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Abstract

We propose a new class of estimators for models defined by conditional moment re-

strictions. Our generic estimator minimizes a distance criterion based on kernel smooth-

ing. We develop a theory that focuses on uniformity in bandwidth. We establish a
√
n-

asymptotic representation of our estimator as a process depending on the bandwidth

within a wide range including fixed bandwidths and that applies to misspecified models.

We also study an efficient version of our estimator. We develop inference procedures

based on a distance metric statistic for testing restrictions on parameters and we pro-

pose a new bootstrap technique. Our new methods apply to non-smooth problems, are

simple to implement, and perform well in small samples.
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1 Introduction

Many econometric models involve conditional moment restrictions (CMR). Generalized Me-

thod of Moments (GMM), as introduced by Hansen (1982), only exploits a finite number of

unconditional moment restrictions. Subsequent research has focused on accounting for CMR

to gain efficiency. Provided a preliminary consistent estimator, Robinson (1987) and Newey

(1993) show how to estimate optimal instruments by nonparametric methods to obtain a two-

step efficient estimator. However, as Dominguez and Lobato (2004) point out, in nonlinear

models an arbitrary finite number of instruments, and even the optimal ones, may fail to

globally identify the parameters of interest, see Dominguez and Lobato (2007) for further

examples. The identification issue is crucial in practice: since classical GMM relies on a finite

number of unconditional moments, we can never be sure that the chosen ones identify the

parameters of interest and the estimator may be inconsistent.

Recent work has then focused on accounting for CMR at the outset. Carrasco and Florens

(2000) propose a generalization of efficient GMM to an infinite (countable or uncountable)

number of moments. Antoine, Bonnal, and Renault (2007) develop a three-step efficient

estimator based on a smoothed euclidean Empirical Likelihood (EL) approach. Donald, Im-

bens, and Newey (2003), Kitamura, Tripathi, and Ahn (2004), and Smith (2007a,b) focus on

smoothed generalized EL methods that provide one-step efficient estimators, thus avoiding

the need for a preliminary consistent estimator. All these methods rely on a user-chosen

parameter, whether it is a regularization parameter, as in Carrasco and Florens (2000), a

bandwidth parameter, as in Antoine, Bonnal and Renault (2007), Kitamura, Tripathi and

Ahn (2004), and Smith (2007a,b), or the number of series functions, as in Donald, Imbens

and Newey (2003). Consistency and efficiency follows when the user-chosen parameter, or

its inverse in the latter case, converges to zero as the sample size increases. This parameter

however cannot be set set arbitrarily close to zero in empirical applications and its practical

choice can be a vexing problem. Dominguez and Lobato (2004) propose the first consistent

estimator that does not require a user-chosen parameter, but still exploits all CMR. Efficiency

however is not reached using their criterion.

In this work, we propose a new framework for estimation of parameters in models defined

by CMR. Our generic estimator optimizes a new minimum distance criterion. Our smooth

minimum distance (SMD) approach defines a whole class of consistent estimators that depends
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on a smoothing, or bandwidth, parameter: when this parameter is fixed, our estimator is

similar to but different than Dominguez and Lobato’s estimator, and our simulations show

that it is less variable; when the bandwidth decreases to zero, our estimator is close in spirit,

but still different, to other proposals. We develop a theory for SMD estimation and testing

that focuses on accounting for the influence of the bandwidth. This feature is crucial since

this parameter is usually selected depending on the sample size and the features of the data in

applications. It is also key if one wants to determine an optimal data-driven choice, as recently

entertained by Carrasco (2007). Though we follow a different route, our work is similar in

aim to recent work on heteroscedasticity-autocorrelation robust variance estimators where the

focus is to account for the influence of the truncation parameter, see Kiefer and Volgelsang

(2005), Sun, Phillips, and Jin (2008), and the references therein. It is also related to recent

work on uniform in bandwidth consistency of kernel estimators, see Einmahl and Mason

(2005) and the references therein. Specifically, we show uniform in bandwidth consistency

and we provide a
√
n-asymptotic representation of the SMD estimator as a process indexed

by the bandwidth. To the best of our knowledge, our uniform in bandwidth results are the

first of their kind for estimation methods in models defined by CMR and are not available for

smoothed EL estimators.

Our asymptotic representation extends to misspecified models. The behavior of GMM

under misspecification has recently attracted some attention, see Hall and Inoue (2003),

Aguirre-Torres and Dominguez-Toribio (2004), and Dridi, Guay and Renault (2007). Schen-

nach (2007) recently shows that under misspecification the standard EL estimator cannot

be
√
n-consistent for a pseudo-true value whenever the functions entering the moment re-

strictions are unbounded. Little is known on the behavior of estimators based on CMR, but

one should fear that such a phenomenon also occurs for smoothed EL estimators. As our

results show, the SMD estimator enjoys similar properties whether the model is correct or

misspecified.

Our estimator can attain the semiparametric efficiency bound when the bandwidth de-

creases to zero. The efficient estimator requires neither estimation of conditional expectation

of derivatives nor differentiability of the functions entering the moment restrictions. In gen-

eral, an efficient two-step estimator obtains based on a preliminary SMD estimator, which

is consistent irrespective to the bandwidth’s choice, and a kernel estimator of the density-

weighted conditional variance, which involves a second bandwidth parameter. When the
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conditional variance is known, as in conditional quantile models, the efficient estimator be-

comes one-step, as the ones recently proposed by Otsu (2008) and Komunjer and Vuong

(2006). We establish the efficiency of our general estimator uniformly within a large range

for the two bandwidths involved. From a practical viewpoint, the efficient SMD is easier to

implement than the smoothed EL estimator of Kitamura, Tripathi and Ahn (2004). We also

show through simulations that it behaves comparatively well in small samples.

Testing restrictions on parameter can be entertained from a distance metric approach

based on our SMD criterion. Indeed, twice the difference between the constrained and un-

constrained optimized criteria behaves like a likelihood-ratio statistic. When considered as

a process, the statistic is a quadratic form in an asymptotically tight Gaussian process. If

one neglects the influence of the bandwidth and assumes an efficient estimator, a classical

chi-square distribution obtains, but basing the testing procedure on the general distribution

should yield more reliable inference. We then extend a simple bootstrap method, recently

proposed by Jin, Ying and Wei (2001) and Bose and Chatterjee (2003), to approximate the

distribution of our estimator and of our distance metric test statistic. The method perturbs

the objective function and does not require resampling observations. To our knowledge, this

is the first general bootstrap method proposed to date for inference in nonlinear models de-

fined by CMR. We show that the test and the bootstrap method are valid uniformly in the

bandwidth.

We first focus in Section 2 on obtaining general consistency and asymptotic normality

results uniformly over a large range of bandwidths including fixed ones. In Section 3, we

investigate our distance-metric procedure for testing restrictions on parameters and our pro-

posed bootstrap method for inference. Section 4 focuses on deriving an efficient form of the

SMD estimator and shows that our former results extend to the efficient estimator. Section 5

reports the results of a simulation study. Section 6 concludes. Proofs are gathered in Section

7. Two Appendices discuss in detail some of our technical conditions.
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2 SMD Estimation

For a matrix A, ‖A‖ is the usual extension of the Euclidean norm, λmin(A) and λmax(A) denote

the smallest and the largest eigenvalue of A when A is square. For a real-valued function l(·),
F [l] (·) is its Fourier transform, ∇θl(·) and Hθ,θl(·) respectively denote the p column vector

of first partial derivatives and the p× p matrix of second derivatives with respect to θ ∈ Rp.

For a vector-valued function l(·) ∈ Rr, ∇θl(·) denotes the p× r matrix of first derivatives of

the entries of l(·) with respect to entries of θ.

2.1 The Estimator

Let g(Z, θ) = (g(1)(Z, θ), ..., g(r)(Z, θ))′ be a r−vector valued function, r ≥ 1, with Z =

(Y ′, X ′)′ ∈ Rd+q, d ≥ 1, q ≥ 1, and θ ∈ Θ ⊂ Rp, p ≥ 1. With at hand independent copies

{Z1, . . . Zn} from Z, we aim at estimating a parameter defined through the CMR

E [g(Z, θ0)|X] = 0 a.s. (2.1)

We make the following identifiability assumption of θ0.

Assumption 1. (i) The parameter space Θ is compact. (ii) θ0 is the unique value in Θ

satisfying (2.1), that is E [g(Z, θ)|X] = 0 a.s.⇒ θ = θ0.

We consider a sequence of non-random positive definite (p.d.) weighting matrices Wn(·) and

the criterion

Mn,h(θ) =
1

2n(n− 1)

∑
1≤i 6=j≤n

g′(Zi, θ)W
−1/2
n (Xi)W

−1/2
n (Xj)g(Zj, θ)Kij , (2.2)

where Kij =
1

hq
K
(
Xi −Xj

h

)
, 1 ≤ i 6= j ≤ n ,

with a multivariate kernel K(·) and h = hn a sequence of bandwidth parameters.1 Discrete

covariates U with finite support could be handled by multiplying each term by the indicator

function I(Ui = Uj) and our proofs would easily adapt. For the sake of simplicity, we do not

formally consider this possibility in what follows. Our estimator is

θ̃n,h = arg min
Θ
Mn,h(θ) .

1Russell Davidson suggested to include equal indexes in the double sum. Our proofs would easily adapt

with this modification, but we do not pursue further this suggestion because unreported simulation results do

not indicate any general advantage in favor of this modification.
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Our estimator cannot be written in the form considered by Carrasco and Florens (2000).

When h tends to zero, the SMD estimator belongs to the class of MINPIN estimators studied

by Andrews (1994). We cannot however use his general results when considering our estimator

as a process indexed by the bandwidth.

When Wn(X) is the identity matrix for any X, our criterion is the statistic studied by

Delgado, Dominguez, and Lavergne (2005), a generalization of the one introduced by Zheng

(1996) and Li and Wang (1996) for specification testing of regression models. When h tends

to zero, the criterion has limit

E [g′(Z, θ)E [g(Z, θ)|X] f(X)] = E [E [g′(Z, θ)|X] E [g(Z, θ)|X] f(X)] ,

where f(·) is the density of X. Hence, provided a consistent estimator for θ0, the statistic

can be used for testing (2.1). Here we use the statistic for estimation purposes and we thus

do not assume the existence of a preliminary consistent estimator. Our criterion estimates a

(density-weighted) distance of E [g(Z, θ)|X] to zero when h tends to zero, this provides a first

justification for the label smooth minimum distance.

For h fixed, say h = 1,

2
n− 1

n
Mn,1(θ) =

∫
Rq

∣∣∣∣∣∣n−1
n∑
j=1

g(Zj, θ) exp(it′Xj)

∣∣∣∣∣∣
2

F [K] (t) dt− n−2
n∑
j=1

g2(Zj, θ)K(0) .

The first and dominant term is akin to the Integrated Conditional Moment criterion intro-

duced by Bierens (1982) for specification testing in regression models. Our criterion also

resembles the one proposed by Dominguez and Lobato (2004), which for a real-valued g(·, ·)
writes

1

n3

n∑
k=1

[
n∑
i=1

g(Zi, θ)I(Xi ≤ Xk)

]2

=
1

n2

n∑
i,j=1

g(Zi, θ)g(Zj, θ)

[
1

n

n∑
k=1

I(Xi ≤ Xk)I(Xj ≤ Xk)

]
.

By contrast to our criterion, the weight in the above double sum depends on all observations

Xi and may vary from 1 to 1/n. Our criterion has then less variability, and this in turn can

reduce variability in parameter estimation, as illustrated by our simulations results.
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2.2 Consistency

To understand why our estimator is consistent even when h does not tend to zero, keep Wn(X)

equal to the identity matrix for simplicity. Then

EMn,h (θ) =
1

2
E
[
g′(Z1, θ)g(Z2, θ)h

−qK ((X1 −X2)/h)
]

(2.3)

=
1

2
(2π)−q/2 E

[
g′(Z1, θ)g(Z2, θ)

∫
Rq

exp (it′(X1 −X2))F [K] (ht) dt
]

=
1

2
(2π)q/2

r∑
k=1

{∫
Rq

∣∣∣F [E[g(k)(Z, θ)|X = ·]f(·)
]

(t)
∣∣∣2F [K] (ht) dt

}
,

This equation shows that the criterion estimates a weighted L2-distance of the Fourier trans-

form of E[g(Z, θ)|X = ·]f(·) to zero, thus providing a second justification for its label. Since

the expectation of the criterion accounts for the Fourier transform of E [g(Z, θ)|X] at all fre-

quencies, it yields a consistent estimator independently of h. Indeed, if F [K] (·) is strictly

positive on Rq, then using the unicity of the Fourier transform and Assumption 1,

EMn,h(θ) = 0 ⇔ F
[
E[g(k)(Z, θ)|X = ·]f(·)

]
(t) = 0 ∀ t ∈ Rq, k = 1, . . . r

⇔ E[g(Z, θ)|X]f(X) = 0 a.s.⇔ θ = θ0 .

A necessary condition for consistency is then the strict positivity of the Fourier transform of

K(·). It is fulfilled for instance by products of the triangular, normal, logistic (see Johnson,

Kotz, and Balakrishnan, 1995, Section 23.3), Student (including Cauchy, see Hurst, 1995),

or Laplace densities. It is then clear that θ̃n,h is consistent for θ0 provided the convergence

Mn,h(θ) of the process to its limit uniformly in θ and h. Let us introduce our basic assumptions.

Assumption 2. (i) K(·) is a symmetric, bounded function, with integral equal to one, and

with strictly positive Fourier transform on Rq. (ii) The class of all functions (x, x̄) 7→ K((x−
x̄)/h), x, x̄ ∈ Rq, h > 0, is Euclidean for a constant envelope.

