the explanation is empirically adequate is 

high.  To do that I use data to construct a data admissible model of the MPD and to 

delineate the contours of a 95% confidence band around the parameters of this MPD.  

A large enough family of data admissible models of the MPD whose parameters 

belong to this confidence band is likely to contain an MPD whose characteristics 

some model of the FP in ℑ2 shares. 
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3.3  An Example 

 

It is a difficult task to give logically and empirically adequate SE 2 explanations of 

regularities in the kind of data I have in mind for SE 2.  So a detailed example is 

called for.  In this section I shall recount an SE 2 explanation in (Stigum, 2003, 

chapter 23) that Heather Anderson, Geir Storvik and I (ASS) gave of the following 

stylized facts that A. Hall, H. Anderson, and C.L.M. Granger (HAG) have discovered 

(cf. Hall, Anderson, and Granger, 1992).9   

 

(1) "Yields to maturity of U.S. Treasury bills are cointegrated I(1) 

processes;"  

(2)      "during periods when the Federal Reserve specifically target short-term 

interest rates, the spreads between yields of different maturity define the cointegrating 

vectors." 

 

The Treasury bill market is part of the Money market in the U.S.A..  The 

yields in the Money market are interrelated.  Consequently, when one delineates the 

relevant positive analogies for the functioning of the Treasury bill market, one must 

take into account how the functioning of the remainder of the Money market 

influences the determination of yields in the bill market. 

There are many different Money market instruments even when one 

distinguishes them just by the name of the issuer and the kind of issue; e.g., Treasury 

versus General Electric, and three months bills versus six months bills.  There are 

fabulously many more when one distinguishes instruments by maturity as well.  For 

the purposes of ASS’s analysis it seemed unnecessary to take into account this 

multiplicity of Money market instruments.  So, to keep arguments clear and simple, 

ASS argued as if there were just two bills and just one other Money market 

instrument.  In due course it will appear that their arguments' gain in clarity did not 

come at the expense of a reader's loss in insight. 

 

The ASS Data Universe 

 

The individuals in HAG's own data universe were series of daily bid and asked quotes 

on eleven Treasury bills; one series for bills with one month to maturity, another for 
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bills with two months to maturity, and so on to a series with eleven months to 

maturity.  From these series they obtained eleven nominal yield-to-maturity series by 

taking the average bid and asked quotes of the day as the prices of the respective bills 

and by insisting that the length of a month  be 30.4 days.  

HAG's sample consisted of 228 observations on each yield series, dating from 

January 1970 until December 1988.  ASS’s sample consisted of 150 observations on 

the same yields dating from January 1983 until June 1995.  Each observed yield 

pertained to the last trading day of the month and was taken from the Fama Twelve 

Month Treasury Bill Term Structure File of the Center for Research in Securities 

Prices at the University of Chicago. 

For the sake of brevity ASS took the monthly yield series, instead of the bid 

and asked quotes, to be basic elements in their data universe, (ΩP, Γp).  Also, for the 

sake of clarity and simplicity, ASS assumed that they had observations only on bills 

of two different maturities, Ќ(1) and Ќ(2); e.g., three and six months bills, or bills that 

will mature in one and two months. Since ASS had monthly observations, they let 

Ќ(1) and Ќ(2) denote series of yields of bills that, respectively, mature in one and two 

months.  

 In addition to their observations on the two Treasury bill yields ASS had a 

corresponding series of monthly observations on the overnight Federal Funds rate. 

Each observation recorded the weekly effective (annualized) rate on overnight Federal 

Funds. Data (from 1984 onwards) was obtained from the Federal Reserve, and earlier 

data was obtained from the Federal Reserve Bulletin.  Also, the weekly data was 

converted to monthly observations by using the last observation for each month.  I 

shall denote the series of observations on the Federal Funds rate by ff. 

With these assumptions in mind, I need only three axioms to characterize the 

individuals in ASS’s data universe.  In the intended interpretation of the axioms the ŷj, 

j = 1,2,3 are auxiliary series that are needed to delineate the properties of ASS’s data.  

Also, the numbers in N are taken to denote consecutive 'months' beginning at some 

arbitrary point in time. 

 

              D 1: ωP ε ΩP  only if  ωP = (Ќ(1), Ќ(2), ff, ŷ1, ŷ2, ŷ3), where Ќ(j) ε (R+)N,      

j = 1,2, ff ε (R+)N , and ŷj ε (R)N, j = 1, 2, 3; and N = {0,1,2,...}. 
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D 2: For each ωP ∈ ΩP and all t ε N,  

            Ќ(1)t = max(ŷ1t,0), Ќ(2)t = max(ŷ2t,0), and fft = max(ŷ3t,0),                   (4) 

where Ќ(1)t, ŷ1t, Ќ(2)t, ŷ2t, fft , ŷ3t denote the tth component of Ќ(1), ŷ1, Ќ(2), ŷ2, ff, 

and  ŷ3.           

 

Instead of thinking of ωP as a sixtuple of series, one can think of ωP in ΩP as a 

vector valued function, (Ќ(⋅,ωP), ff(⋅,ωp), ŷ(⋅,ωP)): N → R+
2 × R+

1 × R3 ,  defined by 

                          (Ќ(t,ωP), ff(t, ωP), ŷ(t,ωP)) = ωPt , t∈N, and ωP ∈ ΩP,               (5) 

where ωPt is the tth component of ωP.  If one thinks of the elements of ΩP in that way, I 

can state the third axiom concerning the individuals in ΩP as follows: 

 

D 3: Let ΩP be as above, and let the vector-valued function, (Ќ, ff, ŷ)(⋅): N × 

ΩP → R+
2 × R+

1 × R3, be as described in equation 5.  Also, let ℵP be the standard 

Borel field of subsets of ΩP.  Then there exists a probability measure, Pp(⋅): ℵP → 

[0,1], such that, relative to Pp(⋅), the probability distributions of the family of random 

vectors, {(Ќ, ff, ŷ)(t,ωP); t∈N}, equal the corresponding family of probability 

distributions of the process that generates the individuals in ΩP. 

