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Abstract

This paper examines the effect of polluting industries on agricultural productivity. The

focus is on large-scale gold mining in Ghana which, similar to other fuel intensive activities,

releases environmental pollutants with the potential to have negative effects on crop health

and key agricultural inputs. Guided by a consumer-producer household framework, we

estimate an agricultural production function that incorporates the effects of pollution. We

find that farmers located near gold mines experienced a reduction in total factor productivity

of almost 40% between 1997 and 2005, relative to those farther away. Consistent with this

result, we document higher concentrations of air pollutants and an increase in rural poverty

near mines. We also explore whether mining could be affecting agricultural productivity in

other ways, such as by reallocating workers or inducing changes in agricultural practices.

However, we find no evidence supporting these alternative channels. Our results highlight

an important externality, namely losses in agricultural productivity, through which polluting

industries can affect living conditions in rural areas.
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1 Introduction

The investigation of the social costs of environmental pollution has mostly focused on its negative

effects on human health.1 Recent studies find that pollution, through its effect on health,

can also hinder human capital accumulation (Currie et al., 2009), labour supply (Hanna and

Oliva, 2011) and labour productivity (Graff Zivin and Neidell, 2013). However, the economic

literature has paid less attention to the effects of pollution on other economic outcomes, such

as agricultural productivity. This is surprising given the existing biological evidence linking

pollution to reductions in crop health and yields (Heck et al., 1982; Miller, 1988; Marshall

et al., 1997) and degradation of key agricultural inputs, such as water and soil (Menz and

Seip, 2004; U.S. Environmental Protection Agency, 2012).

This paper addresses this gap in the economic literature by examining how polluting indus-

tries affect agricultural productivity in a context where traditional farming is the main source

of livelihood. Quantifying this externality is important to inform the debate on environmental

policies and to assess the net benefits of (potentially) polluting activities, such as urban growth

and extractive industries, which may occur in the vicinity of agricultural areas.

We study gold mining in Ghana as it presents three useful features for our purposes. First,

most gold production is done in large-scale, modern mines. These mines are heavily mechanised

and release air pollutants similar to other fuel-intensive activities, such as power plants and

urban traffic. These pollutants can be carried over long distances and, in high concentrations,

can build up in the environment and have cumulative effects.2 Second, large gold mines have

little interaction with local economies: they hire few local workers, buy few local products,

and almost none of its profits are locally distributed.3 This effectively shuts down a number

of alternative channels through which mining activity can affect agricultural activities. Finally,

gold mines in Ghana are located in the vicinity of fertile agricultural lands where important

cash crops, such as cocoa, are cultivated.

We use micro-data from household surveys with information on agricultural practices for the

years 1997 and 2005 and detailed data on location of gold mines and households. To study the

1See Graff Zivin and Neidell (2013) and Currie et al. (2013) for a comprehensive review of this literature.
2Gold mining can generate other industry-specific stock pollutants, e.g. cyanide spills and acidic discharges.

These pollutants are mostly carried by water or localised in the close vicinity of mine sites.
3Modern mining is often associated with this type of ‘enclave effect’. See Aragon and Rud (2013) for a

discussion. Anecdotal evidence for Ghana can be found in Aryeetey et al. (2007)
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effect of pollution on agricultural productivity, we estimate an agricultural production function

augmented with pollution effects. This allows us to examine how total factor productivity,

the residual output conditional on observable inputs, is affected by exposure to mining-related

pollution. We use cumulative gold production to proxy for the stock of these pollutants.

A main empirical challenge is that agricultural productivity may be systematically different

in both mining and non-mining areas. To overcome this concern, we use a difference-in-difference

approach exploiting two sources of variation: distance from households to the nearest mine

and changes in mining production. The main identification assumption is that the change in

agricultural productivity over time in both areas would be similar in the absence of mining.

A second challenge is the endogeneity of input use in estimating agricultural production

functions, which has long been recognised in the empirical literature.4 However, due to data

limitations, we are unable to implement the standard solutions. Instead, we use the analyti-

cal framework of consumer-producer households (Benjamin, 1992; Bardhan and Udry, 1999) to

derive an empirical strategy. We show that, in the presence of imperfect input markets, en-

dowments are a good predictor of input use. Consequently, we use farmers’ input endowments,

such as land holdings and household size, as instruments. This instrumental variable strategy

exactly identifies our production function parameters if the instruments are uncorrelated with

unobserved productivity shifters. We also investigate the case where there is some correlation

between instruments and unobserved heterogeneity by using the partial identification strategy

of Nevo and Rosen (2012). We find that our results are robust to small correlations of this type.

We find evidence of a significant reduction in agricultural output and total factor produc-

tivity attributed to mining activities. Our estimates suggest that an increase of one standard

deviation in our measure of gold production is associated with a 10 percent decline in produc-

tivity in areas within 20 km of a mine. Given the increase in mining activity between 1997 and

2005 this implies that the average agricultural productivity in farms in the vicinity of mines

decreased around 40% relative to areas farther away. Similar results are obtained when using

partial measures of productivity such as crop yields. The results are robust to alternative esti-

mation methods and model specifications, and are driven by proximity to operating mines.5 An

important implication of the consumer-producer framework is that a reduction in agricultural

4See Ackerberg et al. (2006) and references therein for a discussion of alternative methods.
5A placebo test shows no changes on productivity of farmers close to new mining projects that were not

operating in the period of analysis.
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production affects directly a household’s consumption possibilities. Indeed, we find that poverty

in mining areas shows a relative increase of around 18 percent.

Having established that mining is associated with a reduction in farmers’ productivity, we

look for evidence of pollution. Using satellite imagery we find that the concentration of nitrogen

dioxide (NO2), a key indicator of air pollution, is higher in locations where mines operate and

declines with distance. We cannot test directly whether pollution reduces labour productivity,

the quality of soils, or the health of plants. However, we provide suggestive evidence that the

effect is not entirely driven by a reduction of labour productivity. As an example, a back-of-

the envelope calculation using the structural estimates suggests that the reduction of labour

productivity would need to be very large (around 80%) to fully account for the observed drop

in total factor productivity.6

Finally, we also investigate alternative channels that could explain the reduction in produc-

tivity. In particular, we focus on differences in the composition of agricultural workers, e.g.

due to selective migration or reallocations towards non-agricultural activities.7 We also look for

changes in agricultural practices and investments that might result from a weakening of prop-

erty rights, in areas where mining licences are granted.8 However, we do not find any evidence

of changes in observable characteristics of agricultural workers, in workers’ occupation or in

agricultural practices that are consistent with the lower productivity we observe near mining

areas.

In addition to the aforementioned environmental economics literature studying the impacts

of pollution, this paper also contributes to a growing literature studying the local impact of

natural resources.9 Our contribution is to quantify the potential costs, in terms of agricultural

productivity and rural income, associated to pollution from extractive industries and highlight

a dimension that is currently absent in the policy debate. This omission may overestimate the

contribution of extractive industries to local economies and lead to insufficient compensation

and mitigation policies.

6To put this figure in context Graff Zivin and Neidell (2012) find that a decrease on ozone of 10 parts per
billion (ppb) increases worker’s productivity by 5.5%. In their study, the average ambient ozone is under 50 ppb
with a standard deviation of 13 ppb.

7This re-allocation of resources may occur if mines hire local workers or create a local demand boom, as in
Aragon and Rud (2013)

8Besley (1995) shows, in the context of rural Ghana, that investments in crops with high return in the long
run, such as cocoa trees, are lower when property rights are less secure.

9See, for example, Caselli and Michaels (2013) for (negative) political economy channels, Aragon and Rud
(2013) for positive market channels, and Kotsadam and Tolonen (2013) for a gender-specific reallocation of labour.
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The rest of the paper is organised as follows. Section 2 briefly summarises the relationship

between pollution and agricultural productivity, and describes the case of gold mining in Ghana.

Section 3 provides a conceptual framework, describing the data and empirical strategy. Section

4 presents the results and discusses several possible challenges to our empirical strategy and

to the interpretation of our results. Section 5 explores the effect on poverty, while Section 6

concludes.

2 Background

2.1 Mining and pollution

Modern mining technologies have the potential to pollute the environment in several ways. First,

significant amounts of air pollutants may be generated through the use of heavy machinery,

smelters and refineries and from blasting operations.10 At low concentrations, air pollutants

are short lived: they are dissipated or absorbed by the environment. However, if emissions are

relatively large, they can be carried away over long distances and can be directly absorbed by

plants or deposit on the ground as acid rain.11

Second, mines can also generate industry-specific pollutants, such as cyanide, heavy metals,

or acid mine drainage (Salomons, 1995; Dudka and Adriano, 1997). Cyanide, for example, is

generally reprocessed but there is the risk of leakages during transportation or seeping from

dumping tailings. Acid mine drainage occurs when sulphide minerals are exposed. Combined

with air and water, they form a very acidic effluent. Importantly for our analysis, these pollu-

tants are mostly carried by surface water. This may limit the pollutants’ impact on agriculture

in the Ghanaian case, where most crops are rainfed. For this reason, in the rest of the paper we

focus on air pollutants. In Section 4.2, however, we also explore the role of pollutants carried

by surface waters.