Symmetry of the kernel is not strictly speaking necessary here, but leads to simpler proofs

later on. The Euclidean property is a mild one for parametric families of functions. We refer

to Nolan and Pollard (1987), Pakes and Pollard (1989), and Sherman (1994a) for the definition

and properties of Euclidean families.2 Assumption 2-(ii) is also needed when studying the

uniform in bandwidth properties of kernel-type estimators, see the definition of “regular”

2In recent statistical work, Euclidean families are also called VC classes.
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kernels in Einmahl and Mason (2005). Nolan and Pollard (1987), among others, provide

some sufficient conditions for it, which are fulfilled by our above examples.

Assumption 3. For all n, Wn(·) is a r × r symmetric p.d. non-random matrix function

with 0 < infn infu λmin(Wn(u)) ≤ supn supu λmax(Wn(u)) <∞. There exists a symmetric p.d.

matrix function W (·) such that Wn(u)−W (u) = o(1) for all u ∈ Rq.

Assumption 4. (i) The function supθ ‖E[g(Z, θ) | X = ·] ‖f(·) is in L1 ∩ L2. For all x,

the map θ 7→ E[g(Z, θ) | X = x] is continuous. (ii) The families Gk = {g(k)(·, θ) : θ ∈ Θ},
1 ≤ k ≤ r, are Euclidean for an envelope G with EG2 <∞.

Assumption 3 ensures that W−1/2
n (·) is well-defined and the spectral radius of W−1/2

n (·) is uni-

formly bounded. It implies that 0 < infu λmin(W (u)) ≤ supu λmax(W (u)) < ∞. Assumption

4 as a whole does not require the continuity of the functions θ 7→ g(z, θ). Assumption 4-(i)

ensures that EMn,h(θ) is continuous as a function of θ and h. Assumptions 2-(ii), 4-(ii), and

the good behavior of the spectral radius of W−1/2
n (·) guarantee that the family of functions

Gn = {g′(z, θ)W−1/2
n (x)W−1/2

n (x̄)g(z̄, θ)K((x− x̄)/h) : θ ∈ Θ, h > 0}

is uniformly Euclidean for a squared integrable envelope, see Lemma 2.14-(ii) of Pakes and

Pollard (1989). Here, uniformly means that the envelope and the constants in the definition

of the Euclidean family are independent of n.

Theorem 2.1. For an i.i.d. sample and under Assumptions 1–4, θ̃n,h− θ0 = op(1) uniformly

over h ∈ {h0 ≥ h > 0 : nh2q ≥ ln(n+ 1)} for an arbitrary finite h0 > 0, i.e.3

sup
h0≥h>0, nh2q≥ln(n+1)

‖θ̃n,h − θ0‖ = op(1) .

A few remarks are useful. First, the result easily extends to any approximate estimator such

that Mn,h(θ̃n,h) ≤ minΘMn,h(θ)+op(1) uniformly in h. Second, consistency is obtained under

more general conditions that the ones imposed for EL-type estimators, see e.g. Kitamura,

Tripathi, and Ahn (2004), who impose smoothness of the function g(·, ·) and more stringent

conditions on the bandwidth. Third, the strict positivity of F [K] (·) can be weakened to

positivity if X has a bounded support. In that case, Equation (2.3) yields that EMn,h(θ) = 0

iff F
[
E[g(k)(Z, θ)|X = ·]f(·)

]
(t) = 0 for all t in a neighborhood of 0, and this yields θ =

3Here and in what follows, we abstract from measurability issues of the suprema with respect to h.
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θ0 using Theorem 1 of Bierens (1982). This allows in particular for higher-order kernels

taking negative values, as for instance the normalized sinc kernel whose Fourier transform is

a uniform density. Fourth, one could allow Wn(·) to depend on θ0 and another parameter b, as

when Wn(·) = E
[
Ŵn(·, θ0)

]
with Ŵn(·, θ0) a nonparametric estimator of an unknown matrix

W (·, θ0). We consider this possibility later on, for now we note that our results would carry

over assuming that Assumption 3 holds uniformly in b and that the class of matrix-valued

functions Wn(·; b) indexed by b is Euclidean entrywise for a constant envelope. Last, allowing

Wn(·) to depend on θ to analyze a continuously updated estimator require a more detailed

analysis that could be the topic of further work.

2.3 Asymptotic Normality

Let us make the following supplementary assumptions.

Assumption 1. (iii) θ0 belongs to the interior of Θ.

Assumption 4. (iii) EG4 < ∞. (iv) There exists a neighborhood of θ0 and a constant

c > 0 such that for all θ in that neighborhood, E ‖g(Z, θ)− g(Z, θ0)‖2 ≤ c‖θ − θ0‖. (v) The

components of ∇θτ(·, θ0)f(·) are in L1∩L2. (vi) The components of Var [g(Z, θ0)|X = ·] f(·)
are in L1 ∩ L2.

Assumption 5. (i) For any x, all second partial derivatives of τ(x, ·) = E [g(Z, ·)|X = x]

exist on a neighborhood N of θ0 independent on x. (ii) There exists a real-valued function

H(·) with EH4 <∞ and some a ∈ (0, 1] such that

‖Hθ,θτ
(k)(X, θ)− Hθ,θτ

(k)(X, θ0)‖ ≤ H(X)‖θ − θ0‖a ∀ θ ∈ N k = 1, . . . r .

Assumption 5 is implied by the following condition.

Condition 1. (i) For all z, all second partial derivatives of g(z, ·) exist on a neighborhood

N of θ0 independent on z. (ii) There exists a real-valued function H̃(·) with EH̃4 < ∞ and

a ∈ (0, 1] such that

‖Hθ,θg
(k)(Z, θ)− Hθ,θg

(k)(Z, θ0)‖ ≤ H̃(Z)‖θ − θ0‖a ∀θ ∈ N k = 1, . . . r .

8



Under Condition 1, E ‖g(Z, θ)− g(Z, θ0)‖2 = O(‖θ − θ0‖2), so Assumption 4-(iv) is not

restrictive. For our general results, we do not require differentiability of g(x, θ) and we im-

pose only 4-(iv), which is precisely what is needed in conditional quantile restriction mod-

els where Condition 1 fails, see e.g. Equation (A.11) in Zheng (1998). By Assumption 3,

gn(Z, θ) = W−1/2
n (X)g(Z, θ) also satisfies 4-(iv), and τn(X, θ) = W−1/2

n (X)τ(X, θ) inherits

the smoothness properties of τ(X, θ).

Let Fn = {φn,h(·) : h ∈ [0, h0]} be the family of functions

φn,h(z) = E
[
∇θτ(X, θ0)W−1/2

n (X)h−qK ((x−X)/h)
]
W−1/2
n (x)g (z, θ0) , for h ∈ (0, h0],

and φn,0(z) = ∇θτ(x, θ0)W−1
n (x)g (z, θ0) f(x). Define similarly φh(·) for h ∈ [0, h0] with W (·)

in place of Wn(·). We denote by {Gnφn,h : h ∈ [0, h0]} the sequence of centered empirical

processes indexed by the families Fn, that is Gnφn,h = n−1/2∑n
i=1 φn,h(Zi)− Eφn,h(Zi) =

n−1/2∑n
i=1 φn,h(Zi). Under our following Assumption 6, the process {Gnφn,h : h ∈ [0, h0]}

weakly converges to a tight zero-mean Gaussian process with covariance function ∆h1,h2 =

E [φh1(Z)φh2(Z)] − Eφh1(Z)Eφh2(Z), which is finite by Assumption 3 and 4. We introduce

a general condition that allows to analyze the above process. We say that a sequence of

real-valued functions ψn satisfies Condition (E) with kernel K(·) for an envelope Ψ(·) if the

class of functions

{x 7→
∫
ψn(x− uh)K(u)du : h ∈ [0, h0]}

is uniformly Euclidean for the envelope Ψ(·). Sufficient mild conditions on ψn(·) and K(·) that

guarantee Condition (E) are provided in Appendix A. In particular, it is sufficient that the

ψn(·) belong to some Sobolev space of functions, or are Hölder continuous on their support.4

Assumption 6. (i) The components of ∇θτn(·, θ0)f(·) satisfy Condition (E) with kernel K(·)
for an envelope Φ1 with EΦa

1 <∞ for some a ≥ 4. (ii) The components of Hθ,θτ
(k)
n (·, θ0)f(·),

1 ≤ k ≤ r and H(·)f(·) satisfy Condition (E) with kernel |K(·)| for an envelope Φ2 with

EΦa
2 <∞ for some a ≥ 4/3.

Let us define the non-random matrices

Vn,h = Hθ,θEMn,h(θ0) = E
[
∇θτn(X1, θ0)∇′θτn(X2, θ0)h−qK ((X1 −X2)/h)

]
for h ∈ (0, h0],

4Condition (E) can be weakened to a uniform entropy condition, as in van der Vaart (1998, Theorem

19.28) or van der Vaart and Wellner (1996, Theorem 2.11.22). As we need to impose Euclidean conditions to

investigate the rate of different first and second-order degenerate U -process, we use such conditions throughout.
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and Vn,0 = limh↓0 Vn,h = E [∇θτn(X, θ0)∇θτn(X, θ0)f(X)], which follows from Assumption 5-

(iii) and arguments similar to those in Equation (2.3). The matrices Vh and V0 are similarly

defined replacing Wn(·) by W (·), see below.

Lemma 2.2. Under Assumptions 3 and 4(v), supn,h λmax(Vn,h) <∞.

Theorem 2.3. Let Hn =
{
h0 ≥ h > 0 : nh4q/α ≥ C

}
for arbitrary constants h0, C > 0,

and α ∈ (0, 1). For an i.i.d. sample, under Assumptions 1–6 and infn,h λmin(Vn,h) > 0,
√
n
(
θ̃n,h − θ0

)
+ V −1

n,hGnφn,h = op(1) uniformly in h ∈ Hn, and {Gnφn,h : h ∈ [0, h0]} weakly

converges to a tight zero-mean Gaussian process.

Our theorem readily yields that
√
n
(
θ̃n,h − θ0

)
weakly converges to a tight zero-mean

Gaussian process with covariance V −1
h1

∆h1,h2V
−1
h2

, where

Vh = E
[
∇θE [g(Z1, θ0)|X1]W−1/2(X1)W−1/2(X2)∇′θE [g(Z2, θ0)|X2]h−qK ((X1 −X2)/h)

]
.

For most purposes, our interest lies on its asymptotic variance, that is V −1
h ∆h,hV

−1
h , where

∆h,h = E
[
∇θE [g(Z1, θ0)|X1]W−1/2(X1)W−1/2(X2)Var [g(Z2, θ0)|X2]W−1/2(X2)

W−1/2(X3)∇′θE [g(Z3, θ0)|X3]h−2qK ((X1 −X2)/h)K ((X2 −X3)/h)
]
.

A direct consequence of our uniform in bandwidth theory is that one can use a data-dependent

sequence of bandwidths that belongs to Hn. As also shown in our proofs section, a similar

uniform-in-bandwidth result obtains for
{
h0 ≥ h > 0 : nh2q/α ≥ C

}
under Condition 1. This

is essentially the same as Andrews’ (1994) general condition for MINPIN that the preliminary

nonparametric estimator should converge faster than n−1/4. Indeed, that
√
nhq is strictly

larger than n1/4 is equivalent to the requirement that nh2q diverges. A similar restriction

is imposed by Donald, Imbens and Newey (2003) for GMM with an increasing number of

moment conditions, and a stronger one is required for asymptotics of their EL estimator.

We end this section by a comment on one of our assumptions.

Lemma 2.4. Under Assumptions 3 and 4(v), if F [K] (ht) ≥ F [K] (h0t) ∀ t ∈ Rq, ∀h ∈
[0, h0], Hθ,θE [τ ′(X, θ0)τ(X, θ0)] positive definite implies lim infn infh λmin(Vn,h) > 0.

The condition on the kernel is fulfilled by products of normal, logistic, Laplace, and Stu-

dent densities. About the other condition, note that if we knew τ(X, θ), we could minimize

E [τ ′(X, θ0)τ(X, θ0)] to obtain θ0. The positive definiteness of the Hessian at θ0 is thus quite

natural. Hence the assumption infn,h λmin(Vn,h) > 0 is not unduly restrictive.
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2.4 Study Under Misspecification

We now study our estimator under misspecification. As previously argued, this is useful at

least as a “robustness” check. As we now show, the behavior of the SMD estimator is very

similar whether misspecification exists or not, and specifically is always
√
n-consistent. While

no formal result has established the properties under misspecification of alternative estimators

methods referred to in the Introduction, Schennach (2007) shows that the excellent properties

of EL estimator degrades enormously under the slightest misspecification, causing the loss

of
√
n-consistency, and provides an in-depth discussion. In particular, she argues that under

misspecification the implied EL probabilities place large weight on a few extreme observations

to satisfy the moment restrictions. By contrast, SMD estimation does not impose the CMR,

but aims at matching them at best.

Define the pseudo-true value θ̄n,h(Wn) = θ̄n,h = arg minΘ EMn,h(θ), which we assume to

be unique.5 Note that for each n the criterion EMn,h(θ) is continuous as a function of θ and

h so that θ̄n,h can be extended by continuity to

θ̄n,0 = arg min
Θ

E
{
E [g′(Z, θ)|X]W−1

n (X)E [g(Z, θ)|X] f(X)
}
.

Let F̄n = {φ̄n,h(·) : h ∈ [0, h0]}, where

φ̄n,h(z) = E
[
∇θτ(X, θ̄n,h)W

−1/2
n (X)h−qK ((x−X)/h)

]
W−1/2
n (x)g(z, θ̄n,h),

and φ̄n,0(z) = ∇θτ(x, θ̄n,0)f(x)W−1
n (x)g

(
z, θ̄n,0

)
. Let {Gnφ̄n,h : h ∈ [0, h0]} be the sequence

of centered empirical processes indexed by the families F̄n,

V̄n,h = Hθ,θEMn(θ̄n,h) = E
[
∇θτn(X1, θ̄n,h)∇′θτn(X2, θ̄n,h)h

−qK ((X1 −X2)/h)
]

+
r∑

k=1

E
[
Hθ,θτ

(k)
n (X1, θ̄n,h)g

(k)
n (X2, θ̄n,h)h

−qK ((X1 −X2)/h)
]
, (2.4)

and V̄n,0 = limh↓0 V̄n,h = Hθ,θEMn(θ̄n,0). To derive an asymptotic representation, we need to

strengthen our assumptions.