 

With axioms D 1-D 3 in hand I proceed to formulate the assertion of which 

ASS intended to give a scientific explanation. 

 

             H.  Let PP(⋅): ℵP → [0,1] be the probability measure on whose existence I 

insisted in D 3.  Also, let the vector-valued function, (Ќ,ff,ŷ)(⋅): N × ΩP → R+
2 × R+

1×  

R3, be as described in equation 5.  Then, relative to Pp(⋅), the family of random 

vectors, {(Ќ,ff,ŷ)(t,ωP); t ∈ N}, satisfies the following conditions: 

 

                (i)  for all t ε N, (Ќ,ff)(t,ωP) = max (ŷ(t,ωP),0) a.e.;       

           (ii) {ŷ(t,ωP); t ε N} is a vector-valued ARIMA process with one unit root; 

and  

(iii)    the two first components of {ŷ(t,ωP); t ε N} are cointegrated with 

cointegrating vector (-1,1,0); i.e., {ŷ2(t,ωP) - ŷ1(t,ωP); t ε N} is a wide- sense 

stationary process. 
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This H does not sound quite like HAG's dictum.  However, if one interprets HAG's 

assertions with their footnote 5 in mind, one must end up with H as stated.  In 

footnote 5 HAG observe that yields to maturity cannot be integrated processes in the 

strict sense because nominal yields are bounded below at zero while integrated 

processes are unbounded. 

 

 

Next I shall describe the theory universe in ASS’s scientific explanation of H.  For 

that purpose I need six axioms.  In the statement of the axioms, with j = 1,2, the K(j), 

G(j), λ(j), and Λ are to be interpreted as the theory universe's series versions of 

variables that at each t ε  N denote, respectively, the equilibrium yield at date t of a j-

month pure discount bond (K(j)t), the equilibrium rate of return from contracting at 

day t to buy a 1-month pure discount bond (j-1) months from day t (G(j)t), the 

expected value at date t of K(1)t+1 (λ(1)t) and FFt+1 (λ(2)t), and an error term.  Also, ηj 

and uj are series of error terms, and FF is the series of equilibrium yields to maturity 

of the one and only non-Treasury-bill security in the money market.  One can think of 

the latter as the "Federal Funds Rate" in the ASS theory universe.  Finally, N = 

{0,1,2,...}, and y1, y2, and y3 are auxiliary series whose meanings are determined by 

the axioms.  The members of N are taken to denote consecutive 'months' beginning at 

some arbitrary point in time. 

 

The Axioms 

 

B 1: ωT ε ΩT only if ωT ε (R16)N. and  

     ωT = (K(1), K(2), G(1), G(2), FF, λ(1), λ(2), Λ, η1, η2, y1, y2, y3, u1, u2, u3).       

B 2: For each ωT ε ΩT and t ε N,  

                         K(1)t = max(y1t,0) and  G(1)t = K(1)t,                                  (6)    

                         y2t =  (1/2)[y1t + G(2)t], and                                                   (7)    

                         K(2)t = max (y2t, G(2)t, 0).                                                     (8)          

where K(j)t, G(j)t, yjt, respectively, denote the tth component of K(j), G(j), and yj, j = 

1,2. 

B 3: For each ωT ε ΩT, and t ε N,  

            G(2)0 = λ(1)0, Λ0 = 0, and 
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                        G(2)t = λ(1)t + Λt, for t ≥ 1.                                                (9) 

where G(2)t, λ(1)t, Λt, respectively, denote the tth component of G(2), λ(1), and Λ. 

B 4: For each ωT ε ΩT  and t ε N, 

y1t+1 = λ(1)t + η1t+1,  and                                                        (10) 

                        y3t+1 = λ(2)t + η2t+1.                                                               (11) 

Also, η10=0, η20=0; and there exists a positive pair, (ý1,ý3), such that y10=ý1, and 

y30=ý3. 

B 5: For each ωT ε ΩT  and all t ε N, 

                         FFt = max (y3t,0)                                                                (12) 

 B 6:      Let λ = (λ(1),λ(2)).  There exists a 2 × 2 matrix,  ϕ = (ϕij), with strictly 

positive diagonal elements and with largest absolute eigenvalue less than one, such 

that, for each ωT ε ΩT, 

            λ0' = ϕ(y10,y30)', and 

                        λt' - λt-1'  = ϕ((y1t,y3t)' - λt-1'), t ≥ 1.                                         (13) 

 

The Dynamics of the Market 

 

In ASS’s scientific explanation of H the preceding axioms are taken to delineate 

important positive analogies of the behavior over time of equilibrium yields in the 

U.S. money market.  Some of them, e.g., B 2, describe relationships between different 

yields that must hold because of the possibilities for arbitrage in the market.  Others, 

e.g., B 4 and B 6, describe essential features of the dynamics of the money market. 

The following discussion will attest to that. 

The axioms B 2-B 6 have logical consequences that concern the possible 

validity of HAG’s two stylized facts in ASS’s theory universe.  To see why, observe 

first that.the λt of B 6 is to represent the theoretical money market's prediction of the 

most likely value of (K(1)t+1,FFt+1) conditional upon the observed values of 

(K(1)s,FFs), s = 0,1,...,t.  That such an interpretation of λt is a possibility can be 

inferred from B 2, B 4, B 5,  and theorem T 1.  The latter is a simple logical 

consequence of B 6. 

 

 T 1  Let  I2  be the  2 × 2  identity matrix, and let ϕ be the 2 × 2 matrix in B 6.  