10These air pollutants include nitrogen oxides (NOx, namely NO and NO2), sulphur dioxide (SO2), ozone (O3)
and particulate matter

11Acid rain is formed when emissions of NOx or SO2 react with water in the atmosphere to produce acids. It
contributes to soil degradation and can have cumulative negative effects (Menz and Seip, 2004).
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2.2 Pollution and agricultural productivity

Air pollution has been documented to affect agricultural productivity in at least three ways.

First, evidence in biological sciences (Heck et al., 1982; Miller, 1988; Marshall et al., 1997)

suggests that air pollutants, such as nitrogen oxides, have a sizeable negative effect on crop

yields. For example, Emberson et al. (2001), Maggs et al. (1995), and Marshall et al. (1997)

find reductions of around 20 to 60 percent in the yield of crops such as rice, wheat, and beans

that are exposed to polluted air from urban centres located as far as 15 km away.12 Second,

pollution can generate acid rain that deteriorates soil quality, by changing its chemistry or

reducing the concentration of important plant nutrients. These effects are cumulative and long-

lived.13 Finally, recent studies find evidence of a negative impact of air pollution on labour

supply and productivity (Graff Zivin and Neidell, 2012; Hanna and Oliva, 2011), mostly due to

its effect on human health.

2.3 Mining in Ghana

Our empirical analysis pertains to the case of gold mining in Ghana. Most of the gold (around

97%) is extracted by modern, large-scale mines located in three regions: Western, Ashanti and

Central.14 These mines, similar to other modern mines in the world, are capital intensive, highly

mechanised operations. They are located in rural areas, amidst fertile agricultural land, and

have little interaction with local economies: they hire few local workers, buy few local products,

their profits are not distributed among local residents, and only a small fraction of the fiscal

revenue is allocated to local authorities (Aryeetey et al., 2007).

Due to data availability, we focus on two years: 1997 and 2005. As shown in Figure 1, before

1997 gold production was increasing from low levels of production. This was mostly driven by

the expansion of one mine, Obuasi.15 After 1997, gold production plateaus, but at a higher

level. Table 1 shows that the aggregate cumulative production has almost tripled between 1997

12Most of the available evidence comes from developed countries. The above mentioned studies, however,
document the effect of pollution in developing countries such as India, Pakistan and Mexico.

13For a summary of this evidence see websites of the U.S. and Canada environmental agencies
(http://www.epa.gov/acidrain/effects/forests.html and http://www.ec.gc.ca/air/default.asp?lang=

En&n=7E5E9F00-1ws0EF0FB73).
14The rest is produced by small artisanal operations that are usually owned by locals and by informal miners

called galamseys. These use a similar labour-intensive, small-scale technology.
15The main results are robust to excluding observations in the vicinity of Obuasi mine (see Table A.8 in the

online appendix.
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and 2005 and that there is substantial variation across mines. Extraction occurs at a greater

number of locations and many of these operations, such as Tarkwa, Bibiani and Damang, were

new or experienced a significant expansion. We exploit these differences in gold production by

mine in our empirical analysis.

Figure 1: Total gold production (in Tonnes), by year

Source: U.S. Geological Service, The Mineral Industry of Ghana 1994-
2004, Infomine, and Aryeetey et al. (2007).

There are no systematic data on the concentration of pollutants in the vicinity of mining

sites, even though some case studies in mining areas report the presence of heavy metal pol-

lutants and levels of particulate matter above international admissible levels.16 The levels of

concentration decay as distance to mining sites increases, probably due to air dispersion (see

for example, Armah et al. (2010) and Tetteh et al. (2010)). As these case studies do not cover

all relevant areas and years, they are unsuitable for our analysis. Instead, we use mines’ cumu-

lative gold production over the relevant period as a proxy for the generation of pollutants that

accumulate in the environment over time.17

16Only since 2009 Ghana’s Environmental Protection Agency (EPA) has started assessing, and reporting, the
environmental compliance of mines (see http://www.epaghanaakoben.org/). Of the 9 operative gold mines
studied, 7 were red-flagged as failing to comply environmental standards. These mines were considered to pose
serious risks due to toxic and hazardous waste mismanagements and discharge.

17These pollutants are called stock pollutants. In contrast, flow pollutants are dissipated or absorbed by the
environment.
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Table 1: Cumulative gold production by mine, in Tonnes

Cumulative production
Mine name Type Up to 1997 Up to 2005 Diff.

Bibiani open pit 0.0 51.2 51.2
Bogoso/Prestea open pit, 23.9 55.9 32.0

underground and
and tailings

Central Ashanti open pit 5.4 9.7 4.3
Damang open pit 0.0 73.6 73.6
Dunkwa placer placer 1.2 1.2 0.0
Essase placer placer 2.8 12.4 9.6
Iduapriem/Teberebie open pit 19.6 61.2 41.6
Konong/Obenamasi open pit 1.5 1.5 0.0
Obotan open pit 2.2 19.4 17.3
Obuasi open pit and 204.3 346.3 142.0

underground
Tarkwa open pit and 9.4 121.0 111.6

underground
Wassa open pit 0.0 10.3 10.3
TOTAL 270.3 763.7 493.4

Note: Cumulative production is calculated adding annual production from year 1988 to
1997, and from 1988 to 2005, respectively. Data collected from U.S. Geological Service,
The Mineral Industry of Ghana 1991-2004, Infomine, and Aryeetey et al. (2007).

3 Methods

3.1 A consumer-producer household

In this section we lay down a simple analytical framework to guide the empirical analysis. In

particular, we extend a standard model of consumer-producer households (Benjamin, 1992;

Bardhan and Udry, 1999) to understand how an expansion of mining activities can generate

adjustments in the optimal behaviour of households.

We assume that households (farmers) are both consumers and producers of an agricultural

good with price p = 1. Households have an idiosyncratic productivity A and use labour (L) and

land (M) to produce the agricultural good Q = F (A,L,M), where F is a concave production

function. Households have endowments of labour and land (EL, EM ). They can use these

endowments as inputs in their farms, sell them in local input markets (Ls,M s) at prices w and

r, or, in the case of labour, consume it as leisure. As producers, households can buy additional

labour and land (Lb,M b).

Households maximise utility U(c, l) over consumption c and leisure l, subject to the budget

constraint c = F (A,L,M) − w(Lb − Ls) − r(M b −M s), and the endowment constraints L =
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EL + Lb − Ls − l and M = EM +M b −M s.

We assume households are heterogeneous in their access to markets for inputs. In particular,

there are two types of farmers: (1) unconstrained farmers, who operate as in perfectly compet-

itive input markets, and (2) fully-constrained farmers, who can neither buy nor sell inputs.18

The assumption of imperfect input markets is reasonable in the context of weak property rights

of rural Ghana.19 20

In the case of unconstrained farmers, the maximization problem follows the separation prop-

erty: the household chooses the optimal amount of inputs to maximise profits and, separately,

chooses consumption and leisure levels, given the optimal profit. From standard procedures,

the optimal levels of inputs and output, L∗(A,w, r), M∗(A,w, r) and Q∗(A,w, r), depend only

on total factor productivity and input prices.

In the case of fully-constrained farmers the optimal input decisions are shaped by their

endowments. Since the opportunity cost of land is zero, they will use all their land endowment,

M∗ = EM . However, in the case of labour farmers face a trade-off between leisure and income.

Solving the household’s problem, the optimal level of labour, L∗(A,EL, EM ), is a function of

total factor productivity and input endowments.21

In this framework, there are two possible channels for mining to affect agricultural out-

put and household consumption. First, mines could increase demand for local inputs (input

competition). This may lead to an increase in input prices and, through that channel, reduce

input use and agricultural output among unconstrained farmers. Similar effects would occur if,

for example, mines reduce supply of inputs due to land grabbings or population displacement.

There would be, however, no effect on productivity A.22

Second, mining-related pollution may affect crop health and yields as well as the quality of

18Results would not change qualitatively if we allow for partially constrained farmers.
19Data show that, in the area of study, input markets are thin: around 8% of available land is rented, and

only 1.4% of the total farm labour (in number of hours) is hired. As shown in Table A.2 in the online appendix,
endowments are a very strong predictor of input use.

20Besley (1995), for example, documents the co-existence of traditional and modern property right systems in
West Ghana. Some farmers have limited rights to transfer property of land, and in many cases require approval
from the community while others do not face this constraint. Botchway (1998) also discusses the customary
framework that rules the right to trade land in Ghana. Similar arguments can be made about labour markets,
due to market incompleteness, farmers’ preference for working on their own land, or imperfect substitutability of
household and hired labour.