Assumption M4. (i) Each θ̄n,h is unique and there exists a subset ΘM of the interior of Θ

such that for each n, h there is a ball B(θ̄n,h, r) in ΘM with r independent of n and h. (ii)

There exists a constant c > 0 such that for all θ ∈ ΘM , E ‖g(Z, θ1)− g(Z, θ2)‖2 ≤ c‖θ1 − θ2‖.
5When Wn does not depend on n, θ̄n,h depends only on h.
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(iii) The components of ∇θτ(·, θ1)f(·) and of E [g(Z, θ1)g′(Z, θ2)|X = ·] f(·), θ1, θ2 ∈ ΘM ,

are uniformly bounded in L1 ∩ L2. (iv) The components of E [g(Z, θ1)g′(Z, θ2)|X = ·] are

continuous in θ1, θ2 ∈ ΘM .

Assumption M5. (i) For any x, all second partial derivatives of τ(x, ·) = E [g(Z, ·)|X = x]

exist on ΘM . (ii) There exists a real-valued function H(·) with EH4 <∞ and some a ∈ (0, 1]

such that

‖Hθ,θτ
(k)(X, θ1)− Hθ,θτ

(k)(X, θ2)‖ ≤ H(X)‖θ1 − θ2‖a ∀ θ1, θ2 ∈ ΘM k = 1, . . . r .

We say that a sequence of real-valued functions ψn(·, ·) satisfies Condition (ME) with

kernel K(·) for an envelope Ψ(·) if for each n ≥ 1 the class of functions

{x 7→
∫
ψn(x− uh, θ)K(u)du : h ∈ [0, h0], θ ∈ ΘM}

is uniformly Euclidean for the envelope Ψ(·). Condition (ME) is a mild strengthening of (E)

to account for the non-constancy of θ̄n,h in case of misspecification.

Assumption M6. (i) The components of ∇θτn(·, ·)f(·) satisfy Condition (ME) with ker-

nel K(·) for an envelope Φ1 with EΦa
1 < ∞ for some a ≥ 4. (ii) The components of

Hθ,θτ
(k)
n (·, ·)f(·), 1 ≤ k ≤ r satisfy Condition (ME) with kernel |K(·)| for an envelope Φ2

with EΦa
2 <∞ for some a ≥ 4/3. (iii) H(·)f(·) satisfies Condition (E) with kernel |K(·)| for

an envelope Φ3 with EΦa
3(X) <∞ for some a ≥ 4/3.

Theorem 2.5. For an i.i.d. sample, under Assumptions 1-(i), 2, 3, 4-(i) to (iii), M4, M5,

and M6, if supn,h λmax(Vn,h) < ∞ and infn,h λmin(Vn,h) > 0,
√
n
(
θ̃n,h − θ̄n,h

)
+ V −1

n,hGnφ̄n,h =

op(1) uniformly in h ∈ Hn, and
{
Gnφ̄n,h : h ∈ [0, h0]

}
weakly converges to a tight zero-mean

Gaussian process.

3 SMD-Based Testing for Parameter Restrictions

3.1 Asymptotics

Suppose we want to test the parametric restriction in explicit form

H0 : θ0 = R(γ0) , (3.5)
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where γ0 ∈ Rs with s ≤ p and R(·) is a function from Γ ⊂ Rs on Θ. Alternatively, one could

look at a null hypothesis in implicit form, but the explicit formulation is as general.

Assumption 8. (i) R(·) is twice continuously differentiable. (ii) Either ∇γR(γ0) has rank

r̄ = s ≥ 1 or r̄ = 0.

The latter case corresponds to the case where all parameters values are completely determined

under H0. The constrained SMD estimator is θ̃Rn,h = arg minθ∈Θ,θ=R(γ) Mn,h(θ). A distance

metric statistic for testing H0 is

DMn,h = 2n
[
Mn,h

(
θ̃Rn,h

)
−Mn,h(θ̃n,h)

]
.

This is analog to the test statistic used in a classical GMM context. For smoothed EL, a

similar statistic is studied by Kitamura, Tripathi an Ahn (2004) in the differentiable case,

and Otsu (2008) for conditional quantile models. One could alternatively consider tests of

the Wald, Score or Lagrange Multiplier type. A theoretical advantage of the distance metric

test is that it is automatically invariant to the formulation of the null hypothesis.

For h ∈ [0, h0], let

Λn,h=
[
Ip − V 1/2

n,h ∇′γR(γ0)
[
∇γR(γ0)Vn,h∇′γR(γ0)

]−1
∇γR(γ0)V

1/2
n,h

]
V
−1/2
n,h ∆n,h,hV

−1/2
n,h ,

when r̄ = s and Λn,h = V
−1/2
n,h ∆n,hV

−1/2
n,h when r̄ = 0.

Theorem 3.1. Under the assumptions of Theorem 2.3 and Assumption 8

i. under H0, DMn,h − (Gnφn,h)
′ Λn.h (Gnφn,h) = op(1) uniformly in h ∈ Hn.

ii. if H0 does not hold P [n−1DMn,h > c]→ 1 uniformly in h ∈ Hn for some c > 0.

The process (Gnφn,h)
′ Λn.h (Gnφn,h) is asymptotically tight and for each h it has an asymptotic

weighted sum of chi-squares distribution Mp−s(·, λh), see e.g. Vuong (1989) for the definition

of this distribution, where λh is the vector of positive eigenvalues of

Λh=
[
Ip − V 1/2

h ∇′γR(γ0)
[
∇γR(γ0)Vh∇′γR(γ0)

]−1
∇γR(γ0)V

1/2
h

]
V
−1/2
h ∆h,hV

−1/2
h ,

when r̄ = s, and Λh = V
−1/2
h ∆h,hV

−1/2
h when r̄ = 0. Hence we label this process an asymp-

totically tight weighted sum of chi-squares process. The distribution of our distance-metric
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statistic is thus in general non-pivotal. Our result looks familiar: in a maximum-likelihood

context, the likelihood-ratio test is asymptotically a weighted sum of chi-squares, as estab-

lished by Vuong (1989); a similar result obtains in a GMM context, see Marcellino and Rossi

(2008). The classical chi-square distribution reappears when the information matrix equality

or its analog holds. As a consequence of our results of Section 4, we recover a χ2
p−s when

we use an efficient estimator, that is for the optimal weighting matrix and h tending to zero.

However the general distribution obtained without imposing this restriction likely provides a

more accurate approximation because it accounts for the influence of the smoothing parame-

ter. We note that the previous theorem extends to misspecified models using our results and

conditions in Section 2.2, though we do not formally consider such a generalization.

Determining critical values requires estimation of the eigenvalues λh and then of the matrix

Λh. When Condition 1 holds, one can respectively estimate Vh and ∆h,h by

1

n(n− 1)

∑
1≤i 6=j≤n

∇θg(Zi, θ̃n,h)W
−1/2
n (Xi)W

−1/2
n (Xj)∇′θg(Zj, θ̃n,h)Kij ,

and
1

n(n− 1)(n− 2)

∑
1≤i 6=j 6=k≤n

∇θg(Zi, θ̃n,h)W
−1/2
n (Xi)W

−1/2
n (Xj)V̂ar

[
g(Zk, θ̃n,h)|Xk

]
×W−1/2

n (Xj)W
−1/2
n (Xk)∇′θg(Zk, θ̃n,h)KijKjk ,

where V̂ar [g(Zk, θ)|Xk] is a nonparametric consistent estimator of Var [g(Zk, θ)|Xk], see for

instance (4.7) below. If g(·, ·) is not differentiable, one can use numerical methods similar to

the ones in Pakes and Pollard (1989). In what follows, we shall propose another route.

3.2 Bootstrapping SMD

Bootstrapping is popular to approximate the distribution of statistics when asymptotics may

not reflect accurately their behavior in small or moderate samples. In particular, wild boot-

strap is widely used for hypothesis testing in regression models, see e.g. Mammen (1992) and

the references therein. For testing in CMR models, application of wild bootstrap requires

generating resamples with the same values for the exogenous variables, but new observations

for the endogenous variables. In addition, the bootstrap samples should mimic the behavior

of the data under the null hypothesis. This can be done in simple cases, e.g. in regression

models, and has been shown to give reliable approximations. In general however, generat-

ing bootstrap samples may be difficult or even infeasible: if the model is nonlinear in the

endogenous variables, a reduced form may not be available or unique.
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We now propose a simple method that allows to circumvent these difficulties if they ap-

pear, that applies generally and is easy to implement. Instead of resampling observations, we

perturb the objective function and recompute our test statistic using this perturbed objective

function. This method has been proposed by Jin, Ying and Wei (2001) and Bose and Chatter-

jee (2003), see also Chatterjee and Bose (2005) for a similar method applied to Z-estimators.

However, they impose conditions that do not hold in our context. More crucially, they do not

investigate the use of this method for testing.

Consider n independent identical copies {wi : i = 1, . . . n} of a known positive random

variable w with E (w) = Var(w) = 1 and Ew4 <∞. Define the perturbed criterion as

M∗
n,h(θ) =

1

2n(n− 1)

∑
1≤i 6=j≤n

wiwjg
′(Zi, θ)W

−1/2
n (Xi)W

−1/2
n (Xj)g(Zj, θ)Kij . (3.6)

With this new criterion, we repeat the estimation process, that is we compute

θ̃∗n,h = arg min
θ
M∗

n,h(θ) .

The method consists in generating a large number of sample draws from the same distribution

w so as to determine precisely enough the distribution of the above statistics. In what follows,

we show the uniform in bandwidth validity of this method.

Theorem 3.2. Under the Assumptions of Theorem 2.3, then conditionally on the sample and

uniformly over h ∈ Hn

i.
√
n
(
θ̃∗n,h − θ̃n,h

)
has asymptotically the same distribution as

√
n
(
θ̃n,h − θ0

)
, that is

suph∈Hn supu
∣∣∣P [√n (θ̃∗n,h − θ̃n,h) ≤ u|Z1, . . . Zn

]
− P

[√
n
(
θ̃n,h − θ0

)
≤ u

]∣∣∣ = op(1).

ii. n
(
M∗

n,h(θ̃
∗
n,h)−M∗

n,h(θ̃n,h)
)

has asymptotically the same distribution as

n
(
Mn,h(θ̃n,h)−Mn,h(θ0)

)
.

An heuristic for this result is as follows. Since E
(
M∗

n,h(θ)|Z1, . . . Zn
)

= Mn,h(θ) is mini-

mized at θ̃n,h, θ̃
∗
n,h is expected to tend to θ̃n,h conditionally on the sample. Now, as shown

in the proofs section, the perturbed and the original criterion have a similar quadratic ex-

pansion in θ. Therefore, the distribution of n
(
M∗

n,h(θ̃
∗
n)−M∗

n,h(θ̃n,h)
)

is close to the one of

n
(
Mn,h(θ̃n,h)−Mn,h(θ0)

)
, and similarly for

√
n
(
θ̃∗n,h − θ̃n,h

)
and
√
n
(
θ̃n,h − θ0

)
. Our result

allows the use of the bootstrap method to approximate the distribution of θ̃n,h, and in par-

ticular can be used to determine confidence intervals for a single parameter. It is more usual
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to use studentized versions of the estimators, and the asymptotic equivalence of their distri-

bution would easily follow. Whether bootstrapping yields a more accurate approximation in

that instance would require further analysis that is beyond the scope of this paper.

Part (ii) of our result is the basis for critical values determination in hypothesis testing.

To understand how it can be done, consider the decomposition

DMn,h = 2n
[
Mn,h

(
θ̃Rn,h

)
−Mn,h (R(γ0))−

(
Mn,h(θ̃n,h)−Mn,h(θ0)

)]
+ 2n [Mn,h (R(γ0))−Mn,h(θ0)] .

The distribution of DMn,h under H0 is determined by the first term, while consistency is

ensured because the last term diverges under the alternative. Hence to approximate the

behavior of the statistic under H0, we need to approximate the first term only. In that aim,

we repeat the estimation process under the constraint (3.5), that is we compute

θ̃R∗n,h = arg min
θ,θ=R(γ)

M∗
n,h(θ) .

The bootstrap distance metric test statistic is then defined as

DM∗
n,h = 2n

[
M∗

n,h(θ̃
R∗
n,h)−M∗

n,h(θ̃
R
n,h)−

(
M∗

n,h(θ̃
∗
n,h)−M∗

n,h(θ̃n,h)
)]
.

Theorem 3.3. Under the Assumptions of Theorem 2.3, then conditionally on the sample and

uniformly over h ∈ Hn

i. Under H0, DM∗
n,h has asymptotically the same distribution as DMn,h,

ii. When H0 does not hold, DM∗
n,h = op(n).

The last part suffices to obtain a consistent test, since DMn,h diverges at rate n from

Theorem 3.1. However, under suitable assumptions, one could use Theorem 2.5 to show that

DM∗
n is bounded in probability whether H0 holds or not, and thus that the bootstrap test

has similar local power than the asymptotic one.

4 Efficient SMD Estimation

We now turn to rendering our estimator efficient: this is desirable from a theoretical viewpoint

and suggests that the SMD estimator can compare well to competitors in practice. Our

Theorem 2.3 readily gives the optimal weighting matrix W (·) that yields a semiparametric

efficient estimator as characterized by Chamberlain (1987).
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Corollary 4.1. Under the Assumptions of Theorem 2.3, θ̃n,h is semiparametrically efficient

uniformly over h ∈ H′n =
{

1/ ln(n+ 1) ≥ h > 0 : nh4q/α ≥ C
}

for arbitrary C > 0 and 0 <

α < 1 if W (X) = Var [g(Z, θ0)|X] f(X).