Then, for each ωT ε ΩT and all t ε N, 
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                                      λ't  =  Σ 0≤s≤t (I2 - ϕ)sϕ(y1t-s,y3t-s)'                                (14) 

 

HAG claimed that the behavior over time of the yield to maturity on a 

Treasury bill resembles the behavior of an I(1) process.  The possibility of such an 

interpretation of the pair (K(1),FF) and K(2) can be gathered from B 2 and the 

following three theorems. 

 

            T 2  Let ϕ be the 2 × 2 matrix of B 6, and let η=(η1, η2)'.  For each ωTεΩT,             

                    (y11,y31)' = ϕ(y10,y30)' + η1, and 

                                (y1t+1, y3t+1)' = (y1t, y3t)'+ηt+1 - (I-ϕ)ηt, t ≥1                    (15) 

T 3 Let ϕ be the 2 × 2 matrix of B 6, and let ξ ε R be defined by (16).  

                        ξ0=0, ξ1=(1/2)[(1+ϕ11)η11-(1-ϕ11)y10+ϕ12y30+ϕ12η21+Λ1], and 

            ξt = (1/2)[(η1t - η1t-1) + ϕ11(η1t + η1t-1)+ϕ12(η2t + η2t-1) + Λt - Λt-1], t≥2   (16) 

Then, for each ωT ε ΩT,  

                     y20 = (1/2)[(1+ϕ11)y10 + ϕ12y30], and 

                                 y2t = y2t-1 + ξt , t ≥ 1.                                                     (17)    

T 4 For each ωT ε ΩT and all  t ε N, 

                  K(2)t = max [(1/2)(G(1)t + G(2)t ,0]                                (18) 

 

HAG also insisted that the yields to maturity of Treasury bills are cointegrated 

and that the spreads between yields of different maturity define the cointegrating 

vectors.  The next theorem establishes the possibility of HAG's dictum being correct 

in ASS’s theory universe.  There yields to maturity on "Treasury bills" might be 

realizations of cointegrated I(1) processes, and the spread between them might 

determine their cointegrating relationship.  

 

T 5 Let ϕ be the 2 × 2 matrix of B 6.  For each ωT ε ΩT, 

                       y20-y10 = (1/2)[Λ0+y11-y10)-η11], and 

                       y2t-y1t = (1/2)(Λt-(1-ϕ11)η1t+ϕ12η2t), t ≥ 1                                   (19)                               

    

Cointegrated processes have common trends.  Looking at the common trend of 

y(1) and y(2) will provide us with new insight into the dynamics of the ASS theory 

universe's money market.  For that purpose, let 
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    CTRt = (ϕ11,ϕ12)[(ý1,ý3)'+ ∑ 0≤s≤(t-1) ηt-1-s]    

Then it follows from equations 15, 10, and 9 that 

    y(1)t = CTRt + η1t, and 

    G(2)t = CTRt + Λt + (ϕ11,ϕ12)ηt. 

But, if that is so, then the equilibrium condition in equation 8 implies that 

                y(2)t =  CTRt + (1/2)[Λt + η1t + (ϕ11,ϕ12)ηt]. 

The equations for y1t and y2t justify referring to CTRt as the common trend of these 

variables.  In the complete axiom system CTRt behaves as a generalized random walk. 

It is interesting to note here that CTRt is a function of η2t as well as η1t.  Hence 

"the other part" of the money market plays an essential role in the construction of the 

common trend of Treasury Bill yields. 

It is also interesting to note that the y1 and y3 series need not be cointegrated.  

In the complete axiom system they will be cointegrated ARIMA processes if and only 

if there is a pair, α1 and α2, such that (α1,α2)ϕ = 0. The reason why is explicated in T 6. 

 

 T 6  Let ϕ be the 2 × 2 matrix of B 6.  For each ωT ε ΩT, 

                   (y1t+1, y3t+1)' = ϕ(ý1,ý3)' + ϕ ∑0≤s≤(t-1) ηt-s + ηt+1  , and 

                      y2t = (ϕ11,ϕ12)[(ý1,ý3)'+ ∑ 0≤s≤(t-1) ηt-1-s] + (1/2)[Λt + η1t + (ϕ11,ϕ12)ηt]. 

 

Since the first component in the equations for y2t  is CTRt, we need only prove the 

expression for (y1t+1, y3t+1).  The proof of that fact goes as follows. 

(y1t+1, y3t+1)' = λt '+ ηt+1

                 = λt-1' + ϕηt + ηt+1

                 = λ0 ' +  ϕ ∑0≤s≤(t-1) ηt-s + ηt+1

                = ϕ(ý1,ý3)' + ϕ ∑0≤s≤(t-1) ηt-s + ηt+1 . 

If a pair, (α1, α2), exists such that (α1,α2)ϕ = 0,  CTRt or some constant multiple of 

CTRt becomes the common trend of y1 and y3. 

 

The ASS Bridge Principles 

 

So much about the ASS (ΩT, Γt) for now.  Next I shall write down the bridge 

principles in ASS’s scientific explanation of H, and describe several of the properties 
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of Treasury-bill yields in the data universe that one can derive from them and the B-

axioms.  I begin with the bridge principles. 

 

G 1: The sample space, Ω, is a subset of ΩT × ΩP ; i.e., Ω ⊂ ΩT × ΩP.   

 G 2: There exists a 3 × 3 matrix, ψ = (ψij), with strictly positive diagonal 

elements and with largest absolute eigenvalue less than one, such that, for each ω ε Ω, 

                                    ŷ0 = ý0, u0 = 0, and 

                                    ŷt - ŷt-1 = ψ(yt - ŷt-1) + ut, t ≥ 1,                                   (20) 

where ŷ = (ŷ1,ŷ2,ŷ3)', y = (y1,y2,y3)' and u = (u1,u2,u3)'           

 

Characteristic Behavior in the Data Universe   

 

From the characterization of ASS’s theory universe and from  G 1 and G 2 one can 

derive the following two interesting theorems. 