21For a fully constrained farmer, the household’s problems simplifies to maxU(c, l) subject to c = F (A,L,EM )
and L = EL − l. The first order condition is UcFL = Ul.

22This remark depends, however, on the assumption that input type does not change. We explore the validity
of this assumption in the empirical analysis.

9



inputs, as discussed above. This would imply a reduction in output even if the quantity of inputs

used remains unchanged. In terms of the model, this represents a drop in productivity A. This

would have an unambiguous negative effect on agricultural output and household consumption.

Additionally, it might reduce input use. Labour use might fall either by reducing labour demand

for unconstrained farmers or through a substitution of labour towards leisure for constrained

farmers. In the case of land, only unconstrained farmers would reduce their land use.

These results highlight the importance of studying total factor productivity to assess the

effect of mining-related pollution. Other outcomes, such as agricultural output or input use,

might not be very informative about the channels at play. However, this also raises an empir-

ical challenge: unobserved heterogeneity in A can also affect input use and compromises the

econometric identification of total factor productivity. In our empirical approach we rely on the

model prediction that, in the presence of imperfect input markets, household endowments can

be a key determinant of input use to consistently estimate production function parameters.

3.2 Empirical implementation

The aim of the empirical analysis is to explore the importance of mining-related pollution on

agricultural activity. To do so, our main approach is to estimate the production function and

evaluate the effect of mining on total factor productivity A.

We start by assuming the following agricultural production function:23

Yivt = AivtM
α
itL

β
ite

εit , (1)

where Y is actual output, A is total factor productivity, M and L are land and labour, and

εit captures unanticipated shocks, which is by definition uncorrelated with input decisions.

All these variables vary for farmer i in locality v at time t. Other inputs, such as capital and

materials (e.g. fertilisers, insecticides), are not widely used and thus excluded from the empirical

analysis.24 Their inclusion, however, does not change any of the results.

We assume that A is composed of three factors: farmers’ heterogeneity (ηi), time-invariant

23We assume a Cobb-Douglas technology for simplicity. We also check the robustness of the results to using a,
more general, CES production function (see Section B in the on-line appendix).

24For example, the value of tools and other capital goods is, on average, less than 1% of total output and the
value of manure, seeds, fertilisers and insecticides account for less than 5%.
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local economic and environmental conditions (ρv) and time-varying factors, potentially related

to the presence of local mining activity (Svt). In particular, Aivt = exp(ηi + ρv + γSvt). Note

that if mining affects input availability or prices (through an input competition channel), it will

change input use but would not affect productivity A so γ = 0. In contrast, if the pollution

mechanism is at play, we should observe γ < 0.

As the empirical counterpart of Svt, we use cumulative gold production near a farmer’s

locality.25 This variable would be a reasonable proxy for exposure to pollutants under the

assumption that pollutants have a cumulative effect, i.e. they are stock pollutants. As we

discuss in Section 2, several pollutants released by mining operations, such as NO2, SO2 and

heavy metals, can have negative cumulative effects on vegetation through acid rain and soil

degradation.26

We can anticipate two main empirical challenges. The first is related to the fact that mining

and non-mining areas may have systematic differences in productivity. This omitted variable

problem may lead to endogeneity issues when estimating the coefficients of interest. To address

this issue, we exploit time variation in the repeated cross section to compare the evolution

of productivity in mining areas relative to non-mining areas. This approach is basically a

difference-in-difference with a continuous treatment. In this case, proximity to a mine defines

the treated and control group, while the intensity of the treatment is the cumulative amount of

gold produced in nearby mines.27 The validity of this approach relies on the assumption that

the evolution of productivity in both areas would have been similar in the absence of mining.28

The second problem arises because both output and input choice can be affected by pro-

ductivity, and hence may be simultaneously determined. Thus, unobserved heterogeneity in

productivity would be reflected in the error term and create an endogeneity problem in the

25In the baseline specification, we define a mining area as localities within 20 km of a mine. For those areas,
Svt is equal to gold production in nearby mines from 1988 to the reference year of the household survey (i.e. 1997
for GLSS 4 and 2005 for GLSS 5). For areas farther than 20 km, Svt = 0.

26In the empirical analysis, we also check the robustness of the results to measures of flow pollutants, i.e.
short-lived pollutants, using annual gold production (see Table 5).

27We also use a simpler specification replacing Svt by mining areav × Tt where mining areav is an indicator of
being within 20 km of a mine and Tt is a time trend. The results using this discrete treatment are consistent
with the continuous case (see Table A.3 in the online appendix).

28In the online appendix we explore the evolution of average agricultural output in mining and non-mining
areas three years with data from GLSS 2 (1988), GLSS 4 (1997) and GLSS 5 (2005). Figure A.1 shows that
the evolution of output is remarkably similar in the first period (1988-1997), when gold production is relatively
low, but there is a trend change in mining areas in the period when gold production increases (1998-2005).
Table A.1 formally tests the similarity of trends, and subsequent change, by regressing agricultural output on
mining areav × Tt for both periods. Note that the similarity of trends prior to the expansion of mining is a
necessary, though not sufficient, condition for the identification assumption to be valid.
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estimation of the input coefficients.

We address these concerns in several ways. First, we use observable characteristics of farmers

to proxy for heterogeneity, ηi. We also include district fixed effects to capture differences in

average product due to local characteristics.29 With these modifications, and taking logs, the

model we estimate becomes:

yivdt = αmit + βlit + γSvt + φZi + δd + ψt + θmining areav + ξivt, (2)

where y, l and m represent the log of observed output, labour and land, respectively. Zi is a set

of farmer’s controls, and Svt is the cumulative gold production in the proximity of a locality.

δd and ψt represent district and time fixed effects, while mining areav is an indicator of being

within 20 km of a mine. ξivt is an error term that includes εit and the unaccounted farmer

and locality heterogeneity. Under the assumption that use of inputs is uncorrelated to residual

unobserved heterogeneity, ξivt, we can estimate the parameters of (2) using an OLS regression.

Second, we relax the previous identification assumption and exploit the presence of some

constrained farmers. In particular, we estimate a standard IV model using endowments as

instruments for input use. Recall from the model that the larger the fraction of constrained

households, the greater the correlation between input use and household endowments. This

approach would be valid if the correlation is strong enough and if endowments affect output only

through its effect on input use, i.e. endowments are not conditionally correlated to unobserved

heterogeneity, ξivt.
30

Finally, we consider the possibility that endowments are correlated to ξivt. This could

happen, for example, if more productive farmers have systematically larger landholdings or

household size, thereby invalidating the exclusion restriction of the IV strategy. However, we

can make further progress by using a partial identification strategy proposed by Nevo and

Rosen (2012). This methodology uses imperfect instrumental variables (IIV) to identify the set

of parameter values.31 The approach relies on two assumptions: (i) the correlation between the

instrument and the error term has the same sign as the correlation between the endogenous

29Districts are larger geographical areas than localities v. We cannot use locality fixed effects due to the
structure of the data.

30The interpretation of this IV strategy would be as a local average treatment effect, since the coefficients
would be identified from constrained farmers only.

31In contrast, the standard IV approach focuses on point identification.
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variable and the error term, and (ii) the instrument is less correlated to the error than the

endogenous variable. These (set) identification assumptions are weaker than the exogeneity

assumption in the standard IV and OLS approaches.32

3.3 Data

Our main results use a repeated cross-section of household data from the rounds 4 and 5 of the

Ghana Living Standards Survey (GLSS 4 and GLSS 5).33 These surveys were collected by the

Ghana Statistical Service (GSS) between April 1998 to March 1999, and September 2005 to

August 2006, respectively. Questions on agricultural activities refer to the previous 12 month-

period, therefore the surveys reflect information on agricultural input and outputs mainly for

years 1997 and 2005. We use these two years as the reference years to match household data

with measures of mining activity.

The survey is representative at the regional level and contains several levels of geographical

information of the interviewees.34 The finer level is the enumeration area, which roughly corre-

sponds to villages (in rural areas) and neighbourhoods (in urban areas). For each enumeration

area we obtain its geographical coordinates from the GSS.35

We are mainly interested on two sets of variables: measures of mining activity, and measures

of agricultural inputs and output.

Mining activity Our main measure of mining activity is the cumulative production of gold

in the proximity of a household, the empirical counterpart of Svt.
36

For each of the mines in Table 1, we obtain geographical coordinates of their site.37 Using a

geographical information system (ArcGIS), we identify the enumeration areas within different

distance brackets of each mine site. For now, we define the enumeration areas within 20 km of

32We refer the reader to Nevo and Rosen (2012) for a detailed exposition of the estimation method.
33We also use the GLSS 2, taken in 1988/89, for evaluating pre-trends in agricultural output between mining

and non-mining areas. However, we do not use this dataset in the estimation of the production function since it
does not contain comparable information on input use. In addition, we do not use the GLSS 3 (1993/94) because
there is not available information on the geographical location of the interviewees.