By contrast to GMM, the optimal weighting matrix does not involve ∇θE [g(Z, θ0)|X], and

then makes the efficient SMD we shall propose easy to apply even if g(·, ·) is not differentiable.

Let θ̌n be a
√
n-consistent SMD estimate of θ0, computed for instance by choosing Wn(·) = I

and any h ∈ Hn. Consider the nonparametric estimator of the optimal weight matrix-valued

function Var[g(Z, θ0) | X = x]f(x) defined as

Ŵn(x, θ) =
1

nbq
∑

1≤k≤n
g(Zk, θ)g

′(Zk, θ)L((x−Xk)/b) (4.7)

where L(x) is a kernel and b is a vanishing bandwidth. By convention, Ŵn(x, θ) = I when

the right-hand side of the last display is not positive definite. However, the probability

of this event vanishes when n grows under our subsequent assumptions. Our estimator is

θ̂n,h,b = arg minΘ M̂n,h,b(θ), where

M̂n,h,b (θ) =
1

2n(n− 1)

∑
1≤i 6=j≤n

g′(Zi, θ)Ŵ
−1/2
n (Xi, θ̌n)Ŵ−1/2

n (Xj, θ̌n)g(Zj, θ)Kij .

It is thus in general a two-step estimator. Note that when Condition 1 holds, a one quasi-

Newton step around the preliminary estimator is all what is needed. A preliminary estimator

for θ0 may not even be necessary. Consider for instance the case of nonlinear quantile re-

strictions where g(Z, θ) = I [Y − µ(X, θ) ≤ 0] − ρ for known ρ, e.g. ρ = 1/2 for median

restrictions. Then W (x) = ρ(1− ρ)f(x), no preliminary estimator is needed, and a one-step

efficient estimator obtains under our following assumptions, as to the ones recently proposed

by Otsu (2008) and Komunjer and Vuong (2006).

Assumption E2. (i) L(·) is a density of bounded variation with bounded support and is

strictly positive around the origin. (ii) The class of functions (x, x̄) 7→ L((x−x̄)/h), x, x̄ ∈ Rq,

h > 0, is Euclidean for a constant envelope.

Assumption E4. Assumption 4 holds with supx∈Rq E[G8 | X = x] <∞.

Assumption E7. (i) f(·) is bounded away from zero and infinity with bounded support D

that can be written as finite unions and/or intersections of sets {x : p(x) ≥ 0}, where p(·)
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is a polynomial function. (ii) W (·) = E[g(Z, θ0)g′(Z, θ0) | X = ·]f(·) is such that 0 <

infu λmin (W (u)) ≤ supu λmax (W (u)) < ∞. (iii) W (·) is Hölder continuous on D. (iv) Let

ω2(·, θ) = E[g(Z, θ)g′(Z, θ) | X = ·]. For θ in a neighborhood of θ0, some ν > 2/3, and c > 0,

‖ω2(x, θ)− ω2(x, θ0)‖ ≤ c‖θ − θ0‖ν for all x.

Assumption E4 is needed to apply a result from Einmahl and Mason (2005). Assumption

E7 corresponds to supplementary restrictions with respect to the previous sections. Part (i)

allows for a flexible form of the support of X. Allowing for a vanishing density would involve

introducing some trimming into the objective function, as done by Kitamura, Tripathi and

Ahn (2004), but this is outside the scope of this work. They also note that trimming does

not affect their estimator in practice and in view of our following simulations results we feel

confident that the same applies to efficient SMD. Parts (ii) and (iii) ensure that Assumption

3 holds in probability for Wn(·) = E
[
Ŵn(·, θ0)

]
and that its entries as indexed by b are

Euclidean for a constant envelope. Part (iv) allows to control the bias of Ŵn(·, θ̌). Under our

assumptions, it is easy to show that θ̂n,h,b is consistent by adapting the proof of Theorem 2.1.

Focusing on efficiency matters, we consider that h goes to zero and that the bandwidth b is

in the same range than h. No relationship between the two bandwidths is required, though

in practice they can be chosen related or even equal.

Theorem 4.2. For an i.i.d. sample, under Assumptions 1, 2, E2, E4, 5, and E7,

sup
h,b∈H′n

∣∣∣M̂n,h,b (θ)−Mn,h,b (θ)
∣∣∣ = op

(
n−1 + ‖θ − θ0‖/

√
n+ ‖θ − θ0‖2

)
(4.8)

uniformly over θ in o(1) neighborhoods of θ0, where Mn,h,b(θ) is defined as in (2.2) with

Wn(x, θ0) = E
[
Ŵn(x, θ0)

]
.

This result ensures the equivalence of θ̂n,h,b and the estimator θ̃n,h with weighting matrix

Wn(·) = E
[
Ŵn(·, θ0)

]
. Now we can apply Theorem 2.3 provided an equivalent of Assumption

6 holds that accounts for the dependence of the weighting matrix on b. We here provide some

primitive conditions that together with Assumption E7 ensure such an assumption, though

they are likely not the only or weakest possible.

Assumption E6. Each of the entries of ∇θτ(·, θ0)f(·), Hθ,θτ
(k)
n (·, θ0)f(·), 1 ≤ k ≤ r and

H(·)f(·) is Hölder continuous on D, with possibly different exponents.
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Corollary 4.3. Under the assumptions of Theorem 4.2 and E6,
√
n
(
θ̂n,h,b − θ0

)
is asymptot-

ically N(0,Σ−1) with Σ = E
[
∇θE [g(Z, θ0)|X] Var−1 [g(Z, θ0)|X]∇′θE [g(Z, θ0)|X]

]
uniformly

in h, b ∈ H′n. Moreover, the results of Section 3 holds for θ̂n,h,b uniformly in h, b ∈ H′n.

5 Small sample study

The first setup is the one considered by Dominguez and Lobato (2004), where

Y = θ2
0X + θ0X

2 + ε, (5.9)

with θ0 = 5/4, X ∼ N(µ, 1), and ε ∼ N(0, 1) independently of X. The unknown parameter is

not globally identified whenever µ 6= 0. Dominguez and Lobato (2004, hereafter DL) illustrate

theoretically and through simulations the consequences of lack of global identification on

nonlinear least-squares (NLS). Abstracting from this issue, we considered as our benchmark

the infeasible efficient NLS estimator based on the knowledge that the model is homoscedastic

and optimized locally around the true value of the parameter. We considered three versions

of SMD (i) W = I and h = 1, (ii) W = I and h = 0.3, (iii) the efficient version with

h = b = 0.3, the two cases µ = 0 and µ = 1, and two sample sizes, n = 50 and n = 200. For

implementation, we used a Gaussian kernel. All results are based on 5000 replications.

Figures 1 to 4 compare the densities of the different estimators centered and scaled by
√
n. Table 1 reports the ratios of root mean squared error (RMSE) and mean absolute

deviation (MAE) of each estimator with respect to the one of the locally optimized NLS.

DL’s estimator is more variable than versions (i) and (ii) of SMD. Increasing the sample size

does not significantly affect the performances of the latters with respect to NLS, and changing

the bandwidth has little effect. The efficient version performs very well compared to NLS,

and its accuracy improves when the sample size increases, even though the bandwidths do

not adapt to the sample size.

The second setup is the one of Cragg (1983), Newey (1993), and Kitamura, Tripathi and

Ahn (2004, herefater KTA), where

Y = β1 + β2X + ε, E(ε|X) = 0, Var(ε|X) = .1 + .2X + .3X2 , (5.10)

with β1 = β2 = 1, lnX ∼ N(0, 1), and ε is normally distributed. KTA (2004) concluded that

in this setup the Smoothed Empirical Likelihood (SEL) works best among various estimators.
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As a benchmark, we considered the generalized least squares estimator based on the true

variance function, and we computed the feasible version based on the knowledge of the variance

functional form. We considered efficient SMD with a Gaussian kernel and h = b. Results for

SMD are based on 5000 replications, while results for SEL are based on 500 replications as

reported by KTA.

Table 2 reports the ratios of root mean squared error (RMSE) and mean absolute deviation

(MAE) of each estimator with respect to the infeasible GLS. The considered bandwidths

were chosen in the grid n−1/5 × (2/3, 5/3, 8/3) to allow a straightforward comparison with

KTA’s results. This should not be taken as a recommendation: a bandwidth constant of

8/3 is pretty large as compared for instance with the simple rule of thumb based on 0.8

times the interquartile range of X, which is 1.45. The efficient SMD performs well compared

to the feasible GLS, though the latter relies on the parametric form of the variance. The

relative performances of SEL and SMD vary depending on the bandwidth choice. To gain

further insight, Figure 5 reports the ratio of RMSE as a function of the bandwidth on a finer

grid.6 The shape of RMSE with respect to the bandwidth is strikingly different for the two

estimators. For SEL, RMSE is minimized at a quite large value of the bandwidth for both

parameters, and the “optimal” bandwidth does not decrease with the sample size. For SMD,

RMSE of the intercept is always minimum at the smallest considered bandwidth, while for

the slope the “optimal” bandwidth decreases with the sample size.

We then investigated the behavior of our bootstrap distance-metric statistic under the null

hypothesis. We did not explore the power properties of our test, such a study is left for future

research. We ran 500 replications for sample sizes n = 50 and 100, and for each replication

99 bootstrapped statistics were computed to determine the critical value. For bootstrapping,

we used the two-point distribution defined through

P
[
w =

3−
√

5

2

]
=

5 +
√

5

10
and P

[
w =

3 +
√

5

2

]
=

5−
√

5

10
.

We chose this simple distribution with third central moment equal to one in the hope to better

approximate the distribution of the statistic, as is the case in simpler setups, see e.g. Mammen

(1992). Table 3 reports empirical levels of the test. In all cases, the level accuracy increases

when the sample size increases. For Model (5.9), the empirical level accuracy is reasonable

for n = 50, while somewhat away for X ∼ N(1, 1), and very close to the nominal one for

6Figures corresponding to SEL were kindly provided by Yuichi Kitamura.
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n = 100, while the Wald test based on the locally optimized NLS estimator over rejects. For

Model (5.10), our results follow a similar general pattern: for relatively large bandwidths,

the test over rejects, but this phenomenon fades out with increasing sample size. We also

checked that using asymptotic 5% critical values from the chi-square distribution with one

degree of freedom for our test yields rejection percentages between 0.2 and 1.3% depending

on the bandwidth and sample size, and thus does not constitute a credible alternative in

small samples. Tests based on FGLS (Wald and LR tests yield identical results) are severely

oversized and are then not reliable either.

To sum up, our SMD estimator performs well in our simulation experiments, is competitive

with SEL while it exhibits a different behavior with respect to the bandwidth. Our bootstrap

technique yields reliable test levels for moderate sample sizes.

6 Conclusion

We have proposed a smooth minimum distance estimation method for finite-dimensional pa-

rameters in models defined by conditional moment restrictions. Our SMD estimator depends

on a smoothing parameter but is
√
n-consistent independently of this parameter within a wide

range allowing for a fixed one. In our theory, we consider this estimator as a process indexed

by the bandwidth and we establish a uniform in bandwidth asymptotic representation. Our

results are derived under weaker smoothness conditions than the ones available for competing

estimators, so that they readily apply to many models, as conditional quantile restrictions

models. We have developed a testing procedure based on a distance-metric statistic. Since

the smoothing parameter cannot in practice be chosen arbitrarily close to zero, and thus

the behavior of our estimator and test can be badly approximated by asymptotics, we have

proposed a new bootstrap method. We have also shown how to obtain an efficient version of

the SMD estimator when the bandwidth converges to zero. In practice, both the estimator

and the bootstrap method are simple to implement and are found to perform reasonably

well in our simulations. The higher-order properties of the estimator, the influence of the

bandwidth and the optimal bandwidth choice should be investigated. An overidentification

testing procedure based on our optimized criterion needs to be developed. Generalizations to

situations where a functional nuisance parameter is present and to time-series contexts also

require further study.
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7 Proofs

7.1 Preliminary lemmas

In what follows we adopt the notations of Sherman (1993, 1994a) concerning U -statistics. Following

his use, we say that for a sequence θn,h, Hn(θ) = op(1), respectively Op(1), uniformly over op(1)

neighborhoods of θn,h and uniformly in h ∈ Hn if for any sequence of random variables rn = op(1),

there exist a sequence bn = op(1), respectively Op(1), such that supn,h∈Hn sup‖θ−θn,h‖≤rn |Hn(θ)| ≤
bn. The following is an extension of Corollary 8 of Sherman (1994a).

Lemma 7.1. Let Fn = {fn(·, θ, h) : θ ∈ Θ, h > 0} be a class of degenerate functions on Rk, k ≥ 1,

where fn(·, θn,h, ·) ≡ 0. If

i. Fn is Euclidean for an envelope F satisfying EF 4 <∞ uniformly in n,

ii. There is a ball B(θn,h, r) and positive constants a and c, with r, a, and c independent on n

and h, such that Ef2
n(·, θ, h) ≤ c‖θ − θn,h‖a for all θ ∈ B(θn,h, r), all h > 0, and all n,

then uniformly over B(θ̄n,h, r) and h > 0, and for any 0 < α < 1

nk/2Uknfn(·, θ, h) = ‖θ − θn,h‖aα/2Op (1) +Op
(
n−α/4

)
.

If we assume further that f2
n(·, θn,h, h) ≤ Φ(·)‖θ − θn,h‖a with EΦ < ∞, then then uniformly over

B(θ̄n,h, r) and h > 0, nk/2Uknf(·, θ, h) = ‖θ − θn,h‖aα/2Op (1) for any 0 < α < 1.