 

 T 7  Let U denote the forward shift operator, let ξ be as described in equation 

16, and let  ζ = (ζ1,ζ2,ζ3) ε (R3)N be defined for arbitrary t by equations 21-23.   

ζ1t=u1t-u1t-1+ψ11[η1t-(1-ϕ11)η1t-1+ϕ12 η2t-1]+ψ13[η2t-(1-ϕ22)η2t-1+ϕ21η1t-1]+ψ12 ξt  (21)                   

ζ2t=u2t-u2t-1+ψ21[η1t-(1-ϕ11)η1t-1 + ϕ12η2t-1]+ψ23[η2t-(1-ϕ22)η2t-1+ϕ21η1t-1]+ψ22ξt (22)              

ζ2t=u2t-u2t-1+ψ31[η1t-(1-ϕ11)η1t-1+ϕ12η2t-1]+ψ33[η2t-(1-ϕ22)η2t-1+ϕ21η1t-1] +ψ32ξt  (23)               

For each ω ε Ω, 

                        ŷ0 = ý0, 

                                                           ϕ11y10+ϕ12y30+η11                        

                        (I-(I-Ψ)U-1)ŷ1  =   Ψ                                         +u1, and  

                                                           y20+Λ1

                        (I - (I - ψ)U-1)(I-IU-1)ŷt =  ζt , t ≥ 2,                 (24)                                        

     

T 8 Let εt be defined by equation 25 for all t ε N-{0,1}: 

                     εt  =  [I - (I - Ψ)U-1]-1 ζt ,                (25)                                      

where ζ is as described in equations 21-23. Then, for each ω ε Ω and all t ε N-{0,1}, 

    ŷ2t-1-ŷ1t-1 = y2t-y1t + (-1,1,0)ψ-1 (ut-εt);  

                               = (1/2)(Λt-(1-ϕ11)η1t+ϕ12η2t) + (-1,1,0) ψ-1 (ut-εt)          (26)                     
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These two theorems and theorems T 2, T 3, and T 5 suggest that the ŷ and the y series 

might each be realizations of two cointegrated I(1) processes with the same 

cointegrating vector (-1,1,0). 

 

The ASS P-Axioms 

 

To establish that the ŷ and the y series in fact are realizations of cointegrated I(1) 

processes I must specify the stochastic properties of the components of ω.  These 

properties can be deduced from ASS’s three axioms, P 1, P 2, and P 3, and from the 

conditions I delineated in axioms B 2 - B 6, D 2, and G 1 - G 2. 

 

 P 1:  Let the vector valued function, (K,G,FF,λ,Λ,η,y,u,Ќ,ff,ŷ)(⋅): N × Ω → 

R22 be defined for all t ε N by equation 27: 

                     (K,G,FF,λ,Λ,η,y,u,Ќ,ff,ŷ)(t,ω) = ωt, t ε N, and ω ε Ω.                (27) 

Let ℵ be a σ-field of subsets of Ω, and suppose that the functions (K,...,ŷ)(t,⋅): Ω → 

R22,    t ε N, are measurable with respect to ℵ.  There exists a probability measure, 

P(⋅): ℵ → [0,1], relative to which the family of functions,{(Λ,η,u)(t,ω);t ≥ 1,}is a 

vector-valued wide-sense stationary process. 

 P 2  Let P(⋅): ℵ → [0,1] be as described in P 1.  Relative to P(⋅), the families 

of functions, {η(t,ω);t ≥ 1} and {u(t,ω);t ≥ 1}, constitute purely random processes 

with means zero and covariance matrices, Ση and Σu. 

P 3:  Let P(⋅): ℵ → [0,1] be as described in P 1.  Also, let the function, 

(K,G,FF,λ,Λ,η,y,u,Ќ,ff,ŷ)(⋅): N × Ω → R22, be as described in equation (27).  Then, 

relative to P(⋅),for each t ∈ N-{0}, the Λ, η, u, and y components of this family of 

functions satisfy the following conditions: 

                              E{η(t,ω)⎮(y1,y3)(0),...,(y1,y3)(t-1)} = 0 a.e. 

                              E{Λ(t,ω)⎮(y1,y3)(0),...,(y1,y3)(t)} = Λ(t,ω) a.e., and 

                              E{u(t,ω)⎮(y1y3)(0),...,(y1,y3)(t)} = 0  a.e. 

 

In reading these axioms there are several things to notice: (1)  ASS do not insist that 

Ση is diagonal.  (2) The family of functions, {Λ(t,ω);t ≥ 0}, need not constitute a 

purely random process.  (3) ASS have only delineated conditions on the Λ, η, u, and y 

components of (K,G,FF,λ,Λ,η,y,u,Ќ,ff,ŷ)(⋅).  However, from P 1-P 3, the axioms in 
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the ASS theory universe, and the ASS bridge principles one can derive all the 

conditions on the components of (K,G,FF,λ,Ќ,ff,ŷ)(⋅) that ASS needed in their 

scientific explanation of HAG's two stylized facts.  (4) The characteristics of the 

probability distributions of the family of random variables, {(Ќ,ff,ŷ)(t,ω); t ≥0}, that 

one derives from P 1-P 3, B 1-B6, and G 1-G 2 are characteristics of the MPD. 

        

The ASS Scientific Explanation 

 

With P 1- P 3 in hand, theorem T 14 below becomes an immediate consequence of B 

4,    G 2, P 1- P 3, and theorems T 6- T8  and T 10, T 12, and T 13.  Therefore, there 

is no need to spell out the details of a proof here.  In reading the theorem, note that the 

random process, {ŷ(t,ω); t ∈ N}, is defined on (Ω,ℵ) and not on (ΩP,ℵP).  Hence, H 

is not an immediate consequence of T 14 and D 2. 