34The highest sub-national administrative jurisdiction level is the region, followed by the district. In 2005,
there were 10 regions and 138 districts. The survey also distinguishes between urban and rural areas, as well as
ecological zones (coastal, savannah and forest).

35The GSS does not have location of enumeration areas for the GLSS 2. In this case, we extracted the location
using printed maps of enumeration areas in previous survey reports.

36We measure this variable in hundred of tonnes.
37This information comes from proprietary industry reports prepared by Infomine.
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mine sites as mining areas. Finally, we assign the cumulative production of each mine to its

surrounding mining area, and zero for areas farther away.

Figure 2a displays a map of Ghana with the location of active gold mines between 1988 and

2005. Note that all mines are located in three regions: Western, Ashanti and Central. In the

empirical section, we restrict the sample to these regions.38 Figure 2b focuses on these three

regions and depicts the enumeration areas and a buffer of 20 km around each mine. The areas

within each buffer correspond to the mining areas (treated group), while the rest correspond to

the non-mining areas (comparison group).

We restrict attention to medium and large-scale gold mines. We do not consider artisanal

and informal gold mines for two reasons. First, the magnitude of their operations is relatively

small (they represent around 3% of total gold production). Second, there is no information on

their location, though anecdotal evidence suggests they are located in the vicinity of established

mines. For similar reasons, we do not consider mines of other minerals (such as diamonds,

bauxite and manganese). These minerals are less important than gold in Ghana’s mining

output. Moreover, their mine sites are concentrated in locations that overlap with existing gold

operations. For example bauxite and diamonds are mined in Awaso (south of Bibiani gold

mine), while manganese is extracted at the Nsuta-Wassa mine near Tarkwa.

38The results, however, are robust to using a broader sample.
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(a) Location of active gold mines (b) Area of study and enumeration areas

Figure 2: Location of gold mines and households
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Agricultural output and inputs To measure agricultural output, Y , we first obtain an

estimate of the nominal value of agricultural output. To do so, we add the reported value of

annual production of main crops. These category includes cash crops and staple grains such

as cocoa, maize, coffee, rice, sorghum, sugar cane, beans, peanuts, etc. Then, we divide the

nominal value of agricultural output by an index of agricultural prices.39 This price index uses

data from agricultural producers and varies by region and by mining and non-mining areas.40

We also construct estimates of the two most important agricultural inputs: land and labour.

The measure of land simply adds the area of plots cultivated with major crops in the previous

12 months. To measure labour, we add the number of hired worker-days to the number of

days each household member spends working in the household farm. Finally, we measure land

endowment as the area of the land owned by the farmer, while the labour endowment is the

number of equivalent adults in the household.

The resulting dataset contains information on agricultural inputs and output for 1,627 farm-

ers. The farmers are located in 42 districts in three regions of south west Ghana: Western,

Ashanti and Central. Table 2 presents a simplified difference-in-difference estimation of the

main variables of interest, by comparing mean values in both survey rounds for farmers lo-

cated in both mining and non-mining areas. A first important observation is that the log

of agricultural output has shown a relative decrease near mining areas. Consistent with the

consumer-producer household framework, the poverty rate in affected areas shows a relative

increase. On the contrary, there is no apparent significant difference in the use of the main

inputs, land and labour. There is a differential change in input prices that has the opposite

sign we would expect if there were an increase in labour demand from mines. This reduction in

input prices might simply reflect the lower marginal productivity of inputs due to pollution.

There are no significant differences in most farmers’ characteristics, except for place of birth

and land ownership. These differences, however, disappear when controlling for other farmer

characteristics.

39The results are similar robust to using a coarser consumer price index reported by the GSS, which varies by
ecological zone and by urban and rural areas (see Table A.4 in the online appendix). This consumer price has a
lower geographical resolution than the one we use in this paper.

40In particular, we obtain data from individual farmers on unit values of cocoa and maize, the two main crops
in the area of study, and their relative share in the value of agricultural output in 1997. Then, we take the median
value of prices and weights by region and by mining and non-mining area, i.e., six different values every survey,
and construct a Laspeyres price index.
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Table 2: Mean of main variables, by GLSS and location

Variable Within 20 km of mine Outside 20 km of mine Diff. columns
GLSS 4 GLSS 5 GLSS 4 GLSS 5 (2-1) - (4-3)

(1) (2) (3) (4) (5)

Cumul. gold prod. (MT) 41.7 84.6 - - -

ln(real agric. output) 6.6 6.2 6.5 6.6 -0.5***
(0.17)

Land used (acres) 7.2 17.9 8.3 9.4 9.6
(9.50)

Labor (days) 377.3 358.8 343.1 366.3 -41.7
(32.00)

Land owned (acres) 11.6 21.2 12.0 13.6 8.0
(9.65)

Nr. adults equivalents 3.6 3.4 3.9 3.5 0.2
(0.23)

ln(relative land price) 14.4 14.1 13.9 14.1 -0.5***
(0.10)

ln(real wage) 8.6 8.8 8.4 8.8 -0.20***
(0.04)

Age (years) 48.0 47.9 46.6 47.4 -0.9
(1.9)

Literate (%) 53.1 46.6 54.5 45.3 2.7
(6.3)

Born in village (%) 45.5 60.7 54.2 41.9 27.5***
(6.2)

Owns a farm plot (%) 69.3 88.4 54.3 83.0 -9.6*
(5.4)

Poverty headcount (%) 15.2 26.0 33.8 17.6 27.0***
(5.0)

Nr. Observations 162 218 551 696

Notes: Standard errors in parentheses. * denotes significant at 10%, ** significant at 5% and *** significant
at 1%. Columns 1 to 4 report mean values for the sub-sample of farmers within and outside 20 km of a
mine for every round of the GLSS. Means are estimated using sample weights. By definition, cumulative
production in non-mining areas is equal to zero in both periods. Column 5 displays the difference in
difference of columns 1 to 4. The standard errors are in parentheses. Total number of observations is 1,627.
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4 Main results

This section provides evidence that the expansion of mining activities is associated with a signif-

icant reduction in agricultural productivity. The results are robust to various specifications and

estimation techniques. While unable to directly measure mining-related pollution, we use satel-

lite imagery to show that air pollution concentrates around mining areas. We explore alternative

explanations of the productivity decline, such as changes in population composition or risk of

expropriation, but find no supporting evidence that these channels can explain our results. We

conclude by discussing the mechanisms through which pollution could affect productivity.

4.1 Effect on agricultural productivity

Table 3 presents the main results. In column 1, we explore the relationship between agricultural

output and our measure of mining activity, cumulative production in nearby mines, without

controlling for input use. We note that this relationship is negative and significant, consis-

tent with mining affecting agriculture both through pollution or through input competition, as

discussed in Section 3.

To explore the likely channels driving this relation, we proceed to estimate the agricultural

production function specified in equation (2). Column 2 provides OLS estimates, while column

3 estimates a 2SLS using input endowments (namely, area of land owned and the number of

adults equivalents in the household) as instruments for actual input use.41 As a reference,

column 4 estimates the 2SLS regression using the interaction between a dummy of proximity to

a mine and a time trend as a proxy for Svt. In this case, the estimate of γ represents the average

change in residual productivity in mining areas relative to non-mining areas. All regressions

include a set of farmer controls, district and year fixed effects. We also use sample weights and

cluster errors at district level to account for sampling design and spatial correlation of shocks.

Both approaches suggest a large negative relationship between mining and output, after

controlling for input use.42 Under the identification assumptions discussed above, we interpret

this as evidence that mining has reduced agricultural productivity. This result is consistent

41The first stage of the 2SLS reveals a positive and significant correlation between input endowments and input
use and is very strong, using standard F-test thresholds. This is consistent with the presence of imperfect input
markets as discussed in Section 3.1. See Table A.2 in the online appendix for the first stage regressions.

42The estimates of α and β, i.e., the participation of land and labour, also seem plausible. We cannot reject the
hypothesis of constant returns to scale. Using the 2SLS estimates, the p-value of the null hypothesis α + β = 1
is 0.773. We obtain a similar result of constant returns to scale when estimating a CES production function.
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with mining-related pollution negatively affecting agriculture.

The magnitude of the effect is economically relevant: an increase of one standard deviation

in the measure of mining activity is associated with a reduction of almost 10% in agricultural

productivity.43 Using the result in column 4 and the increase in cumulative production between

1997 and 2005, the average agricultural productivity in areas proximate to mines decreased

around 40% relative to areas farther away. The estimated effect on productivity is large; how-

ever, this magnitude is consistent with the biological literature that documents reductions of

30-60% in crop yields due to air pollution (see Section 2).