Proof. For simplicity, write N for B(θn,h, rn). Following the proof of Sherman (1994a, Corollary 8),

E sup
θ∈N ,h>0

∣∣∣nk/2Uknfn(·, θ, h)
∣∣∣ ≤ [E sup

θ∈N ,h>0
Uk2nf

2
n(·, θ, h)

]α/2
for any 0 < α < 1. Under the last condition, one readily obtains the desired result. Under Conditions

i and ii only,

E sup
θ∈N ,h>0

Uk2nf
2
n(·, θ, h) ≤ sup

θ∈N ,h>0
Ef2

n(·, θ, h) +
k∑
i=1

E sup
θ∈N ,h>0

U i2nfn,i(·, θ, h)

where the class of functions {fn,i : θ ∈ N , h > 0} is degenerate on Ri. Deduce from Lemma 2.14 of

Pakes and Pollard (1989) that these classes are uniformly Euclidean for squared-integrable envelopes

Fi, and from Corollary 4 of Sherman (1994a) that E supθ∈N ,h>0 U
i
2nfn,i(·, θ, h) = O(n−i/2).

The following lemmas are extensions of Theorems 1 and 2 of Sherman (1993) and Theorems 1 and

2 of Sherman (1994b). The proofs proceed by straightforward modifications of his.
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Lemma 7.2. Let θn,h be the minimizer of Mn,h(θ) depending on a bandwidth h, Hn a set of band-

widths, and let θ̄n,h be a minimizer of a function M̄n,h(θ) that may also depend on h. If

i. θn,h − θ̄n,h = op(1) uniformly in h ∈ Hn,

ii. there is a ball B(θ̄n,h, r) and a constant κ > 0, with r and κ independent on n and h, such

that uniformly in h ∈ Hn

M̄n,h(θ)− M̄n,h(θ̄n,h) ≥ (κ+ o(1)) ‖θ − θ̄n,h‖2 ∀θ ∈ B(θ̄n,h, r) ,

iii. for some εn = o(1) and uniformly over op(1) neighborhood of θ̄n,h and h ∈ Hn,

Mn,h(θ) = M̄n,h(θ) + ‖θ − θ̄n,h‖Op(1/
√
n) + ‖θ − θ̄n,h‖2op(1) +Op(εn) ,

then ‖θn,h − θ̄n,h‖ = Op
[
max

(
ε

1/2
n , n−1/2

)]
uniformly in h ∈ Hn.

Lemma 7.3. Let θn,h be as in Lemma 7.2. Suppose θn,h − θ̄n,h = Op(1/
√
n) uniformly in h ∈ Hn,

that the limit points of the sequence θ̄n,h are in the interior of Θ, and that uniformly over Op(1/
√
n)

neighborhoods of θ̄n,h,

Mn,h(θ) = Mn,h(θ̄n,h) +
1
2
(
θ − θ̄n,h

)′
Vn,h

(
θ − θ̄n,h

)
+

1√
n
A′n,h

(
θ − θ̄n,h

)
+ op(1/n) (7.11)

where Vn,h is a sequence of positive definite matrices such that 0 < cmin ≤ λmin(Vn,h) ≤ λmax(Vn,h) ≤
cmax <∞ for some cmin and cmax independent on n and h, and An,h = Op(1) uniformly in h ∈ Hn.

Then
√
n
(
θn,h − θ̄n,h

)
+ V −1

n,hAn,h = op(1) uniformly in h ∈ Hn.

7.2 Main proofs

In the main proofs, we use a single index n in place of the double indices n and h, e.g. we write Mn

instead of Mn,h.

Proof of Theorem 2.1. Replacing g(Z, θ) by gn(Z, θ) = W
−1/2
n (X)g(Z, θ) in (2.3) yields

EMn(θ) = 0 ⇔ F
[
E
[
g

(k)
n (Z, θ)|X = ·

]
f(·)

]
(t) = 0 ∀ t ∈ Rq, k = 1, . . . r

⇔ W−1/2
n (X)E [g(Z, θ)|X] = 0 a.s.⇔ θ = θ0 ,

as Wn(X) is positive definite. Since EMn(θ) is continuous in θ from Assumption 4-(ii) as well

as in h, see (2.3), we have that ∀ε > 0, ∃µ > 0 such that inf‖θ−θ0‖≥ε,0≤h≤h0
EMn(θ) ≥ µ. The

family of functions {g′(Z1, θ)W
−1/2
n (X1)W−1/2

n (X2)g(Z2, θ)K ((X1 −X2)/h) : θ ∈ Θ, h > 0} is Eu-

clidean for a square-integrable envelope by Assumptions 2 and 4, Lemma 22(ii) of Nolan and Pollard
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(1987) and Lemma 2.14(ii) of Pakes and Pollard (1989). Thus by Corollary 7 of Sherman (1994a),

supθ∈Θ,h>0 |hqMn(θ)−EhqMn (θ) | = OP(n−1/2). Let H̄n the set of bandwidths from the theorem and

consider a set on which supθ∈Θ,h∈H̄n |h
qMn(θ)−EhqMn (θ) | ≤ Cn−1/2 ln ln(n+2), whose probability

tends to one for any constant C > 0. On this set,

inf
‖θ−θ0‖≥ε

inf
h∈H̄n

[Mn(θ)−Mn(θ0)] ≥ inf
‖θ−θ0‖≥ε

inf
h∈H̄n

EMn(θ)−
[
2C ln ln(n+ 2)/ (ln(n+ 1))−1/2

]
so that inf‖θ−θ0‖≥ε suph∈H̄n [Mn(θ)−Mn(θ0)] ≥ µ/2 for n large enough. Since Mn(θ̃n) ≤Mn(θ0), it

follows that suph∈H̄n ‖θ̃n − θ0‖ < ε with probability tending to one.

Proof of Lemmas 2.2 and 2.4. For any n, h, and a ∈ Rp,

a′Vn,ha = E
[
a′∇θτn(X1, θ0)∇′θτn(X2, θ0)a h−qK

(
X1 −X2

h

)]
= (2π)q/2

{∫
Rq

r∑
k=1

∣∣∣F [a′∇θτ (k)
n (·, θ0)f(·)

]
(t)
∣∣∣2F [K] (ht) dt

}
, (7.12)

Since F [K] (ht) ≤ (2π)−q/2 for all h, t, and by Assumptions 3 and 4-(v),

sup
n,h

λmax(Vn,h) = sup
n
λmax(Vn,0) ≤ λmax

(
E
[
∇θτ(X, θ0)∇′θτ(X, θ0)f(X)

])
sup
n,u

λ−1
min(Wn(u)) <∞ .

If F [K] (ht) ≥ F [K] (h0t) for all t, h ∈ [0, h0], lim infn infh λmin(Vn,h) = lim infn λmin(Vn,h0) from

(7.12). Moreover, lim infn λmin(Vn,h0) ≥ λmin(Vh0)− lim supn ‖Ṽn,h0‖2, where Ṽn,h0 = Vn,h0−Vh0 and

‖ · ‖2 denotes the spectral norm. From Assumption 3 and since the map W 7→ W−1/2 is continu-

ous, see Equation (7.23) below, supu λmax(W−1/2(u)) and supn,u λmax(W−1/2
n (u)) are bounded, and

W
−1/2
n (u)−W−1/2(u) = o(1) for any u. It follows from the Lebesgue dominated convergence theorem

and Assumption 4(v) that lim supn ‖Ṽn,h0‖2 = o(1). Therefore lim infn λmin(Vn,h0) ≥ (1/2)λmin(Vh0).

Using (7.12) and the unicity of the Fourier transform,

λmin(Vh0) = 0 ⇔ ∃ a 6= 0 : a′∇θτ(X, θ0)W−1/2(X)f(X) = 0 a.s. ⇔ ∃ a 6= 0 : a′∇θτ(X, θ0) = 0 a.s.

But a′Hθ,θE [τ ′(X, θ0)τ(X, θ0)] a = 2E [a′∇θτ(X, θ0)∇′θτ(X, θ0)a] = 0 iff a = 0. Thus λmin(Vh0) >

0.

Proof of Theorem 2.3. The proof follows from Parts (ii) to (iv) of Theorem 2.5’s proof, setting

θ̄n = θ0 and accounting for (2.1).

Proof of Theorem 2.5. (i) Consistency: Since θ̄n is the unique minimizer of EMn(θ), reason as in

Theorem 2.1’s proof to show that suph∈H̄n ‖θ̃n − θ̄n‖ = op(1).

24



(ii)
√
n-consistency: Since ∇θEMn(θ̄n) = 0 and infn,h λmin(Vn,h) > 0, we have uniformly in h ∈ Hn

EMn(θ)− EMn(θ̄n)

=
(
θ − θ̄n

)′∇θEMn(θ̄n) +
1
2
(
θ − θ̄n

)′Hθ,θEMn(θ̄n)
(
θ − θ̄n

)
+ o(‖θ − θ̄n‖2)

=
1
2
(
θ − θ̄n

)′
V̄n,h

(
θ − θ̄n

)
+ o(‖θ − θ̄n‖2) ≥ 1

2

(
inf
n,h

λmin(V̄n,h) + o(1)
)
‖θ − θ̄n‖2 .

Now apply Hoeffding’s decomposition to Mn (θ) − Mn(θ̄n) and consider the first-order empirical

process Pn l̃θ, where l̃θ(Zi) = E[lθ(Zi, Zj) | Zi] + E[lθ(Zi, Zj) | Zj ]− 2E[lθ(Zi, Zj)],

lθ(Zi, Zj) = (1/2)
(
g′n(Zi, θ)gn(Zj , θ)− g′n(Zi, θ̄n)gn(Zj , θ̄n)

)
h−qK ((Xi −Xj) /h)

= (1/2)g′n(Zi, θ̄n)
(
gn(Zj , θ)− gn(Zj , θ̄n)

)
h−qK ((Xi −Xj) /h)

+ (1/2)
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′
gn(Zj , θ̄n)h−qK ((Xi −Xj) /h)

+ (1/2)
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′ (
gn(Zj , θ)− gn(Zj , θ̄n)

)
h−qK ((Xi −Xj) /h)

= l1θ(Zi, Zj) + l2θ(Zi, Zj) + l3θ(Zi, Zj) ,

and l1θ(Zi, Zj) = l2θ(Zj , Zi) by the symmetry of K(·). From Assumption M5,

2E[l1θ(Zi, Zj) | Zi] = g′n(Zi, θ̄n)E
[(
gn(Z, θ)− gn(Z, θ̄n)

)
h−qK ((Xi −X) /h) |Zi

]
= g′n(Zi, θ̄n)

[∫
Rq
∇′θτn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx

] (
θ − θ̄n

)
(7.13)

+
1
2
g′n(Zi, θ̄n)

p∑
k,l=1

(
θ(k) − θ̄(k)

n

) (
θ(l) − θ̄(l)

n

)
[∫

Rq
Hθ(k)θ(l)τn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx

]
+R1n(Zi, θ) (7.14)

where ‖Rn(Zi, θ)‖ ≤ G(Zi)‖θ − θ̄n‖2+a

[
r∑

k=1

(∫
Rq
H(k)
n (Xi − hu)f(Xi − hu)|K(u)| du

)2
]1/2

and Hn(·) = W
−1/2
n (·)H(·). By Assumption M6-(i), the functions ∇θτ

(k)
n (·, θ̄n)f(·), n ≥ 1 sat-

isfy Condition (ME) for an envelope Φ with EΦa(X) < ∞ for some a ≥ 4. Use Assumption

M4 and Lemma 2.14-(ii) in Pakes and Pollard (1989) to conclude that the family of functions

φ̃′n,h(z) indexed by h in (7.13) is uniformly Euclidean for a squared-integrable envelope. Hence

A′n = Ḡnφ̃
′
n,h = Op(1) uniformly in θ and h ∈ [0, h0] by Corollary 4 of Sherman (1994a). Similarly,

the family of functions in (7.14) is uniformly Euclidean for an integrable envelope. By a version

of the Glivenko-Cantelli for families changing with n, see e.g. van de Geer (2000, p.44), the cen-

tered empirical sum based on this family of functions is then an op(1) uniformly in h ∈ [0, h0].

Finally,
{
G(z)

∫
Rq H

(k)
n (x− hu)f(x− hu)|K(u)| du : h ∈ [0, h0]

}
are also uniformly Euclidean for an
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integrable envelope, so that the (uncentered) empirical sum based on this family of functions is a

Op(1) uniformly in h ∈ [0, h0]. A similar expansion for l3θ yields

2E[l3θ(Zi, Zj) | Zi] =
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′ E [(gn(Z, θ)− gn(Z, θ̄n)
)
h−qK ((Xi −X) /h) |Zi

]
=
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′[∫
Rq
∇′θτn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx

] (
θ − θ̄n

)
(7.15)

+
1
2
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′ p∑
k,l=1

(
θ(k) − θ̄(k)

n

) (
θ(l) − θ̄(l)

n

)
[∫

Rq
Hθ(k)θ(l)τn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx

]
+R3n(Zi, θ) .

Since the function in (7.15) is such that

E
∣∣∣∣(gn(Zi, θ)− gn(Zi, θ̄n)

)′ [∫
Rq
∇′θτn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx

]∣∣∣∣→ 0

as θ − θ̄n → 0, the centered process based on these functions is an op(1/
√
n) uniformly in θ and h

by Corollary 8 of Sherman (1994a). The remaining terms can be dealt with similarly. Hence

Pn l̃θ =
1√
n
A′n
(
θ − θ̄n

)
+ ‖θ − θ̄n‖2op(1) , (7.16)

uniformly over op(1) neighborhoods of θ̄n and h ∈ [0, h0].

Consider the second order centered degenerate U -process Unlθ in the decomposition of Mn(θ) −
Mn(θ̄n). For θ ∈ N , Eh2ql2θ(Zi, Zj) = E

[(
g′n(Zi, θ)gn(Zj , θ)− g′n(Zi, θ̄n)gn(Zj , θ̄n)

)
K ((Xi −Xj) /h)

]2.