 

 T 14  Let P(⋅): ℵ → [0,1] be the probability measure in P 1-P 3.  Relative to 

P(⋅),  the λ, y, and ŷ components of  the family of function, 

{(K,G,FF,λ,Λ,η,y,u,Ќ,ff,ŷ)(t,ω);t≥0},  satisfy the following conditions: 

          (i)  For all t ≥ 1, with P(⋅)-probability one, 

                  λ(t,ω) = E((y1,y3)(t+1)|(y1,y3)(0),...,(y1,y3)(t))                                (28) 

         (ii)  For all t ε N, (Ќ,ff)(t,ω) = max (ŷ(t,ω),0) a.e. 

        (iii)  The family of functions {y(t,ω);t ε N} is an I(1) vector-valued ARIMA 

process the first two components of which are cointegrated with cointegrating vector, 

(-1,1,0). 

        (iv)  The family of functions, {ŷ(t,ω);t ε N} is an I(1) vector-valued ARIMA 

process the first two components of which are cointegrated with cointegrating vector, 

(-1,1,0). 

 

T 14(ii) and T 14(iv) imply that there is an MPD, i.e., a probability distribution of the 

family of random vectors on (Ω, ℵ), {(Ќ,ff,ŷ)(t,ω);t≥0}, that Γt, Γt,p, and the axioms 

of P(⋅) determine and that satisfies the strictures on which H insists. But if that is so, 

then standard arguments (cf. Stigum, 1990, pp. 344 -347) suffice to establish the 

existence of a probability measure, Þ(⋅): ℵP → [0,1], relative to which the family of 

functions, {(Ќ,ff,ŷ)(t,ωP);t ∈ N}, which was defined in equation 5, satisfies the 
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conditions of assertion H.  To wit:  The given MPD consists of a family of finite 

probability distributions of the random vectors in {(Ќt,fft,ŷt);t ∈ N}.  These 

probability distributions determine a probability measure, Þ(⋅): ℵp → [0,1], relative to 

which the family of functions, {(Ќ,ff,ŷ)(t,ωP);t ∈ N}, satisfies the conditions on which 

H insists.   

The probability measure Þ(⋅) need not be the same as the probability measure 

Pp(⋅) on whose existence I insisted in D 3.  However, the probability distributions of 

the family {(Ќ,ff,ŷ)(t,ωP): t ∈ N} relative to Þ (⋅) and Pp(⋅) share the conditions on 

which H insists.  From this and the preceding paragraph it follows that H is true in all 

models of     D 1-D 3, B 1-B 6, G 1-G 2, and P 1-P 3. Since H is true in some, but not 

all models of D 1- D 3, I conclude that B 1-B 6, G 1-G 2, and P 1-P 3 provide a 

logically adequate scientific explanation of H.  

            Taking stock of ASS’s formal scientific explanation H so far, calls for several 

remarks. Note first that one can think of H as a pair, (H1, H2), where H1 repeats what 

is said in D 2 and H2 comprises the assertions in H.  Next, note that the ASS theory 

universe, the ASS bridge principles, and the ASS axioms of P(⋅) have many models.  

The models of the theory universe vary with the values of the pair, (ý1,ý3), in B 4 and 

the matrix, ϕ, in B 6.  The models of the bridge principles vary with the values of the 

vector, ý0 , and the matrix, Ψ, in G 2.  And the models of  the P(⋅)- axioms vary with 

the values of the components of the matrices, Ση and Σu , in P 2.  In developing ASS’s 

scientific explanation of H I established its logical adequacy without referring to any 

of these models.  Hence the MPD in ASS’s explanation comprises a large family of 

MPDs that the models of B 1-B 6, G 1- G2, and the axioms of P(⋅) determine.  When 

ASS set out to establish the empirical adequacy of their explanation, they applied 

numerical analysis to estimate one model of the quadruple, (Γt, Γp, Γt,p, P(⋅)), derived 

the associated model of the MPD, and checked whether the explanation of H that the 

two models provided was empirically adequate.   The explanation was to be deemed 

empirically adequate if there existed a family of models of the MPD that with 

probability 0.95 contained a model whose salient characteristics were shared by some 

model of the FP in ℑ2. 
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The Empirical Adequacy 

 

ASS’s scientific explanation of H is logically adequate.  Whether it is also empirically 

adequate remains to be seen.  To be reasonably certain of the empirical adequacy of  

B 1-  B 6, G 1-G 2, and P 1-P 3 one must search for a family of models of the MPD, 

ℑ, that with probability 0.95 contains a model whose salient characteristics are shared 

by FP.  Finding an appropriate ℑ is a bit of a fishing expedition that I describe next.  

 

A State Space Formulation of Equation (24) 

 

P 1-P 3 do not put stringent conditions on the probability distributions of η, Λ, and u.  

So ASS began their search for an appropriate ℑ by assuming that η1 , η2 , Λ, and the 

components of u constitute six independently distributed purely random processes.  

For the sake of argument they also, initially, assumed that all these processes are 

Gaussian.   

 Next they reformulated the relations in (24) so that they could be expressed by 

a state space model.  For that purpose they let v(t)=(u1(t),u2(t),u3(t),η1(t),η2(t),Λ(t))' 

and observed that 

                                ζ(t) = C0v(t) - C1v(t-1), t = 1,2,… ,                                   (29) 

with 

                      1    0    0    Ψ11 + 1/2Ψ12(1+ϕ11)      Ψ13 + 1/2Ψ12ϕ12     1/2Ψ12

            C0 =   0    1    0    Ψ21 + 1/2Ψ22(1+ϕ11)      Ψ23 + 1/2Ψ22ϕ12     1/2Ψ22   , and  

                      0    1    0    Ψ31 + 1/2Ψ32(1+ϕ11)      Ψ33 + 1/2Ψ32ϕ12     1/2Ψ32 

                                                                                             