So far, we have assumed that areas within 20 km of mines experience most of the negative

effect. Implicitly, this approach assumes that the effect of mining declines with distance. To

explore this issue further, we estimate equation (2) replacing Svt with a linear spline of distance

to a mine,
∑

c γ
d(distancedv × Tt) where distancedv = 1 if enumeration area v is in distance

bracket d, and Tt is a time trend. This specification treats distance more flexibly and allow us

to compare the evolution of farmers’ productivity at different distance brackets from the mine

relative to farmers farther way (the comparison group is farmers beyond 50 km).

Figure 3 presents the estimates of γd. Note that the effect of mining on productivity is

(weakly) decreasing in distance. Moreover, the loss of productivity is significant (at 10% con-

fidence) within 20 km of mines, but becomes insignificant in farther locations. This result

provides the rationale for the threshold of 20 km around mines.44

Columns 5 and 6 examine the effect of mining on crop yields, i.e. physical production per

unit of land. This is a standard measure of agricultural productivity that abstracts from output

aggregation and deflation issues. However, it is not informative about the source of changes

(whether input use or A). We focus on the yields of cocoa and maize, the two most important

crops in south west Ghana. In both cases, we estimate an OLS regression including farmer

controls and district fixed effects and we also find a negative and significant relation between

mining and productivity.45

As a further check, we use the imperfect instrumental variable approach developed by Nevo

43The average value of the measure of mining activity (cumulative gold production within 20 km in hundreds
of Tonnes) increased from 0.417 in 1997 to 0.846 in 2005. The standard deviation of this variable is 0.617.

44Tables A.5 and A.6 in the online Appendix replicate all the main results and robustness checks using this
specification. Results consistently show effects within 20km.

45We do not control for inputs since we do not have estimates of labour use by crop. However, including total
input use does not change the results.
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Table 3: Mining and agricultural productivity

ln(real agricultural output) ln(yield ln(yield
cocoa) maize)

(1) (2) (3) (4) (5) (6)

Cumulative gold -0.149* -0.176** -0.170** -0.509* -0.420***
prod. within 20 km. (0.085) (0.085) (0.085) (0.298) (0.103)

Within 20 km of -0.565**
mine × GLSS 5 (0.240)

ln(land) 0.631*** 0.676*** 0.678***
(0.038) (0.047) (0.046)

ln(labor) 0.209*** 0.352*** 0.346***
(0.033) (0.110) (0.109)

Estimation OLS OLS 2SLS 2SLS OLS OLS

Observations 1,627 1,627 1,627 1,627 948 605
R-squared 0.221 0.445 0.435 0.438 0.349 0.409

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes
significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include district and
survey fixed effects, an indicator of being within 20 km of a mine and farmer controls, which includes:
household head’s age, literacy, and an indicator of being born in the village; as well as an indicator of the
household owning a farm plot. Columns 3 and 4 are estimated using 2SLS. The excluded instruments
are: ln(area of land owned) and ln(number of adults equivalents in the household). Cumulative gold
production is measured in hundreds of tonnes.

Figure 3: The effect of mining on agricultural productivity, by distance to a mine
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and Rosen (2012). This approach uses instrumental variables that may be correlated to the

error term. Under weaker assumptions that the standard IV approach, this methodology allows

us to identify parameters bounds instead of point estimates. We allow both instruments to be

imperfect and run the IIV specification for different combinations of values of the parameters

that measure the ratio of correlations of the instrument and the regressor with the error term,

namely λland and λlabour.
46 Figure 4 shows that the effect on residual productivity is negative

in more than 95% of estimations. For all combinations where λland < 0.5 the corresponding

estimate of the effect of pollution on agricultural output is negative. This suggests that the

direction of the effect is insensitive to allowing the correlation between the land instrument and

the error term to be up to half that of the correlation between actual land use and the error

term.

4.1.1 Robustness checks

In Table 4 we check that our results are robust to alternative specifications.47 Column 1

estimates a parsimonious model without farmer characteristics. Column 2 includes all controls

and adds indicators of use of other inputs (such as chemical fertiliser, manure and improved

seeds). Column 3 further expands this specification by adding an array of heterogeneous trends.

We include the interaction of time trends with indicators of ecological zone, proximity to coast

and to region capitals. This last specification addresses concerns that the measure of mining

activity may be picking up other confounding trends.

Column 4 excludes observations within 5 km of a mine. This addresses concerns that the

effects are driven by factors such as land grabbings and population displacement. Population

displacements are usually confined to the mine operating sites, i.e. areas containing mineral

deposits, processing units, and tailings. These areas comprise, at most, few kilometers around

the mine site.

Column 5 performs a falsification test, where we estimate the baseline regression (2) in-

cluding interactions between time trends and dummies of: (1) proximity to an active mine,

46Note that (λland, λlabour) = (0, 0) corresponds to the standard 2SLS estimate. For further details of the
methodology see Nevo and Rosen (2012, section III.D).

47Results are also robust to the inclusion of mine fixed effects, exclusion of farmers in the vicinity of Obuasi
mine, and use of a CES production function (see Tables A.8, and B.1 in the online Appendix). As discussed in
Section 2, Obuasi mine’s operations were of a sizable magnitude before the period of interest. The results of
checks in Table 4 are similar using instruments for labour and land (see Table A.7 in online appendix).
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Figure 4: Estimates of γ with multiple imperfect IVs

Note: Vertical axis displays estimates of γ for different values of λj , with j =
{land, labour}. Values of λj in horizontal axis range from 0 to 1, with step in-

crements of 0.1. λj =
corr(Zj ,ε)

corr(Xj ,ε)
, where X is input use, Z is the instrumental variable

and ε is the error term, measures how well the instrument satisfies the exogeneity
assumption. λj = 0 corresponds to an exogenous, valid, instrument. The assumption
that the instrument is less correlated to the error term that the endogenous variable
implies that λj < 1.

22



and (2) proximity to a future mine, but not to an active one. Future mines include sites that

started operations after 2005 or have not started production yet but are in the stage of advanced

exploration or development. The results show that the negative relation between mining and

agricultural productivity occurs only in the proximity of mines active during the period of

analysis, but not in future mining areas.

4.2 Is this driven by pollution?

We interpret the previous findings as evidence that agricultural total factor productivity has

decreased in the vicinity of mines. We argue that a plausible channel is through the presence

of mining-related pollution. As discussed above, modern mines can pollute air with exhausts

from heavy machinery and processing plants, and particulate matter from blasting. In low

concentrations, these pollutants are dispersed and absorbed by the environment. In larger

concentrations, however, they can deposit on the ground in the form of acid rain and thus have

long-term cumulative effects. This is in addition to other industry specific pollutants, such as

cyanide, heavy metals and acidic discharges, which may also have cumulative effects but are

mostly dispersed through surface water.

To further explore this issue, ideally we would need measures of environmental pollutants at

local level in order to examine whether mining areas are indeed more polluted. Unfortunately,

this information is not available in the Ghanaian case.48

Instead we rely on satellite imagery to investigate whether there is evidence of pollution

that may be attributed to mining activities.49 The satellite imagery is obtained from the Ozone

Monitoring Instrument (OMI) available at NASA, which provides daily measures of tropospheric

air conditions since October 2004.50 We focus on one particular air pollutant: nitrogen dioxide

(NO2). The negative effects of NO2 can be both short-term, by directly damaging plant’s tissues,

or cumulative, through acid rain and the subsequent degradation of soils. The main source of

48An alternative way to assess exposure to pollution is to use information collected by Ghana’s Environmental
Protection Agency (EPA). This agency collects information of environmental pollutants in some mining areas, and
produces environmental assessments. This information has, however, two main limitations. First, the information
has been collected only since 2009; hence it may not accurately reflect the environmental conditions during the
period of analysis (1997-2005). Second, there are not environmental assessments for all mines that were active
before 2005, nor for non-mining areas that could be used as a control group. These issues limit their use in formal
regression analysis.

49A similar approach of using satellite imagery to measure air pollutant is used by Foster et al. (2009) and
Jayachandran (2009).