Since K(·) is bounded, the Zi are independent, and for any a1, ..., ar ∈ R, (a1 + ... + ar)2 ≤
r(a2

1 + ...+ a2
r), deduce that Eh2ql2θ(Zi, Zj) = O(‖θ − θ̄n‖). From Assumption M4–(iii), hqlθ(Zi, Zj)

is Euclidean for an integrable envelope with fourth moment. Use Lemma 7.1 to deduce that for any

0 < α < 1

sup
h>0
|Unhqlθ| = ‖θ − θ̄n‖α/2Op(n−1) +Op(n−1−α/4)

uniformly over op(1) neighborhoods of θ̄n, which yields

sup
h∈Hn

|Unlθ| = ‖θ − θ̄n‖α/2Op( sup
h∈Hn

n−1h−q) +Op( sup
h∈Hn

n−1−α/4h−q) . (7.17)

Choose α < 1 such that nh4q/α ≥ C for all h ∈ Hn from our assumption to deduce that the

second term is a Op(n−1). For θ in a op(1) neighborhood of θ̄n, the first term is Op(ε0,n) with

ε0,n = o(suph∈Hn n
−1h−q). Use Equations (7.16) and (7.17) in conjunction with Lemma 7.2 to

obtain ‖θ̃n − θ̄n‖ = Op(ε
1/2
0n ). Plug in this result in (7.17), so that the first term is a Op(ε1,n) with

ε1,n = ε
1+α/4
0,n . Apply repeatedly m times to get εm,n = εαm0,n with αm =

∑m−1
j=0 (α/4)j . When m
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increases, εm,n decreases and αm tends to 4/(4−α). Since ε4/(4−α)
0,n = o(n−1), after m iterations with

m finite large enough, the first term in Equation (7.17) is a Op(n−1). Apply then again Lemma 7.2

to conclude that ‖θ̃n − θ̄n‖ = Op(n−1/2).

Remark that under Condition 1, Equation (7.17) becomes suph |Unlθ| = ‖θ − θ̄n‖αOp(suph n−1h−q).

Choose any α < 1 such that nh
2q
α ≥ C for all h and reason as above to obtain that suph |Unlθ| =

Op(n−1) and ‖θ̃n − θ̄n‖ = Op(n−1/2).

(iii) Asymptotic representation: Equation (7.16) and Part (ii) imply that for any α ≤ α′ < 1, where

α comes from our assumptions, suph |Unlθ| = Op(suph n−1−α′/4h−q). Conclude that suph |Unlθ| =

op(n−1), and use (7.16) to obtain

Mn(θ) = Mn(θ̄n) +
1
2
(
θ − θ̄n

)′
V̄n
(
θ − θ̄n

)
+

1√
n
A′n
(
θ − θ̄n

)
+ op(1/n) , (7.18)

uniformly over Op(1/
√
n) neighborhoods of θ̄n and in h ∈ Hn. Conclude from Lemma 7.3 that

√
n
(
θ̃n − θ̄n

)
+ V̄ −1

n An = op(1).

(iv) Behavior of Gnφ̄n,h: We consider the case r = 1, the multivariate case follows similarly at the cost

of more cumbersome algebra. We apply Theorem 19.28 of van der Vaart (1998), where the Lindeberg

condition follows from our Assumption M4 and M6. We first consider that θ̄n,h = θ0, i.e. a correct

model. We have to show his Condition (19.27), that is sup|h1−h2|<δ E ‖φn,h1(Z)− φn,h2(Z)‖2 →
0 whenever δ → 0. Let ω2

n(X, θ0) = E
[
g2
n(Z, θ0)|X

]
. Proceed as in the consistency proof to show

that

E
[
φ′n,h1

(Z)φn,h2(Z)
]

= (2π)q/2
∫

Rq

∫
Rq
F [∇′θτn(·, θ0))f(·)] (−t)F

[
ω2
n(·, θ0)f(·)

]
(t− u)

F [∇θτn(·, θ0))f(·)] (u)F [K] (h1t)F [K] (h2u) dt du .

Hence, E ‖φn,h1(Z)− φn,h2(Z)‖2

= (2π)q/2
∫

Rq

∫
Rq
F [∇′θτn(·, θ0))f(·)] (−t)F

[
ω2
n(·, θ0)f(·)

]
(t− u)F [∇θτn(·, θ0)f(·)] (u)

[F [K] (h1t)F [K] (h1u)− 2F [K] (h1t)F [K] (h2u) + F [K] (h2t)F [K] (h2u)] dt du .

Use the uniform continuity of F [K] (·), Assumption 4(v)-(vi), the properties of the convolution of

Fourier transforms, and the Lebesgue dominated convergence theorem to conclude. The case where

h2 = 0 can be treated similarly.

We now turn to the general case of a misspecified model, so we make explicit θ as an argument of

φ̄n,h. The result similarly follows if we show sup|h1−h2|<δ,‖θ1−θ2‖<δ E
∥∥φ̄n,h1(Z, θ1)− φ̄n,h2(Z, θ2)

∥∥2 →
0 whenever δ → 0. When only h varies in this expression, we can apply our previous reasoning,

provided we use ω2
n(X, θ1, θ2) = E [gn(Z, θ1)gn(Z, θ2)|X] together with Assumption M4. We are
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left to deal with the case where only θ varies. The result follows from continuity arguments, i.e.

Assumptions M4(iv), M5, and M6, and the Lebesgue dominated convergence theorem.

Proof of Theorem 3.1. Under H0, θ̃Rn = R(γ̃n) where γ̃n = arg minγMn(R(γ)). Let D = ∇′γR(γ0).

From Theorem 2.3’s proof,
√
n (γ̃n − γ0) = −

(
V R
n

)−1
Bn + op(1), where V R

n = D′VnD and Bn =

D′An, and

Mn(θ̃n)−Mn(θ0) =
1
2

(
θ̃n − θ0

)′
Vn
(
θ̃n − θ0

)
+

1√
n
A′n

(
θ̃n − θ0

)
+ op(1/n)

= − 1
2n
A′nV

−1
n An + op(1/n) ,

Mn(R(γ̃n))−Mn(R(γ0)) =
1
2

(γ̃n − γ0)′ V R
n (γ̃n − γ0) +

1√
n
B′n (γ̃n − γ0) + op(1/n) ,

= − 1
2n
A′nD

(
D′VnD

)−1
D′An + op(1/n)

so that DMn = A′nV
−1/2
n

[
Ip − V 1/2

n D
(
D′VnD

)−1
D′V 1/2

n

]
V −1/2
n An + op(1)

uniformly in h ∈ Hn under H0. Our conclusions follows form the extended continuous mapping

theorem, see van der Vaart and Wellner (1996, Theorem 1.11.1).

When H0 does not hold, it follows from the arguments of Theorem 2.1’s proof that Mn(R(γ̃n)) −
Mn(θ̃n) converges in probability to a positive constant.

Proof of Theorem 3.2. Consider {(Zi, wi)} as the sample and reason as in the proofs of Theorem 2.1

and 2.3, using Ew4 <∞, to obtain that uniformly in h ∈ Hn and over Op(1/
√
n) neighborhoods of

θ0,

M∗n(θ)−M∗n(θ0) =
1
2

(θ − θ0)′ Vn (θ − θ0) +
1√
n
A∗
′
n (θ − θ0) + op(1/n) ,

where Vn = Hθ,θEM∗n(θ0) = Hθ,θEMn(θ0) and A∗n is the centered empirical process based on

wg′n(Z, θ0)
[∫

Rq
∇′θτn(x, θ0)f(x)h−qK ((X − x) /h) dx

]
.

Hence
√
n
(
θ̃∗n − θ0

)
+ V −1

n A∗n = op(1) and P
[
suph∈Hn

∣∣∣√n (θ̃∗n − θ0

)
+ V −1

n A∗n

∣∣∣ ≥ ε|Z1, . . . Zn
]

=

op(1) by Markov inequality.

Now,
√
n
(
θ̃∗n − θ̃n

)
= −V −1

n (A∗n −An) + op(1), where A∗n − An is the centered empirical process

based on

(w − 1) g′n(Z, θ0)
[∫

Rq
∇′θτn(x, θ0)f(x)h−qK ((X − x) /h) dx

]
.

It is then clear that the process A∗n − An has asymptotically and conditionally upon the initial

sample the same distribution as An uniformly in h, see e.g. Zhang (2001), so that
√
n
(
θ̃∗n − θ̃n

)
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has asymptotically and conditionally upon the initial sample the same distribution as
√
n
(
θ̃n − θ0

)
uniformly in h.7 Therefore, uniformly in h ∈ Hn,

M∗n(θ̃∗n)−M∗n(θ0) = −1
2

(
θ̃∗n − θ0

)′
Vn
(
θ̃∗n − θ0

)
+ op(1/n) ,

M∗n(θ̃n)−M∗n(θ0) =
1
2

(
θ̃n − θ0

)′
Vn
(
θ̃n − θ0

)
−
(
θ̃∗n − θ0

)′
Vn
(
θ̃n − θ0

)
+ op(1/n) ,

and n
[
M∗n(θ̃∗n)−M∗n(θ̃n)

]
= −1

2
√
n
(
θ̃∗n − θ̃n

)′
Vn
√
n
(
θ̃∗n − θ̃n

)
+ op(1)

= −1
2

(A∗n −An)′ V −1
n (A∗n −An) + op(1) .

As before, this expansion also holds conditionally. Therefore, the latter process has asymptotically

and conditionally upon the initial sample the same distribution as n
[
Mn(θ̃n)−Mn(θ0)

]
.

Proof of Theorem 3.3. Theorem 3.2’s proof deals with the unconstrained problem. A similar rea-

soning applies to the constrained problem. Proceed as in Theorem 3.1’s proof to conclude that DM∗n
has asymptotically and conditionally upon the initial sample the same distribution as DMn under

H0 uniformly in h ∈ Hn.

When H0 does not hold, it follows from Theorem 2.1’s proof that M∗n(θ̃∗n) −M∗n(θ̃n) = op(1) and

similarly M∗n (R(γ̃∗n))−M∗n (R(γ̃n)) = op(1), so that DM∗n = op(n) uniformly in h ∈ Hn.

Proof of Corollary 4.1. Under our assumptions, θ̃n,h is asymptotically N(0, V −1
0 ∆0,0V

−1
0 ) uniformly

over h ∈ H′n where

V0 = E
[
∇θE [g(Z, θ0)|X]W−1(X)∇′θE [g(Z, θ0)|X] f(X)

]
and

∆0,0 = E
[
∇θE [g(Z, θ0)|X]W−1(X)Var [g(Z, θ0)|X]W−1(X)∇′θE [g(Z, θ0)|X] f2(X)

]
.

Plug W (X) = Var [g(Z, θ0)|X] f(X) to obtain the result.

Proof of Theorem 4.2. Step 1 is to obtain the uniform rate of convergence of Ŵn(·, θ) −Wn(·, θ),
where Wn(·, θ) = E

[
Ŵn(·, θ)

]
. A useful result can be derived along the lines of Proposition 2 of

Einmahl and Mason (2005). A careful inspection of their proof shows that the result holds not only

on a compact subset, but on the whole space Rq provided their Condition (1.7) on the continuity of

the density f(·) is replaced by the assumption of a bounded density.

7Zhang (2001) assumes that w has an exponential distribution, but uses only moment conditions. It is

easily seen that our assumptions on w are sufficient.
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Lemma 7.4. Let Φ denote a class of measurable functions on Rd+q, where d, q ≥ 1, with a finite-

valued measurable envelope function F. Further assume that the kernel L(·) is a density of bounded

variation with bounded support, the density f(·) is bounded and

sup
x∈Rq

E[F 4(Z) | X = x] <∞.

Let ηϕ,n,b(x) = (nbq)−1∑
1≤i≤n ϕ(Zi)L((x−Xi)/b), ϕ ∈ Φ and ‖·‖∞ be the supremum norm. There

exists c > 0 such that, with probability 1

lim sup
n→∞

sup
b∈Hn

√
nbq

supϕ∈Φ ‖ηϕ,n,b − Eηϕ,n,b‖∞√
ln(1/bq) ∨ ln lnn

= c .

Step 2 consists in establishing an expansion of the power −1/2 of a positive definite matrix. By

the integral representation of the square root of a matrix, see e.g. Higham (2008), for any positive

definite q × q matrix A

A−1/2 =
2
π

∫ ∞
0

(
t2A+ I

)−1
dt.

Moreover, for any conformable square matrices B and D and any t > 0,

(A+B)−1 = A−1 −A−1
(
I +BA−1

)−1
BA−1 , (7.19)

and
[
I + t2D

(
t2A+ I

)−1
]−1

= I − t2D
(
t2A+ I

)−1
+R ,

with ‖R‖ ≤ √q ‖R‖2 ≤
√
q
∥∥∥t2D (t2A+ I

)−1
∥∥∥2

2

1−
∥∥∥t2D (t2A+ I)−1

∥∥∥
2

≤ √
q ‖D‖22

[
t2

1 + t2λmin(A)

]2 [
1− t2 ‖D‖2

1 + t2λmin(A)

]−1

≤ k(c) ‖D‖22 ≤ k(c) ‖D‖2 .

Here and in what follows, ‖·‖2 denotes the spectral matrix norm, λmin(A) is as before the smallest

eigenvalue of A, and k(c) depends on c, λmin(A), and
√
q, where c is assumed to be such that

‖D‖2 /λmin(A) ≤ ‖D‖ /λmin(A) ≤ c < 1 .

Use the integral representation for (A+D)−1/2 and A−1/2 and apply (7.19) with A replaced by

t2A+ I and B = t2D to deduce that

(A+D)−1/2 −A−1/2 = − 2
π

∫ ∞
0

t2
(
t2A+ I

)−1
D
(
t2A+ I

)−1
dt

+
2
π

∫ ∞
0

t4
(
t2A+ I

)−1
D
(
t2A+ I

)−1
D
(
t2A+ I

)−1
dt

− 2
π

∫ ∞
0

t2
(
t2A+ I

)−1
RD

(
t2A+ I

)−1
dt , (7.20)
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where
∥∥∥∥(t2A+ I

)−1
RD

(
t2A+ I

)−1
∥∥∥∥ ≤ [ 1

1 + t2λmin(A)

]2

k(c) ‖D‖3 .