          1    0    0    (Ψ11+1/2Ψ12)(1-ϕ11)-Ψ13ϕ21    -(Ψ11+1/2Ψ12)ϕ12+Ψ13(1-ϕ22)    1/2Ψ12 
                                                                                       
 C 1 =  0    1    0    (Ψ21+1/2Ψ22)(1-ϕ11)-Ψ23ϕ21     -(Ψ21+1/2Ψ22)ϕ12+Ψ23(1-ϕ22)   1/2Ψ22 
                                                                                                                                                                         
          0    0    1    (Ψ31+1/2Ψ32)(1-ϕ11)-Ψ33ϕ21)   -(Ψ31+1/2Ψ32)ϕ12+Ψ33(1-ϕ22)  1/2Ψ32      
                                                                                                                                                                         
 

Also, they let A = I3 - Ψ, and wrote equation (24) as  

                   ŷ(t) - ŷ(t-1) = A(ŷ(t-1) - ŷ(t-2)) + C0v(t) - C1v(t-1)                    (30) 

Then with x(t) = (ŷ(t) - ŷ(t-1), v(t), v(t+1)) the searched for state space form of (24) 

became equations (31) and (32).                                       
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                                       A     -C1     C0                     0 

                       x(t) =        0       0       I6    x(t-1)  +     0                              (31) 

                                        0       0       0                    v(t+1) 

 

and 

                       ŷ(t) = ŷ(t-1) + {I3  0  0} x(t)                                                 (32) 

 

Equation  (31) describes the dynamics of the state vector, while equation (32) 

insists that ŷ(t) is observed at each time point and that there are no observation errors. 

 

Estimation of Parameters 

 

There are nineteen parameters to be estimated, the nine components of Ψ, the four 

components of ϕ, and the six variances of the components of v.  Unfortunately, the 

likelihoods of the parameter sets,  

                                         {σu1
2, σu2

2, σu3
2, σΛ

2} and  

                {σu1
2 + 1/4Ψ12

2σΛ
2, σu2

2 + 1/4Ψ22
2σΛ

2, σu3
2 + 1/4Ψ32

2σΛ
2, 0},        

are indistinguishable, which goes to show that one cannot obtain identifiable estimates 

of all the four variances of u and Λ.  Since ASS could not be certain of the validity of 

the bridge principles anyway, they decided to assign the value zero to the u-terms in 

equations (20) and (24).  That left them with sixteen unknown parameters in a new 

state-space model in which v(t) = (η1(t),η2(t),Λ(t))' and in which the first three 

columns of the C0 and C1 matrixes are deleted. 

 To estimate the values of the remaining sixteen parameters ASS proceeded as 

follows.  They calculated the likelihood of their sample observations with the help of 

a Kalman filter (Harvey, 1989) and used the resulting likelihood and Powell's method 

of numerical optimization (Press et al, 1992, pp. 412) to search for the parameter 

values at which the likelihood would attain its maximum height.   Powell's method is 

not fast, but it seemed to give reliable optima.  

To obtain uncertainty measures and confidence intervals for their maximum 

likelihood parameter estimates, ASS used the method of  bootstrapping (cf. (Efron, 

1982) and (Davison and Hinkley, 1997)).  The main ideas behind the bootstrapping 

procedure are threefold: (1) Generate a series of artificial data sets by simulation 
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following (almost) the same model as the one that generated the original data set;    

(2)  estimate the values of the model parameters anew with each one of the simulated 

data set; and (3) use the series of parameter estimates obtained from  a large number 

of data sets to determine meaningful measures of the uncertainty that is attached to the 

original parameter estimates.  In the present case ASS applied the ideas of 

bootstrapping in the following way.  First, they used the original parameter estimates 

and the state-space model to obtain estimates of the components of the error term, 

v(t), for all pertinent t.  Next, they generated new series of error terms by resampling 

(drawing with replacement) from the estimated time series of v(t).  Then they used 

each new time series of v(t) and the state-space model with the original parameter 

estimates to construct time series of values of  ŷ(t), ŷ(t-1), and ŷ(t-2).  At last they  

 

 Estimate  Bias St. error  95% Conf. 
Interval 

     
ση,1 0.356  -0.179 0.022  0.493 0.577
ση,2 0.632  -0.446 0.027  1.022 1.128
σΛ 10.54  -0.779 1.553  8.046 14.119
ϕ11 0.787  0.003 0.056  0.678 0.899
ϕ12 0.216  -0.106 0.059  0.208 0.435
ϕ21 0.68  -0.024 0.076  0.558 0.849
ϕ22 0.632  -0.049 0.081  0.526 0.837
ψ11 0.604  -0.006 0.016  0.577 0.638
ψ12 0.012  -0.004 0.002  0.012 0.019
ψ13 0.15  0.026 0.01  0.103 0.144
ψ21 0.562  0.005 0.007  0.544 0.57
ψ22 0.064  -0.003 0.002  0.065 0.071
ψ23 0.088  -0.008 0.005  0.087 0.109
ψ31 -0.01  -0.002 0.015  -0.039 0.02
ψ32 0.031  -0.018 0.004  0.042 0.057
ψ33 0.284  -0.016 0.007  0.287 0.313
λ1ϕ 0.682  -0.085 0.094  0.607 0.976
λ2ϕ 0.101  -0.03 0.054  0.002 0.199
λ1ψ 0.825  -0.019 0.02  0.603 0.681
λ2ψ 0.265  -0.004 0.009  0.253 0.287
λ3ψ 0.062  -0.001 0.002  0.059 0.068

 

        Table 1 shows the parameter estimates, estimates of bias and standard 
errors, and 95% confidence intervals.  The confidence intervals were obtained by 
using the simplest percentile method. 
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used each series of the latter variables to estimate the model parameters anew.  In that 

way they obtained a series of parameter values that they could use to construct the 

uncertainty measures for which they searched.  ASS carried out a total of one 

thousand bootstrap simulations.  