50For additional details, see http://aura.gsfc.nasa.gov/instruments/omi.html. Data are available at http:
//mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&project=OMI.
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Table 4: Robustness checks

ln(real agricultural output)
(1) (2) (3) (4) (5)

Cumulative gold -0.169* -0.163* -0.166* -0.163*
prod. within 20 km (0.096) (0.084) (0.087) (0.087)

Within 20 km of active -0.800***
mine × GLSS 5 (0.280)

Within 20 km of future 0.441
mine × GLSS 5 (0.435)

ln(land) 0.669*** 0.599*** 0.603*** 0.637*** 0.630***
(0.039) (0.039) (0.039) (0.039) (0.038)

ln(labor) 0.220*** 0.207*** 0.206*** 0.205*** 0.212***
(0.031) (0.032) (0.034) (0.033) (0.031)

Use fertiliser 0.444*** 0.446***
(0.098) (0.098)

Use manure 0.548*** 0.549***
(0.153) (0.154)

Use improved seeds -0.108 -0.111
(0.092) (0.090)

Farmer controls No Yes Yes Yes Yes
Heterogenous trends No No Yes No No
Sample All All All Excl. within All

5 km of mine

Observations 1,627 1,627 1,627 1,598 1,627
R-squared 0.422 0.464 0.465 0.448 0.454

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes
significant at 10%, ** significant at 5% and *** significant at 1%. All regressions are estimated using
OLS, and include district and survey fixed effects, and an indicator of being within 20 km of a mine.
Column 2 replicates the baseline regression in Table 3 but includes indicators of other inputs, such as
fertilisers, manure and improved seeds. Column 3 adds to the previous column the interaction of time
trends with indicators of ecological zone, proximity to coast, and proximity to region capitals. Column
4 replicates the baseline regression but excludes farmers within 5 km of a mine. Column 5 performs a
falsification test. active mines are mines that had some production in period 1988-2005, while future
mines are mines that started operations after 2005 or have not started production yet, but are in the
stage of advanced exploration or development.
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NO2 is the combustion of hydrocarbons such as biomass burning, smelters and combustion

engines and is likely to occur near large urban centres, industrial sites and heavily mechanised

operations, such as large-scale mines.

There are three important caveats relevant for the empirical analysis. First, the satellite

data reflect air conditions not only at ground level where they can affect agriculture, but in

the entire troposphere (from ground level up to 12 km).51 Levels of tropospheric and ground

level NO2 are, however, highly correlated.52 Thus, data from satellite imagery is informative

of surface levels of NO2. Second, the data is available only for 2005, the end of the period of

analysis, therefore we can only exploit cross-sectional variation in air pollution. Finally, the

measures of NO2 are highly affected by atmospheric conditions, such as tropical thunderstorms,

cloud coverage, and rain that are particularly important from November to March, and during

the peak of the rainy season.53 For that reason, we aggregate the daily data taking the average

over the period April-June 2005, corresponding to the beginning of the rainy season and to the

start of the main agricultural season.

To compare the relative levels of NO2 in mining and non-mining areas, we match the satellite

data to each enumeration area and estimate the following regression:54

NO2v = φ1Xv + φ2Wv + ωv,

where NO2v is the average value of tropospheric NO2 in enumeration area v during the period

April-June 2005. Xv is an indicator of proximity to a mine and Wv is a vector of control

variables.55 Note that the unit of observation is the enumeration area and that, in contrast to

the baseline results, this regression exploits cross-sectional variation only.

Column 1 in Table 5 presents the empirical results. We also replace the dummy Xv by a

distance spline with breaks at 10, 20, 30 and 40 km and plot the resulting estimates in Figure

5, excluding farmers farther away.

51To obtain accurate measures at ground level, we would need to calibrate existing atmospheric models using
air measures from ground-based stations. This information is unavailable.

52The correlation between these two measures is typically above 0.6. OMI tropospheric measures tend to
underestimate ground levels of NO2 by 15-30% (Celarier et al., 2008).

53In southern Ghana, the rainy season runs from early April to mid-November.
54The satellite data are binned to 13 km x 24 km grids. The value of NO2 of each enumeration area corresponds

to the value of NO2 in the bin where the enumeration area lies.
55NO2 is measured as 1015 molecules per cm3. The average NO2 is 8.1 while its standard deviation is 1.1.
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The satellite evidence suggests that mining areas have a significantly greater concentration

of NO2. Moreover, the concentration of NO2 decreases with distance to the mine in a similar

fashion as the observed decline in total factor productivity. These latest findings point out to

air pollution as a plausible explanation for the decline of agricultural productivity in mining

areas.

Columns 2 further explores the relation between mining, air pollution and productivity. To

do so, we estimate the relation between NO2 and agricultural productivity using an indicator of

proximity to a mine as an instrument for NO2. Since we only have measures of NO2 for 2005,

we use the sample of farmers in the GLSS 5 and thus exploit only cross sectional variation.

Consistent with mining-related pollution being a possible explanation, we find a significant

negative correlation between NO2 and agricultural productivity.56

So far, we have been using measures of the stock of pollutants, i.e. cumulative produc-

tion. We use this measure due to the potential of many mining-related pollutants (such as air

emissions and heavy metals) to have cumulative effects on the environment. Here, we check

whether measures of the flow of pollutants would be better instead. As a measure of the flow

of pollution, we use the annual production of the neighbouring mines in the surveys’ reference

years, i.e. 1997 and 2005. Columns 3 and 4 in Table 5 display the results. First, we add only

the measure of flow of pollution. Then, we include both measures of stock and flow of pollution.

The results suggest that the reduction in productivity is only affected by the variation in the

measure of long-term exposure to pollution. This reflects the fact that cross-mine variation in

production for the two relevant years is actually very small to drive our results.

Finally, we explore the importance of pollutants carried by surface water. To do so, we

identify areas downstream of active mines and examine whether the negative effects of mining

are stronger in these areas. Note that this is a crude way to assess exposure to pollution since

some pollutants (such as heavy metals and dust) can be carried by both water and air, therefore

areas upstream and downstream of mines can both be negatively affected.

We replicate the baseline regression including an interaction term between our measure of

mining activity and a dummy variable downstream that is equal to one if the household is

located downstream of an active mine. The results, displayed in column 5 of Table 5, suggest

56In the first stage, the relation between NO2 and the excluded instrument (within 20 km of mine) is positive
and significant at 5%.
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Table 5: Mining and pollution

ln(real agricultural output)
Average NO2 Using mining Stock vs flow pollution Upstream vs

as IV downstream
(1) (2) (3) (4) (5)

Within 20 km of mine 0.325***
(0.111)

Average NO2 -1.554*
(0.837)

Cumulative gold prod. -0.220** -0.193**
within 20 km (0.093) (0.094)

Annual gold prod. -0.057 1.644
within 20 km (1.324) (1.802)

Cumul. gold prod. within -0.012
20km × downstream (0.086)

Estimation OLS 2SLS OLS OLS OLS
Farmer controls No Yes Yes Yes Yes
Controlling for inputs No Yes Yes Yes Yes

Observations 399 914 1,627 1,627 1,627
R-squared 0.238 0.029 0.443 0.445 0.447

Notes: Robust standard errors in parentheses. * denotes significant at 10%, ** significant at 5% and *** significant
at 1%. Standard errors in columns 2 to 5 are clustered at district level. Columns 1 and 2 use data for 2005 only.
Column 1 uses the enumeration area as unit of observation and includes indicators of ecological zones, urban area,
and region fixed effects as additional controls. Column 2 presents 2SLS estimates of the agricultural production
function using only the sample of farmers in GLSS 5. It treats Average NO2 as an endogenous variable and uses
within 20 km of mine as the excluded instrument. This specification includes the additional controls: indicators
of ecological zone, urban area, region fixed effects, as well as farmer characteristics and measures of input use as
in the baseline regression (see notes of Table 3). Column 3 and 4 replicates the baseline OLS regression (column
2 in Table 3) adding annual gold production within 20 km as a proxy for flow pollutants. This variable measures
the production of gold (in hundreds of MT) from nearby mines in years 1997 and 2005. Column 5 adds to the
baseline OLS regression an interaction term of the measure of mining activity and downstream, a dummy equal
to one if household is downstream of an active mine. This regression also includes downstream and its interaction
with within 20 km of mine.
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that there is no significant difference in the effect of mining between downstream or upstream

areas. A conservative interpretation here is that pollution of surface waters may not be driving

the main results, although this may be due to low statistical power.57

Figure 5: Average concentration of NO2, by distance to a mine

4.3 Alternative explanations

We interpret the previous results as evidence that pollution is a credible channel through which

mining has affected agricultural productivity. In this section, we examine three plausible alter-

native explanations.

First, mining can directly appropriate some inputs, for instance by diverting water sources

or the appropriation of farmland. A concern is that the drop in productivity simply reflects the

relocation of farmers to less productive lands.58 It is unlikely, however, that this factor fully

accounts for the observed reduction in productivity as the effects we found are over a very large

area (in excess of 1200 square km). Furthermore, column 4 in Table 4, shows that the results

are robust to the exclusion of farmers within 5 km of a mine, the population most likely to

suffer from displacement.59

57Additionally, there is no variation in productivity that can be explained by the direction of winds. Ghana
has two main winds that come from opposite directions: the Harmattan, a dry and dusty wind, that blows from
the Sahara, i.e. north east, and another wind, warm and moist, coming from the Atlantic ocean, i.e., south-west.
Hence, air pollutants may be dispersed in all directions around a mine.