This implies that for some constant C the last integral in (7.20) is bounded by
2
π
k(c) ‖D‖3

∫ ∞
0

t2
[
1 + t2λmin(A)

]−2
dt ≤ C ‖D‖3 .

Step 3 consists in applying Identity (7.20) to our problem, with D = Dn,i(θ2) = Ŵn(Xi, θ2) −
Wn(Xi, θ0) and A = Wn(Xi, θ0) = Wn(Xi). Let M̂n(θ, θ2) and Mn(θ) be the objective functions

with weighting matrix Ŵn(·, θ2) and Wn(·), respectively. Let also 0 < λ ≤ infx,n λmin(Wn(x)) for

some fixed λ > 0, which exists by our Assumption E7. For any θ ∈ Θ and θ2 in a O(n−1/2)

neighborhood of θ0,

M̂n(θ, θ2) = Mn(θ)− 2
π

∫ ∞
0

t2
[
1 + t2λ

]−2
[M1n (t) +M ′1n (t)] dt

+
2
π

∫ ∞
0

t4
[
1 + t2λ

]−3
[M2n (t) +M ′2n (t)] dt

+
4
π2

∫ ∞
0

∫ ∞
0

t2
[
1 + t2λ

]−2
s2
[
1 + s2λ

]−2
M3n (t, s) dt ds

+Op

(
sup
x∈Rq

sup
‖θ2−θ0‖≤Cn−1/2

sup
b∈H′n

∥∥∥Ŵn(x, θ2)− Ŵn(x)
∥∥∥3
)
.

The last term is an op(n−1) uniformly in b ∈ H′n by Step 1 and noticing that from Assump-

tion E7, for some C > 0 and ν > 2/3, ‖E
[(
ω2(X, θ2)− ω2(X, θ0)

)
b−qL((X − x)/b)

]
‖ ≤ c‖θ2 −

θ0‖ν‖E [b−qL((X − x)/b)] ‖ ≤ C‖θ2 − θ0‖ν = o(n−1/3) uniformly in θ2 in a O(n−1/2) neighborhood

of θ0. In the last display,

M1n(t) = M1n(t, θ, θ2, h, b)

=
t−4

(
1 + t2λ

)2
2n(n−1)

∑
i 6=j

g′(Zi, θ)[Wn(Xi)+t−2I]−1Dn,i(θ2)

×[Wn(Xi)+t−2I]−1W−1/2
n (Xj)g(Zj , θ)Kij ,

M2n (t) = M2n (t, θ, θ2, h, b)

=
t−6

(
1 + t2λ

)3
2n(n−1)

∑
i 6=j

g′(Zi, θ)[Wn(Xi)+t−2I]−1Dn,i(θ2)[Wn(Xi)+t−2I]−1

×Dn,i(θ2)[Wn(Xi)+t−2I]−1W−1/2
n (Xj)g(Zj , θ)Kij ,

M3n (t, s) = M3n (t, s, θ, θ2, h, b)

=
(1+t2λ)2(1+s2λ)2

t4s42n(n−1)

∑
i 6=j
g′(Zi, θ)[Wn(Xi)+t−2I]−1Dn,i(θ2)[Wn(Xi)+t−2I]−1

× [Wn(Xj)+s−2I]−1Dn,j(θ2)[Wn(Xj)+s−2I]−1g(Zj , θ)Kij .
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Strictly speaking, we should separate the integrals on [0, 1) and [1,∞) in the following. Specifically,

for t ∈ [0, 1), the terms
[
Wn(·) + t−2I

]−1 should be replaced by
[
t2Wn(·) + I

]−1, with adequate

changes in the other arguments under the integral. The following arguments adapt easily.

Step 4 is to show that uniformly over θ in a o(1) neighborhood of θ0 and θ2 in a O(n−1/2) neighbor-

hoods of θ0

sup
t,s≥1

sup
b,h∈Hn

{‖M1n‖+ ‖M2n‖+ ‖M3n‖} = op
(
n−1 + ‖θ − θ0‖/

√
n+ ‖θ − θ0‖2

)
, (7.21)

which implies (4.8). The terms M1n, M2n and M3n involve the family of matrix-valued functions{[
Wn(·) + t−2I

]−1
: b ∈ H′n, t ≥ 1

}
and

{
W−1/2
n (·) : b ∈ H′n

}
.

For t ∈ [0, 1), the first family has to be replaced by
{[
t2Wn(·) + I

]−1 : b ∈ H′n, t ∈ [0, 1)
}

. We here

focus on the case t ≥ 1, the arguments for the other case being similar. Lemma 7.8 in Appendix B

shows that under our assumptions these families of functions are Euclidean entrywise for a constant

envelope. For the sake of simplicity, we show (7.21) only for r = 1, since the same arguments apply

componentwise for r > 1 at the expense of much more cumbersome algebra. Also we focus on

M1n(t), since a similar reasoning applies to M2n(t) and M3n(t). Let

dθ2 (x, Zk) = g2 (Zk, θ2)L ((x−Xk) /b)− E
[
ω2(X, θ2)L ((x−X) /b)

]
,

δθ2 (x) = E
[
ω2(X, θ2)L ((x−X) /b)

]
− E

[
ω2(X, θ0)L ((x−X) /b)

]
,

so that Dn,i(θ2) = 1
nbq

∑
1≤k≤n [dθ2 (Xi, Zk) + δθ2 (Xi)]. We accordingly separate M1n(t) into two

terms and we study each of them in turn.

Note that E [dθ2 (Xi, Zk) |Xi] = 0 for i 6= k and consider the decomposition

1
nbq

1
(n)2

∑
1≤k≤n

∑
i 6=j

g(Zi, θ)
[Wn(Xi)+t−2]2

dθ2 (Xi, Zk)W−1/2
n (Xj)g(Zj , θ)Kij

=
(n−2)
nbq

1
(n)3

∑
i 6=j 6=k

g(Zi, θ)
[Wn(Xi)+t−2]2

dθ2 (Xi, Zk)W−1/2
n (Xj)g(Zj , θ)Kij

+
1
nbq

1
(n)2

∑
i 6=j

g(Zi, θ)
[Wn(Xi)+t−2]2

dθ2 (Xi, Zi)W−1/2
n (Xj)g(Zj , θ)Kij

+
1
nbq

1
(n)2

∑
i 6=j

g(Zi, θ)
[Wn(Xi)+t−2]2

dθ2 (Xi, Zj)W−1/2
n (Xj)g(Zj , θ)Kij

=
(n−2)
nbqhq

1
(n)3

∑
i 6=j 6=k

m11 (Zi, Zj , Zk) +
1

nbqhq
1

(n)2

∑
i 6=j

m12 (Zi, Zj)

+
1

nbqhq
1

(n)2

∑
i 6=j

m13 (Zi, Zj)

=
(n− 2)
nbqhq

M11n +
1

nbqhq
M12n +

1
nbqhq

M13n ,
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where (n)k = n!/(n− k)!. For the first and dominant term, write

m11 = m11 (Zi, Zj , Zk) =
g(Zi, θ0)

[Wn(Xi)+t−2]2
dθ2 (Xi, Zk)W−1/2

n (Xj)g(Zj , θ0)hqKij

+
g(Zi, θ0)

[Wn(Xi)+t−2]2
dθ2 (Xi, Zk)W−1/2

n (Xj) {g(Zj , θ)− g(Zj , θ0)}hqKij

+
{g(Zi, θ)− g(Zi, θ0)}

[Wn(Xi)+t−2]2
dθ2 (Xi, Zk)W−1/2

n (Xj)g(Zj , θ0)hqKij

+
{g(Zi, θ)− g(Zi, θ0)}

[Wn(Xi)+t−2]2
dθ2 (Xi, Zk)W−1/2

n (Xj) {g(Zj , θ)− g(Zj , θ0)}hqKij

= m110 +m111 +m112 +m113.

We note that our assumptions ensure that all functions entering the above terms, as indexed by θ, θ2,

h, and b, are Euclidean. In particular Appendix B shows that the class of functions x 7→ W
−1/2
n (x)

is Euclidean as indexed by b for a constant envelope by Assumption E7-(iii).

By convention, for j = 0, . . . 3, we denote by M11jn the U -process based on m11j . The term M110n

is a third-order degenerate U -process independent of θ and is a Op(n−3/2) uniformly in θ2, h, b,

and t. Consider the Hoeffding’s decomposition of M111n and note that E[m111 | Zi, Zj ] = E[m111 |
Zj , Zk] = 0. The third order degenerate U -process in that decomposition is a uniform op(n−3/2) by

Corollary 8 of Sherman (1994a). The remaining term to be studied is the degenerate second order

U -process defined by the family of functions

g(Zi, θ0)dθ2 (Xi, Zk)
[Wn(Xi)+t−2]2

E
[
W−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}hqKij | Xi

]
.

By a Taylor expansion of E [g(Zj , θ0)|Xj ] around θ0 and Assumption E7, deduce that the uniform

rate of convergence of this U -process is Op(n−1‖θ − θ0‖). Similar arguments apply to hqM112n. For

M113n, the different terms in Hoeffding’s decomposition are the third order degenerate U -process,

the two degenerate second order U -processes based on E[m113 | Zj , Zk]− E[m113 | Zk] and E[m113 |
Zi, Zk] − E[m113 | Zk], and the empirical process based on E[m113 | Zk]. For the third and second

order U -processes we proceed as above. For the remaining (centered) empirical process, rely again

on Taylor expansions around θ to deduce that its uniform rate of convergence is Op(n−1/2‖θ− θ0‖2).

Gathering these facts and using n−1{infH′n}−4q = op(1) show that

sup
t≥1

sup
h,b∈H′n

∣∣b−qh−qM11n

∣∣ = op
(
‖θ − θ0‖n−1/2 + ‖θ − θ0‖2 + n−1

)
uniformly over θ and θ2 in o(1) neighborhoods of θ0. For n−1b−qM12n and n−1b−qM13n, follow a

similar (shorter) reasoning to obtain the same order.
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Recall that ‖δθ2 (Xi) ‖ ≤ c‖θ2 − θ0‖ν for some ν > 2/3 and c > 0 uniformly in b and θ2 − θ0 =

Op(n−1/2), and note that

1
bq

1
(n)2

∑
1≤k≤n

∑
i 6=j

g(Zi, θ)
[Wn(Xi)+t−2]2

δθ2 (Xi)W−1/2
n (Xj)g(Zj , θ)Kij

=
1
bq

1
(n)2

∑
i 6=j

g(Zi, θ0)
[Wn(Xi)+t−2]2

δθ2 (Xi)W−1/2
n (Xj)g(Zj , θ0)Kij

+
1
bq

1
(n)2

∑
i 6=j

g(Zi, θ0)
[Wn(Xi)+t−2]2

δθ2 (Xi)W−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}Kij

+
1
bq

1
(n)2

∑
i 6=j

{g(Zi, θ)− g(Zi, θ0)}
[Wn(Xi)+t−2]2

δθ2 (Xi)W−1/2
n (Xj)g(Zj , θ0)Kij

+
1
bq

1
(n)2

∑
i 6=j

{g(Zi, θ)− g(Zi, θ0)}
[Wn(Xi)+t−2]2

δθ2 (Xi)W−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}Kij

= b−qh−q
(
M̃10n + M̃11n + M̃12n + M̃13n

)
.

Use Hoeffding’s decomposition and the last statement of Lemma 7.1 to deduce that M̃10n is a uniform

Op(n−1−2α/3) for any α < 1. Use a Taylor expansion around θ0, Hoeffding’s decomposition, and

Lemma 7.1 to show that each of M̃1jn, j = 1, 2, is a Op
(
‖θ − θ0‖n−1/2−2α/3

)
for any α < 1. Use

similar arguments to show that M̃13n = Op
(
‖θ − θ0‖2n−2α/3

)
for any α < 1. Gathering these facts

and using n−1{infH′n}−4q/α = op(1) for some α < 1,

sup
t≥1

sup
h,b∈H′n

∣∣b−qM1n

∣∣ = op
(
‖θ − θ0‖n−1/2 + ‖θ − θ0‖2 + n−1

)
uniformly over θ in a o(1) neighborhoods of θ0 and θ2 in a Op(n−1/2) neighborhood of θ0.

Proof of Corollary 4.3. Assumption E6, Lemma 7.6 of Appendix A, and Lemma 7.8 of Appendix

B ensure that the class of functions (x, u) 7→ W
−1/2
n (x− hu)∇θτ(x− hu, θ0)f(x− hu) is Euclidean

entrywise for a constant envelope, so that

{x 7→
∫
W−1/2
n (x− hu)∇θτ(x− hu, θ0)f(x− hu)K(u)du : h, b ∈ [0, h0]}

is uniformly Euclidean for a constant envelope by Nolan and Pollard (1987, Lemma 20). Reason

similarly for the functions W−1/2
n (·)Hθ,θτ

(k)
n (·, θ0)f(·), 1 ≤ k ≤ r and W−1/2

n (·H(·)f(·). Use Lemmas

7.2 and 7.3 in Section 7.1 and Equation (4.8) to obtain an asymptotic representation similar to the

one of Theorem 2.3.
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Appendix A

We focus here on providing sets of sufficient conditions that guarantee Condition (E). We note that

since
∫
φn(x − uh)K(u)du is the expectation of a kernel estimator, our subsequent results are of

independent interest.