  

Table 1 and the Empirical Adequacy of the Explanation of HAG's Two Stylized Facts 

 

Suppose, for now, that ASS’s assumptions concerning the probability distributions of 

η, Λ, and u are correct.  This assumption, the estimates of ϕ, Ψ, ∑η, and σΛ
2 that one 

finds in Table 1, and arbitrary values of  (ý1,ý3) and  ý0  determine a model of the 

quadruple, (Γt, Γp, Γt,p, P(⋅)).  From this model I can derive a model of the MPD.  .   

Here is how:  From the estimates in Table 1 and equation (24) I deduce that 

 

  ŷ(t)-3.048ŷ(t-1)+3.3614ŷ(t-2)-1.5689ŷ(t-3)+0.2555ŷ(t-4)=B(U)ζ(t), t≥4             (33) 

  ∆ŷ(t) - 2.048∆ŷ(t-1) + 1.3134∆ŷ(t-2) - 0.2555∆ŷ(t-3) = B(U) )ζ(t), t≥4, and        (34)   

     ŷ2(t-1) - ŷ1(t-1) = (1/2)[Λt - 0.213η(1)t + 0.216η(2)t] - (-1,1,0)Ψ-1 ∈t ,                (35) 

 

where 

 

              1 -1.652U-1 + 0.6675U-2      -0.562U-1 + 0.4024U-2             0.0174U-2

B(U) =   -0.012U-1 + 0.0133U-2        1-1.112U-1 + 0.2835U-2    -0.031U-1 + 0.0123U-2     

-0.15U-1 + 0.1415U-2            -0.088U-1 + 0.1191U-2      1-1.332U-1+0.364U-2

 

                                                    1.527382      0.1227996      -0.8447666 

                                       Ψ-1  =  -15.867849     17.1085015     3.0796806 

                                                     1.785835      -1.8631533     3.1552191 

 

and, with  D(U) = Det(I-AU-1) = 1 - 2.048U-1 + 1.3134U-2 - 0.2555U-3 , 

 

                                          ε(t) = D(U)-1B(U)ζ(t). 

 

From the estimates in Table 1 and equations (24) and (29) I can also deduce that 
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                       ∆ŷ(t) = A* ∆ŷ(t-1) + C0*(η,Λ)(t)' - C1*(η,Λ)(t-1)' ,      (35)                            

 

where 

                 0.396    -0.012    -0.13                       0.6147220     0.151296     0.0060 

    A* =   -0.562     0.936    -0.088 ;       C0* =    0.6191840     0.094912     0.0320    

                 0.01     -0.031     0.716                       0.0176985     0.287348     0.0155 

 

                                                     0.5032780     0.021504      0.0320 

                                         C1* =   0.4668160     0.006464      0.0320 

                                                   -0.1998185     0.039820      0.0155 

 

Finally, from equations  (16), (21)-(23) and ASS’s assumptions concerning η and Λ, 

and from the estimates in Table 1 I can deduce that the covariance structure of ζ is 

given by equations (36) and (37). 

                                                                   0.154    0.154    0.026 

            Var[ζ(t)] = C0∑C0'+ C1∑C1' =        0.154    0.172    0.021                   (36) 

                                                                    0.026    0.021    0.077 

 

                                                           0.001    -0.007    0.031 

      Cov[ζ(t), ζ(t-1)] = -C0∑C1' =     -0.003    -0.020    0.031,                           (37) 

                                                         0.0130     0.012    -0.02   

 

where ∑ = Var(v(t))  =  diag(0.127, 0.399, 111.092).  

 

In looking back at the description of the MPD that equations (36)-(37) 

provide, notice that the characteristic polynomials, Pŷ(z) and P∆ŷ(z), of equations (33) 

and (34) are given by (38) and (39), respectively. 

 

                Pŷ(z) = (1-z) (z - 0.366508)(z - 0.742084)(z - 0.939408)                  (38) 

                P∆ŷ(z) = (z - 0.366508)(z - 0.742084)(z - 0.939408)                          (39) 

 

Hence, ∆ŷ(t) satisfies the equation of a wide-sense stationary autoregressive moving 

average process, i.e., of an I(0) ARIMA process.  Also, ŷ(t) satisfies the equation of 
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an I(1) ARIMA process.  This and equation (26) imply that the ŷ(t)-process has all the 

characteristics on which H(ii) and H(iii) insist.  Since the components of Ќ(1), Ќ(2), 

and fft  are non-negative by construction, the MDP of the vector, (Ќ(t,⋅), ff(t, ⋅), ŷ(t,⋅)), 

has the characteristics on which H, and hence H2, insists.  

The equations (33)-(39) delineate one member of ℑ, the sought-for family of 

models of the MDP.  I obtain other models by varying, within the pertinent 

confidence bands, the values of the components of ϕ and Ψ and the values of the 

variances of η and Λ.  There are no restrictions on the values that the variances can 

assume. However, the ϕs and Ψs that I pick must be so that the absolute values of 

their characteristic roots are less than 1.   In describing the contour of ℑ ASS let the 

limits on the pertinent variances equal the estimated 0.95 confidence bands.  I shall 

use the estimated confidence bands for the ϕs and Ψs as well believing that the 

associated confidence bands for the characteristic roots that they determine are not too 

different from the confidence bands that ASS have estimated.   The reason for my 

belief is that each bootstrap estimate of the characteristic roots is based on the ϕ and 

Ψ values of the pertinent sample.  Thus the uncertainty measures and the confidence 

bands for the characteristic roots in Table 1 take the relation between the ϕ and Ψ 

values and the values of the characteristic roots into account. 

  

The probability distributions of η and Λ 

 

 If the MPD that ASS have estimated is data admissible, I obtain the sought for 

family of models of the MPD by varying the parameters within their 0.95% 

confidence bands.   The MPD is data admissible only if the probability distribution of 

η and Λ satisfy the conditions that ASS have imposed on them.  I shall describe the 

results of various tests of these conditions next. 