58These phenomena are documented in the Ghanaian case and are deemed to be a source of conflict and
increased poverty in mining areas (Duncan et al., 2009; Botchway, 1998).

59We also examine the relation between mining and agricultural input prices, see Section D in online appendix.
We find no evidence of an increase in agricultural wages or land prices in mining areas as compared to non-mining
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Second, mines could be hiring local workers or fostering a local demand boom as documented

in Aragon and Rud (2013) for a gold mine in northern Peru. This can attract workers away from

agriculture towards mining or other non-tradable sectors. If these relocating workers are more

productive, then the reduction in agricultural productivity would be just reflecting changes in

the composition of agricultural workers. A similar phenomenon could occur in the presence of

selective migration, for instance if more productive farmers migrate away from mining areas.

To assess this alternative explanation, Table 6 examines whether mining activity is associated

with changes in several observable population characteristics. In columns 1 and 2, we look at the

probability that a working-age individual, male or female, is employed, self-employed or engaged

in domestic production. In column 3, we look at the probability that a worker is engaged in

agriculture (either as a producer or labourer). In the presence of occupational change towards

non-agricultural activities, we could expect a negative correlation. Columns 4 and 5 examine

measures of agricultural workers’ demographics and mobility, such as probability of being a

prime age male (20-40 years), or being born in the same village where they reside. Finally,

columns 6 and 7 explore measures of human capital of agricultural workers, such as literacy and

having completed secondary school.60 This result is informative, however, under the assumption

that farming ability is positively correlated with educational attainment, which is a plausible

assumption given that in our baseline regression the measure of literacy is associated with an

increase in agricultural product and productivity. We find, however, no evidence of any change

in these population characteristics.

Finally, an alternative story that could explain lower agricultural productivity is related to

weak property rights. In Ghana, two phenomena are at play: customary and ill-defined land

rights, and the right of the State to grant licenses for the use of land where mineral wealth is

located (Botchway, 1998). Farmers near mining sites might fear expropriation and might choose

to reduce agricultural investments, such as planting cocoa trees, as documented in Besley (1995).

We first check whether there is a change in land ownership. Then, we examine whether there is

any perceptible decrease in the share of cocoa or planting of new cocoa trees. Finally, we also

explore changes in other agricultural practices, such as crop diversification and use of fertilisers,

areas.
60Levels of completion of primary school are high, i.e., around 86%, while literacy levels (47.8%) and secondary

school completed (36.3%) show greater variation. Results hold when using data on completed primary school.

29



that could change as a way to mitigate the effect of pollution.61

Table 7 displays the results. We do not find a decrease in cocoa planting nor significant

changes in land ownership or the use of fertilisers. If anything, there has been an increase in

planting of cocoa trees. These results contradict the property rights explanation, and weaken

the argument that the reduction in productivity is driven solely by changes in perceived risk of

expropriation. Interestingly, we in fact find an increase in crop concentration. While far from

conclusive, this finding is suggestive of actions taken by farmers to ameliorate the negative effect

of pollution.

The findings discussed above, together with the observed increase of air pollution in the

vicinity of mines, supports our finding that pollution is the most plausible channel for mining to

affect agricultural productivity. These results, however, should not be interpreted as conclusive

evidence that mining affects agriculture only through pollution, as other channels may also be

important. For instance, a local mining boom may have changed the composition of workers

in an unobservable dimension. Similarly, improvements in the outside options of agricultural

workers (such as artisanal mining or urban services) may reduce their incentives to exert effort

in the farm. However, due to data limitations we are unable to examine these explanations.

Table 6: Population characteristics

Do any Do any Works in Male in Born in Literacy Completed
work work agriculture prime age village secondary
(1) (2) (3) (4) (5) (6) (7)

Cumulative gold -0.001 -0.018 -0.032 -0.001 -0.006 -0.004 -0.013
prod. within 20 km (0.006) (0.017) (0.042) (0.018) (0.024) (0.021) (0.016)

Sample Males in Females in All Agricultural Agricultural Agricultural Agricultural
working age working age workers workers workers workers workers

Observations 4,787 5,688 8,932 4,978 4,929 4,971 4,978
R-squared 0.453 0.319 0.359 0.029 0.127 0.044 0.134

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes significant at 10%, ** significant at
5% and *** significant at 1%. All regressions include district and survey fixed effects, an indicator of being in a mining area, and indicators of
ecological zone and urban area. Do any work is an indicator equal to one if individual is employed, self-employed or participates in domestic
production. Working age is between 15 to 65 years. Works in agriculture is an indicator equal to one if individuals works in agriculture
as a laborer or producer. Male in prime age is an indicator equal to one if individual is male between 20 to 40 years old. Born here is an
indicator equal to one if individual was born in the same village where she resides. All regressions are estimated using a linear probability
model. Columns 1 to 3 include as additional controls: age, age2, religion, place of birth, literacy status, and household size. Columns 6 and 7
examine the educational attainment of agricultural workers conditional on age and age2.

61Farmers could ameliorate the effects of soil degradation by increasing the use of fertilisers. Similarly, if
crop sensitivity to pollution is heterogeneous, farmers may reduce the impact on their income by changing the
composition of crops farmed.
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Table 7: Agricultural investment and practices

Owns New cocoa Share of Crop Use Use
farm plants cocoa concentration fertiliser manure
(1) (2) (3) (4) (5) (6)

Cumulative gold -0.010 0.066* 0.021 0.043** -0.005 -0.015
prod. within 20 km (0.029) (0.039) (0.036) (0.017) (0.045) (0.026)

Observations 1,627 1,627 1,627 1,627 1,627 1,627
R-squared 0.225 0.159 0.446 0.118 0.140 0.102

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes significant
at 10%, ** significant at 5% and *** significant at 1%. All regressions include district and survey fixed effects,
an indicator of being in a mining area, and indicators of ecological zone and urban area. Columns 2 to 6 also
include farmer’s controls as the agricultural production function in Table 3. All regressions are estimated using
linear OLS. Owns farm is equal to 1 if farmer owns any plot. New cocoa plants equals one if the farmer has
planted new cocoa trees in the previous 12 months. Share of cocoa is the share of cocoa revenue in the value of
total agricultural output. Crop concentration is the Herfindahl concentration index of crops’ value. Outcomes in
columns 5 and 6 are indicators equal to one if farmer uses chemical fertilisers or manure, respectively.

4.4 Exploring the mechanisms

An important question concerns the exact mechanism by which mining-related pollution affects

total factor productivity. As discussed in Section 2.2, we consider three possible mechanisms.

First, pollution could directly affect crop yields and health. Second, pollution could deteriorate

the quality of key inputs, such as soil. Third, through its effects on human health, pollution

could affect labour productivity.

To formally discuss these factors, we consider the following augmented Cobb-Douglas pro-

duction function:

Y = qT (qMM)α(qLL)β (3)

where Y is agricultural output, M and L are the observable quantities of land and labour. qL

and qM are input-specific quantity shifters, which respectively capture factors such as labour

productivity and quality of soil, while qT captures all other unobserved factors, including crop

health and yields. Our previous discussion suggests that pollution could potentially affect any

of these factors.

In this setup, total factor productivity is captured by A = qT q
α
Mq

β
L. This is the object that

we can observe, as a residual, when we estimate the agricultural production function. Our

empirical analysis shows that mining-related pollution reduces A but with the data at hand we

cannot identify its effect on each component as this would require data on quality of soil, crops’
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health and labour productivity.

Instead, we use an indirect approach to show that the negative effect of mining on total

factor productivity cannot be entirely driven by reduction in labour productivity, qL. We do

this in three ways: First, we note that under the assumption that all the reduction in A is driven

solely by changes in labour productivity implies that ∆ lnA = β∆ ln qL. In Table 3 column 4,

we estimate ∆ lnA = −0.565 and β = 0.346. This suggests a reduction in qL of almost 80%.

However, this figure is inconsistent with previous estimates of the relation between air pollution

and labour productivity. For instance, Graff Zivin and Neidell (2012) find that one standard

deviation in ozone levels decreases labour productivity by roughly 5.5% using U.S. data.

Second, we examine worker health indicators. We use self-reported data on the incidence

and duration of illness.62 We then examine the relation between these measures of health and

our measure of mining. We focus on working age individuals (aged 15 to 65) and split the

sample between urban and rural populations. Table 8 displays the results. In all cases, we find

no evidence of an increase in the likelihood of being ill nor on the duration of illness. This is

contrary of what we could expect if the sole channel was through human health.