Lemma 7.5. Assume that K(·) is integrable and its Fourier transform F [K](·) is Hölder continuous

with exponent a. If the sequence of functions φn : Rq → R, n ≥ 1 have integrable envelope Φ(·), they

satisfy Condition (E) with kernel K(·) for an envelope Φ(·) + C, C > 0, whenever

sup
n

∫
‖t‖a |F [φn](t)| dt <∞. (7.22)

Proof. For any φn, write∫
φn(x− hu)K(u)du = (2π)−q/2

∫ ∫
φn(v) exp(it′(x− v))F [K](ht)dvdt

=
∫
F [φn](t) exp(it′x)F [K](ht)dt ,

for almost any x, and note that the equality holds trivially for h = 0. Hence for any h1, h2 ∈ [0, h0],

using |F [K](t1)−F [K](t2)| ≤ c‖t1 − t2‖a,∣∣∣∣∫ φn(x− h1u)K(u)du−
∫
φn(x− h2u)K(u)du

∣∣∣∣ ≤ ∫
|F [φn](t)| |F [K](h1t)−F [K](h2t)| dt

≤ c|h1 − h2|a
∫
‖t‖a |F [φn](t)| dt .

Use Lemma 2.13 of Pakes and Pollard (1989) to conclude.

As most common kernels have bounded moment of order 1, the Hölder continuity of F [K](·) is

satisfied with a = 1, so we assume this from now on without much loss of generality. Condition

(7.22) is fulfilled when φn(·) belongs to Wm,1, the subspace of functions of L1 such that their weak

partial derivatives belongs to L1 up to integer order m ≥ 3, see e.g. Malliavin (1995, Section III.3).

Another possible space is the Sobolev space of functions Hs. Indeed,∫
‖t‖ |F [φn](t)| dt ≤

∫
‖t‖≤1

|F [φn](t)| dt+
∫
‖t‖>1

‖t‖ |F [φn](t)| dt =
∫

Φ(x)dx+ I2 .

By Cauchy-Schwarz inequality, for any b > 1

I2 ≤
[∫ (

1 + ‖t‖2
)1+b/2

|F [φn](t)|2 dt
]1/2

[∫
‖t‖>1

‖t‖−b dt
]1/2

.

Condition (7.22) then holds for a sequence φn(·) from the Sobolev space of functions Hs with s > 3/2

endowed with the norm

‖φ‖2Hs =
∫

Rd

(
1 + ‖t‖2

)s
|F [φ](t)|2 dt.
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For any integer s ≥ 1, Hs is isomorph to W s,2 endowed with the norm ‖φ‖2W s,2 =
∑

0≤|α|≤s ‖Dαφ‖2L2 ,

where for a multi-index α = (α1, ..., αq) of degree |α| = α1 + ...+ αq, Dαφ denotes the weak partial

derivative of φ, see Malliavin (1995, Section III.3) or Adams and Fournier (2003, Chapter 3). Finally,

we note that if two sequences of functions belongs to Wm,2 with m ≥ 3, their product belongs to

Wm,1 and thus also fulfills Condition (E).

Different sufficient conditions are provided in the next lemma.

Lemma 7.6. For K(·) integrable, any of the following conditions ensures that Condition (E) holds

for a constant envelope.

i. φn(x) = ψn(p(x)), where p(x) is a polynomial in q variables and ψn(·) is a uniformly bounded

sequence of functions of bounded variation on R.

ii. The functions φn(·) are uniformly bounded and Hölder continuous with exponent a, and∫
‖u‖a |K(u)|du <∞.

iii. The functions φn are finite addition, multiplication, min, or max of functions satisfying one of

(i) or (ii) (for finite multiplication under (ii), assume that K(·) has enough finite moments).

Proof. The proof follows by showing in each case that {(x, u) 7→ φn(x−hu) : h ∈ [0, 1]} is Euclidean

for a constant envelope and using that the Euclidean property is preserved by integration with

respect to a finite measure, see Nolan and Pollard (1987, Lemma 20).

(i) For each n, the class of subgraphs {(x, u) 7→ subgraph(φn(x− uh)) : h ∈ [0, 1]} is a VC class of

sets by the arguments of Lemma 22 of Nolan and Pollard (1987). A careful inspection of their proof

shows that the index of this class of subgraphs is independent on n provided the functions φn are

uniformly bounded, and the class of functions is thus Euclidean.

(ii) As for all n, |φn(x1) − φn(x2)| ≤ c‖x1 − x2‖a for some c > 0, |φn(x− uh1)− φn(x− uh2)| ≤
c‖u‖a|h1 − h2|a. Lemma 2.13 of Pakes and Pollard (1989) thus implies that the class of φn(x− hu)

as functions of (x, u) is Euclidean for an envelope C1 + C2‖u‖a for some C1, C2 > 0.

(iii) From the above proofs, each of the class of functions φn(x, u;h) = φn(x − hu) as functions of

(x, u) is Euclidean for a constant envelope in Case (i), for an integrable envelope in Case (ii). From

Lemma 2.14 of Pakes and Pollard (1989), finite additions, multiplications, maximum, and minimum,

of functions in such families are Euclidean with an envelope deduced by similar operations on the

envelopes of each family.

Since the indicator function I (u ≥ 0) is of bounded variation on R, Lemma 7.6-(i) implies that

Condition (E) is satisfied when φn(·) = φ(·) = I (p(x) ≥ 0) for any polynomial p(x). Hence, φ(·) can
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be the indicator function of a half space, a ball, a rectangle, or finite unions and intersections of such

subsets of Rq. Now, if the φn(·) have a common fixed bounded support (and vanish outside this set)

and the Hölder continuity condition in Lemma 7.6-(ii) holds on this support, then φn(·) can always

be written as the product of the indicator function of the support and a Hölder continuous extension

of φn(·) to the whole space Rq, which exists by the McShane-Whitney theorem, see McShane (1934).

Lemma 7.6-(iii) then ensures that the φn(·) satisfy Condition (E).

Appendix B

We provide here useful lemmas for proving that the primitive assumptions on the conditional variance

of g(Z, θ0) are sufficient for our results from Section 4 to hold.

Lemma 7.7. Let ω(x; b), b ∈ [0, h0], be positive definite r × r matrix-valued functions on Rq with

eigenvalues uniformly bounded away from zero and infinity. If {(x, u) 7→ ω(x− uh; b) : h, b ∈ [0, h0]}
is Euclidean for a constant envelope, then {(x, u) 7→ ω−s(x− uh; b) : h, b ∈ [0, h0]}, s = 1/2 or 1, is

Euclidean for a constant envelope.

Proof. We treat the case s = 1/2, the other case similarly follows. For any p.d. A and B, and the

spectral matrix norm ‖ · ‖2,∥∥∥A1/2 −B1/2
∥∥∥

2
≤ 1

2

{
max

(∥∥∥A−1
∥∥∥

2
,
∥∥∥B−1

∥∥∥
2

)}1/2
‖A−B‖2 ,

see Horn and Johnson (1991, page 557). Since A−1 −B−1 = A−1(B −A)B−1,

‖A−1 −B−1‖2 ≤ ‖A−1‖2‖B −A‖2‖B−1‖2

and
∥∥∥A−1/2 −B−1/2

∥∥∥
2
≤ 1

2
{max (‖A‖2 , ‖B‖2)}1/2 ‖A−1‖2‖B−1‖2 ‖A−B‖2 . (7.23)

From the upper and lower bounds of the eigenvalues of ω(x; b) and the equivalence between the

Euclidean norm ‖ · ‖ and the spectral norm ‖ · ‖2, deduce that for any hi, bi, i = 1, 2,

‖ω−1/2(x− uh1; b1)− ω−1/2(x− uh2; b2)‖ ≤ C‖ω(x− uh1; b1)− ω(x− uh2; b2)‖.

for some constant C. Finally, apply the definition of the Euclidean property.

In what follows, ω̄(x; b) =
∫
Rq ω(x− bv)L(v) dv, D is a domain that can be written as {x : p(x) ≥ 0}

for some real polynomial p(x), or finite unions and/or intersections of such sets.

Lemma 7.8. If ω(x) has eigenvalues uniformly bounded away from zero and infinity on D and is

Hölder continuous on D (i) ω̄(x; b) has eigenvalues uniformly bounded away from zero and infinity on

D if L(·) is strictly positive in a neighborhood of the origin; (ii) {(x, u) 7→ ω̄(x− hu; b) : h, b ∈ [0, h0]}
is Euclidean entrywise for a constant envelope.
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Proof. Part (i) is straightforward, Part (ii) is shown as follows. Since ω(x) is positive definite,

there exists a unique lower triangular matrix T (x) with positive diagonal entries such that ω(x) =

T (x)T ′(x). The eigenvalues of ω(·) are uniformly bounded away from zero and infinity iff the same

holds for the eigenvalues of T (·), that is its diagonal entries. Moreover, the entries of T (·) are Hölder

continuous functions with exponent a since they obtain recursively from the entries of ω(·) through

the equations

T 2
i,i(x) = ωi,i(x)−

i−1∑
k=1

T 2
i,k(x), Ti,j(x) = T−1

j,j (x)

ωi,j(x)−
j−1∑
k=1

Ti,k(x)Tj,k(x)

 , 1 ≤ i ≤ r, i > j .

By Theorem 3.3 and Remark 3.4 of Le Gruyer and Archer (1998), each entry Ti,j(x) can be extended

to Rq such that its extension is Hölder continuous with the same exponent and remains between

infx∈D Ti,j(x) and supx∈D Ti,j(x). The lower triangular matrix extension T̃ (·) yields an extension

ω̃(·) = T̃ (·)T̃ ′(·) of ω(·) on Rq which is positive definite with eigenvalues uniformly bounded away

from zero and infinity and Hölder continuous. By Lemma 2.13 of Pakes and Pollard (1989) and

the fact that multiplication preserves Euclideanity, deduce that the class of functions (x, u, v) 7→
ω̃(x − uh − vb)I(x − hu − vb ∈ D) = ω(x − uh − vb), x, u, v ∈ Rq, h, b ∈ [0, h0], is Euclidean for a

constant envelope. The result follows since Euclideanity is preserved by integration.

The two above lemma can be combined to yield a result on ω̄−1/2(x− uh; b).

Lemma 7.9. {(x, u) 7→ ω̄−s(x− hu; b)I (x− hu ∈ D) : h, b ∈ [0, h0]}, s = 1/2 or 1, is Euclidean for

a constant envelope under the assumptions of Lemma 7.8.

Proof. Lemma 7.6 and the fact that Euclideanity is preserved by addition yield that the class of

functions
{
(x, u) 7→ ˜̄ω(x− uh; b) = I(x− hu ∈ Dc)I + ω̄(x− hu; b) : h, b ∈ [0, h0]

}
is Euclidean for a

constant envelope. By definition, the eigenvalues of ˜̄ω(x − uh; b) stay away from zero and infinity

and ˜̄ω(x− uh; b) = ω̄(x− uh; b) whenever x− uh ∈ D.

By Lemma 7.7, the class
{

(x, u) 7→ ˜̄ω−1/2(x− uh; b) : h, b ∈ [0, h0]
}

is then Euclidean for a constant

envelope, and by Lemma 7.6-(i), so is the class
{

(x, u) 7→ ˜̄ω−1/2(x− uh; b)I(x− hu ∈ D) : h, b ∈ [0, h0]
}

.

A similar reasonning applies when s = 1.
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Table 1: Results for Dominguez and Lobato’s setup

n = 50 n = 200

Estimator h Ratio RMSE Ratio MAE h Ratio RMSE Ratio MAE

X ∼ N(0, 1)

NLS 0.0504 0.0390 0.0236 0.0186

DL 2.3590 2.2527 2.4795 2.4181

SMD 1 1.2828 1.2858 1 1.2626 1.2590

SMD 0.3 1.3298 1.3332 0.3 1.3110 1.3101

Eff. SMD 0.3 1.2160 1.2057 0.3 1.0952 1.0895

X ∼ N(1, 1)

NLS 0.0226 0.0178 0.0109 0.0087

DL 2.1284 2.1362 2.2066 2.2157

SMD 1 1.2348 1.2363 1 1.2257 1.2313

SMD 0.3 1.2513 1.2522 0.3 1.2274 1.2319

Eff. SMD 0.3 1.1353 1.1299 0.3 1.0581 1.0603

The levels of RMSE and MAE, not their ratio, are reported for NLS.

Table 2: Results for Kitamura and al.’s setup

n = 50 n = 200

Estimator h Ratio RMSE Ratio MAE h Ratio RMSE Ratio MAE

GLS 0.1342 0.1066 0.0657 0.0523

0.1623 0.1285 0.0795 0.0632

FGLS 1.2757 1.2345 1.3037 1.3944

1.4323 1.3854 1.2347 1.3397

SEL .3049 1.4266 1.3241 .2310 1.2894 1.1589

1.2938 1.2279 1.1797 1.1077

.7622 1.3015 1.2056 .5776 1.1608 1.0359

1.1886 1.1522 1.0982 1.0917

1.2195 1.3681 1.2166 .9242 1.1561 1.1047

1.2170 1.1574 1.0940 1.1035

Eff. SMD .3049 1.1660 1.1627 .2310 1.0967 1.0914

1.2077 1.2073 1.1190 1.1150

.7622 1.2968 1.2829 .5776 1.2128 1.2143

1.2159 1.2070 1.1552 1.1524

1.2195 1.4417 1.4338 .9242 1.3449 1.3499

1.2719 1.2645 1.2170 1.2162

The levels of RMSE and MAE, not their ratio, are reported for GLS.
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Table 3: Rejection percentages of bootstrap test

n = 50 n = 100

h 5% level 10% level h 5% level 10% level

Model (5.9) X ∼ N(0, 1) H0 : θ0 = 5/4

NLS 10.3 16.3 7.0 13.0

SMD 1 4.4 11.8 1 4.8 10.4

.3 5.0 12.0 .3 5.0 9.4

Model (5.9) X ∼ N(1, 1) H0 : θ0 = 5/4

NLS 8.1 14.3 6.2 11.7

SMD 1 7.0 13.8 1 5.4 11.0

.3 8.0 13.4 .3 5.6 10.2

Model (5.10) H0 : β2 = 1

FGLS 29.2 35.6 20.7 27.6

Eff. SMD .3049 6.8 12.6 .2654 4.6 9.2

.7622 9.8 15.2 .6635 6.2 11.2

1.2195 11.8 18.6 1.0616 7.8 12.4
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