 

24.4.4.1 Checking for Independence 

 

The Kalman filter provides estimates of the components of v(t) that one can use for 

model checking.  Figure 3.1 shows scatter plots of all combinations of the components 

of η.  The independence assumption seems to be realistic for these variables 
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Figure 3.1: Scatterplots of each pair of random terms calculated from the estimated 

model by the Kalman filter. On both axes the order of the random terms are η1, η2, Λ. 

η and Λ.   

 

            To provide a second check on the independence assumption ASS also 

calculated the autocorrelations and the partial autocorrelations of the components of η 

and Λ.  The results are displayed in Figures 3.2 and 3.3.   The estimated values of the 

autocorrelations indicate that independence in time seems reasonable for η1 and η2.  

The small temporal dependence for the latter variable can be blamed on the estimation 

procedure.  Temporal independence for Λ is more suspect.  As  Figure 3.4 suggests, 

an autoregressive model of Λ of order two might be a better model for Λ.  This 

possibility is interesting in as much as Λt, in contradistinction to the components of ηt, 

is measurable with respect to the σ-field that the pairs, (y1,y3)(0),…, (y1,y3)(t), 

generate.  However, ASS did not follow it up with new estimates here. 
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Figure 3.2: Estimated autocorrelation functions for (η1,η2,Λ). 

 

 

Figure 3.3: Estimated partial autocorrelation functions for  η1, η2 and Λ. 
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Checking for Normality 

 

Figure 3.4 displays QQ.-plots of the (standardized) values of η and Λ.  The plots 

indicate that a Gaussian distribution is reasonable for η1 and Λ, while there are a 

couple of outliers in η2 .

 

 

Figure 3.4: QQ-plot of ordered residuals against quantiles in the Gaussian 

distribution. The order of the variables are η1, η2 and Λ. 

 

Summing Up 

 

I noted above that the search for a family of models of the data universe within which 

ASS’s scientific explanation of HAG's two stylized facts is empirically relevant is  

like a fishing expedition..  In ASS’s statistical calculations they assumed that the two 

η-processes and the Λ-process were independently distributed, purely random 

Gaussian processes.  Their statistical results do not ensure that the Λ- process is 

purely random and that the η2 - process is Gaussian.  Since they did not insist on 
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these characteristics in the P(⋅) axioms, they decided to ignore this uncertainty and 

considered this part of their statistical analysis completed. 

 

A Last Remark Concerning the Generality of ASS’s  Scientific Explanation  

 

If the H I formulated is a correct rendition of HAG's two stylized facts, the generality 

of ASS’s scientific explanation of H rests and falls on whether one loses insight in the 

workings of the U.S. Money market by considering just two bills and one other 

Money market instrument.  Now, it is significant here that axioms B 2, B 4, and G 2 

easily can be generalized to a market with many more securities.  From this it follows 

that one’s gain in clarity from ASS’s simplifying assumption about the number of 

bills and other Money market instruments has not been at the expense of a loss in 

generality. 

 

FOOTNOTES 

 

1. This is meant to be a discussion paper for a lecture on “Stylized Facts, the 

Purport of an Economic Theory, and Scientific Explanation in Economics and 

Econometrics.  Most of the material is taken from Chapters 22 and 23 in 

(Stigum, 2003). 

2. A positive analogy for a group of individuals (or a family of events) is a 

characteristic that the members of the group (family) share.  A negative 

analogy is a characteristic that only some of the members of the group (family) 

share. 
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3. There are interesting observations on ceteris paribus clauses and tendency 

laws in Mark Blaug's discussion of Mill (Blaug, 1990, pp. 59-69) and in 

Daniel M. Hausmann's account of inexactness in economic theory 

(Hausmann,1992, ch. 8).  Also, Lawrence Summer's stories of successful 

pragmatic empirical work (Summers, 1991, pp. 140-141) provide insight into 

the way economic theorists learn about the positive analogies that their 

theories identify.  

4. There are many ways to interpret the error terms; e.g., as measurement errors.  

Judging from (Spanos, 1995) and private communications, Spanos now favors 

a dynamic relationship between planned sales and purchases and actual sales 

and purchases.  Be that as it may.  The important idea that I am trying to 

convey in the example is that the domain of definition of the bridge principles 

is the sample space and that the sample space is a proper subset of ΩT×ΩP.   

5. Originally, Hempel insisted that the "sentences constituting the explanans 

must be true" (Hempel, 1965, p.248). 

6. Here I am using the vernacular of modal logic.  If an assertion, A, is true 

necessarily, A is true in all possible worlds.  If there is a possibility that A be 

true, there are worlds in which A is true. In symbols, �A insists that A is true 

necessarily and ∼�∼A claims that it is possible that A is true. 

7. I have made use of versions of this example in several articles.  The present 

version is identical with the one I presented in Chapter 22 in (Stigum, 2003). 

8. To make my description of the PDGP and the DGP as simple as possible I 

have assumed implicitly that the sampling scheme is such that the ωPS are 

identically and independently distributed. 
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9. Roughly speaking, an ARIMA process is a stochastic difference equation 

whose characteristic polynomial has one or more roots of absolute value 1.  It 

is said to be integrated of order one, and denoted by I(1), if it has just one such 

root.  An ARMA process is a stochastic difference equation whose 

characteristic polynomial has no roots of modulus 1.  Such a process is said to 

be integrated of order 0, and denoted by I(0).  A multivariate I(1) ARIMA 

process is cointegrated if there is a linear combination of the variables that 

possesses all the characteristics of a wide-sense stationary process.  Relevant 

details concerning characteristics of ARIMA processes the reader can find in 

(Stigum, 1975) and in (Stigum, 2003, chapter 23). 
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