Table 8: Mining and self-reported illness

Ill in previous 2 weeks ln(number of days ill)

(1) (2) (3) (4) (5) (6)

Cumulative gold -0.015 0.013 -0.022 0.019 -0.182*** 0.038
prod. within 20 km. (0.022) (0.046) (0.026) (0.032) (0.034) (0.034)

Sample All Urban Rural All Urban Rural

Observations 11,713 4,498 7,215 2,842 1,041 1,801
R-squared 0.055 0.066 0.071 0.062 0.089 0.081

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. *
denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regresssions are
estimated using OLS and include district and survey fixed effects, an indicator of being within 20
km of a mine, and individual controls such as: age, age2, gender, an indicator of rural area and
ecological zone. Ill in previous 2 weeks is a dummy variable equal to 1 if individual reports being ill
during the last 2 weeks, which does not include accidents. Column 4 to 6 include only the subset of
individuals who reported being ill.

Finally, we examine the effect of mining on urban workers, not directly linked to the agricul-

tural sector. This group include employed and self-employed workers. We focus on two available

outcomes: number of hours worked and employment income. Under reasonable assumptions,

62The survey questions are: In the last two weeks, have you been ill? If yes, how many days have you been
ill?.
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if the effect was transmitted entirely through reduction in labour productivity, we should also

observe a decrease in these labour outcomes.63 The results are displayed in Table 9. Column

1 and 3 use the sample of all urban workers, including agricultural workers, while columns 2

and 4 include only non-agricultural workers. Note that all regressions exclude mining workers,

who can be directly affected by mining operations. In all cases, there is no significant change

in number of hours nor on employment income.

Taken together, this evidence does not rule the possibility that the effects reflect, in part,

reduction in labour productivity. However, they suggest that it is unlikely that this mechanism

fully accounts for the observed phenomena.

Table 9: Mining and labor outcomes of urban workers

ln(hours work) ln(real employment income)

(1) (2) (3) (4)

Cumulative gold -0.062 -0.064 0.222 0.139
prod. within 20 km. (0.042) (0.064) (0.260) (0.250)

Sample All Urban All Urban
urban non-agric. urban non-agric.

workers workers workers workers

Observations 2,580 2,062 1,936 1,564
R-squared 0.152 0.090 0.389 0.319

Notes: Robust standard errors in parentheses. Standard errors are clustered at district
level. * denotes significant at 10%, ** significant at 5% and *** significant at 1%. All
regressions include district and survey fixed effects, an indicator of being in a mining area,
and indicators of ecological zone and urban area. Columns 1 and 2 include as additional
controls: age, age2, religion, place of birth, literacy status, and household size. Columns
3 and 4 add as additional control the log of number of hours worked. All regressions
exclude mining workers. Columns 2 and 4 also exclude agricultural workers.

5 Effects on poverty

The standard consumer-producer household framework presented above links a household’s util-

ity function, which depends on consumption levels, to income from agricultural production. As

a consequence, we expect that our previous results indicating a sizable reduction in agricultural

productivity and output induce a subsequent effect on local living standards, such as measures

of poverty. There are reasons to believe that this channel can be averted. Mining companies or

63These assumptions are: (1) labour demand for urban workers depend of their productivity, (2) mining did not
increase labour demand in urban areas, and (3) mining did not affect urban labour supply. The first assumption
is more reasonable given the existence of urban labour markets. The last two assumptions are likely to be met
given the limited economic interactions between gold mines and local economies in the Ghanaian context.
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the government could, for example, promote local development projects, employ local workers,

compensate local residents, or transfer part of the mining surplus. These policies are often im-

plemented by the industry to mitigate potential negative side-effects of mining, and may offset

the decline in productivity.

To examine this issue, we use data from the GLSS on poverty and estimate a difference-

in-difference regression of household poverty on our measure of mining activity, Svt.
64 The

results are displayed in Table 10. Column 1 shows results for all households using our preferred

specification with cumulative gold production as a measure of mining activity. As a reference,

column 2 uses as proxy of Svt the interaction between a dummy of proximity to a mine and a

time trend to obtain the average effect of mining on poverty. Columns 3 and 6 split the rural

sample between urban and rural households, respectively. Column 4 looks at rural households

that are engaged in household production (and thus were included in the estimation of the

agricultural production function), while column 5 looks at rural households that did not report

any agricultural production.65 We also check the robustness of the results to using a continuous

measure of real household expenditure (see table E.1 in the online appendix).

The picture that emerges is that there is a positive and significant relation between mining

activity and poverty. The magnitude of the effect is sizable: the increase in gold production

between 1997 and 2005 is associated with an increase of almost 18 percentage points in poverty

headcount. The effect is concentrated among rural inhabitants, regardless of whether the house-

holds are agricultural producers or not. Non-producers could be affected either directly, by the

reduction in agricultural wages associated to lower total factor productivity, or indirectly, if

they sell good or services to local farmers.66

The reduction in indicators of economic well-being is consistent with the decline in agricul-

tural productivity in areas where farming activities are the main source of livelihood. Table

E.2 in the online appendix shows two additional results among children that are also consistent

with levels of poverty induced by pollution: malnutrition and acute respiratory diseases have

both increased in mining areas.

These results, however, should not be interpreted as evidence that mining affects local

64See section E in online appendix for further estimation details and results.
65Households whose members are engaged in farming as wage labourers are around 65% of the sample.
66Aragon and Rud (2013) discuss the conditions under which these effects would be present and show evidence

of how households were affected in the area of influence of a gold mine in Peru.
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economic conditions only through its effect on agriculture. Mining could have created a local

demand shock, affected provision of public goods, or changed the scope of other re-distributive

policies. Similarly, mining could generate other local negative effects, such as an increase in rent-

seeking, conflict, or political corruption (Caselli and Michaels, 2013). Despite these limitations,

these results are indicative of the net effect of mining on local living conditions. Compensating

policies and positive spillovers from mines, if any, have been insufficient to offset the negative

effect on agricultural income.

Table 10: Mining and poverty

Poverty
Rural Urban

All households All Farmers Non-farmers
(1) (2) (3) (4) (5) (6)

Cumul. gold 0.059*** 0.071*** 0.056** 0.084** 0.054
prod. within 20 km. (0.015) (0.019) (0.021) (0.032) (0.036)

Within 20 km of 0.186***
mine × GLSS 5 (0.055)

Observations 5,527 5,527 3,393 2,540 853 2,134
R-squared 0.212 0.216 0.227 0.237 0.224 0.199

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes
significant at 10%, ** significant at 5% and *** significant at 1%. All regressions are estimated using ordinary
least squares, and include district and survey fixed effects as well as household controls, such as: age, age2,
religion, place of birth and literacy status of household head, household size, and an indicator of urban areas.
All columns include an indicator of being within 20 km of a mine.

6 Concluding remarks

This paper examines an important externality that polluting industries may impose on rural ar-

eas, namely, a reduction in agricultural productivity. We find robust evidence that agricultural

productivity has decreased in mining areas relative to areas in the same region but located at

a greater distance from mining activities. The reduction is economically significant: approxi-

mately a 40% decline in total factor productivity between 1997 and 2005. We also document

an increase in rural poverty associated to the decline in agricultural productivity. The mag-

nitude of these effects is, however, specific to the Ghanaian case we study and should not be

extrapolated to other contexts.

These findings have an important implication for environmental and industrial policies. In
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particular, they suggest that environmental assessments should consider the possible impact of

polluting industries on agricultural productivity and farmers’ income.

These potential costs are usually neglected in the academic and policy debate, which usually

focuses on the benefits extractive industries could bring in the form of jobs, taxes or foreign

currency. These benefits are weighted against environmental costs such as loss of biodiversity,

or human health risks. However, local living standards may be also directly affected by the

reduction in agricultural productivity. In fertile rural environments, these costs may offset the

benefits from extractive industries, and hinder the ability to compensate affected populations.

In turn, this may have substantial re-distributive effects.

A simple back of the envelope using the Ghanaian case illustrates this argument. In 2005,

mining-related revenues amounted to US$ 75 million, which represent around 2-3% of total

government revenue. Most of this revenue (around 80%) was channeled to the central govern-

ment.67 In contrast, the average annual loss by farming households in mining areas, according

to our main results, is in the order of US$ 97 million.68 These approximate numbers show that

the amount of tax receipts might not be enough to compensate those farmers negatively affected

by mining and that this situation is even worsened by the fact that only a small proportion of

the tax receipts go back to affected localities.

A main limitation of this paper is that we cannot clearly assess the relative importance

of several plausible mechanisms through which pollution could affect productivity, such as the

direct effects of pollution on labour productivity, quality of soil, and crop health. Similarly,

we cannot examine in detail changes in farmers’ decisions to ameliorate the effect of pollution.

While beyond the scope of this paper, examination of these issues warrant further research.

67Local authorities (such as District Assemblies, Stools and Traditional Authorities) receive only 9% of mining
royalties.

68This number is obtained by multiplying the number of producing households in mining areas, around 210,000,
to the average reduction in households’ per capita annual consumption, i.e., US$ 460.
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