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Abstract

In this paper, we consider regressions with observations collected at small time
interval over long period of time. For the formal asymptotic analysis, we as-
sume that samples are obtained from continuous time stochastic processes, and
let the sampling interval δ shrink down to zero and the sample span T increase
up to infinity. In this set-up, we show that the standard Wald statistic always
diverges to infinity as long as δ → 0 sufficiently fast relative to T → ∞, and
regressions become spurious. This is indeed well expected from our asymp-
totics which shows that, in such a set-up, samples from any continuous time
process become strongly dependent with their serial correlation approaching to
unity, and regressions become spurious exactly as in the conventional spurious
regression. However, as we show in the paper, the spuriousness of Wald test
disappears if we account for strong persistency adequately using an appropriate
longrun variance estimate. The empirical illustrations in the paper provide a
strong and unambiguous support for the practical relevancy of our asymptotic
theory.
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1 Introduction

A great number of economic and financial time series are now collected and made available at

high frequencies, and many empirical researchers find it difficult to decide at what frequency

they collect the samples to estimate and test their models. Naturally we may think that

we should use all available observations, since neglecting any available observations means

a loss in information. Nevertheless, this is not the usual practice in applied empirical

research. In most cases, samples used in practical applications are obtained at a frequency

lower than the maximum frequency available. For instance, many time series models in

financial economics are fitted using monthly observations, when their daily samples or even

intra-day samples are available at no extra costs. Some researchers seem to believe, rather

vaguely, that high frequency observations include excessive noise or erratic volatilities, and

they do not bring in any significant amount of marginal information. Others keep silent on

this issue, and simply choose the sampling frequency that yields sensible results.

In the paper, we formally investigate the effect of sampling frequency on the standard

tests in regressions. For our analysis, we consider the standard regression model for con-

tinuous time stochastic processes, and assume that the regression is fitted by discrete time

observations collected at varying time intervals. It is supposed that the discrete samples are

collected at sampling interval δ over sample span T , and we let δ → 0 and T → ∞ jointly to

establish our asymptotics. Our asymptotics are therefore more relevant to regressions with

observations collected at high frequency over long span. Both stationary and nonstationary

continuous time regression models are analyzed. The former is the continuous time version

of the standard stationary time series regression, whereas the latter is a continuous time

analogue of the cointegrating regression model. Our assumptions are very mild and accom-

modate a wide class of regression models, and therefore, our asymptotics are applicable for

virtually all regression models that are used in practical applications.

The most important finding from our analysis is that both type of regressions become

spurious eventually as the sampling frequency increases. Even under the correct null hy-

pothesis, the standard test statistics, such as the t-ratios and Wald statistics, increase up to

infinity as the sampling interval decreases down to zero. Therefore, they would always lead

us to reject the correct null hypothesis if the sampling interval is sufficiently small. This

is completely analogous to the conventional spurious regression in econometrics, which was

first studied through simulations by Granger and Newbold (1974) and studied theoretically

later by Phillips (1986). The spuriousness in the conventional spurious regression is due to

the presence of a unit root in the regression error that generates strong serial correlation.

The same problem arises in the regressions we consider. The regression error from a con-
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tinuous time process becomes strongly correlated as the sampling interval decreases, which

yields the same type of spuriousness in the conventional spurious regression.

However, there is an important difference between our regressions and the conventional

spurious regression. In contrast to the conventional spurious regression that does not rep-

resent any meaningful relationship, our regressions are well specified as signifying authentic

relationships. Naturally, the spuriousness of our regressions is rectifiable. In fact, we show

in the paper that the spuriousness of the t-tests or Wald tests disappears if we account

for strong persistency in high frequency observations using an appropriate longrun variance

estimate, in lieu of the usual variance estimate, to define the statistics. The longrun vari-

ance estimate takes all serial correlations in the samples into account, and therefore, it may

effectively deal with the strong correlation in the regression errors of our regressions if it is

used properly. Indeed, the usual HAC estimator obtained with the automatic bandwidth

selection procedure proposed by Andrews (1991) works for our high frequency regressions,

and the standard tests with such HAC estimators have well defined limit distributions.

The rest of the paper is organized as follows. Section 2 explains the background and

motivation of our analysis in the paper. In particular, we provide some illustrative examples

that are analyzed throughout the paper to show the practical relevancy of our asymptotic

theory. Section 3 introduces the regression models, the set-up for our asymptotics and

some preliminaries. The spuriousness of the high frequency regressions are derived and

investigated in Section 4. In particular, we establish under fairly general conditions that

the coefficient in the first order autoregression of the regression error converges to unity as

the sampling interval decreases. Section 5 presents the limit theory for the modified test

statistics defined with HAC estimators. We also demonstrate that the bandwidth selection

is important, and the modified tests may or may not yield spurious results depending upon

the bandwidth choice. Section 6 concludes the paper, and Appendices have mathematical

proofs and additional figures.

2 Background and Motivation

It is widely observed that test results are critically dependent upon the choice of sample

frequency in many time series regressions. To illustrate more explicitly the dependency on

sampling interval of the test results, we consider a simple bivariate regression of (yi) on

(xi) written as yi = α + βxi + ui, where α and β are respectively the intercept and slope

parameters and (ui) are the regression errors. For (yi) and (xi), we consider the following

four pairs:
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Model (yi) (xi)

I 20-Year T-bond rates 3-month T-bill rates

II 3-month eurodollar rates 3-month T-bill rates

III log US/UK exchange rates forward log US/UK exchange rates spot

IV log SP500 index futures log SP500 index

The plots for (yi) and (xi) in Models I-IV are given in Figure 5 in Appendix B. In all

models, possibly except for Model I, two series (yi) and (xi) move very closely with each

other. Therefore, the most natural hypotheses to be tested appear to be α = 0 and β = 1.

The hypotheses may not hold. In particular, the null hypothesis α = 0 does not necessarily

hold, in case where there are differences in the term or liquidity premium as well as the

general risk premium between two assets represented by (yi) and (xi). However, we do not

intend to provide any answers to whether or not the hypotheses should hold in any of the

models we consider here. Instead, we simply analyze the dependence of test results on the

sampling frequency. In what follows, we will mainly focus on testing for the null hypothesis

β = 1, which seems to be much less controversial.

In Figure 1, we present the values of t-ratios for testing the null hypothesis β = 1 for

Models I-IV. In the figure, we plot the t-values against various sampling intervals from six

months with δ = 1/2 to one day with δ = 1/250 in yearly unit. As discussed, the t-values

change extensively as the sampling interval δ varies. In particular, they tend to increase

very rapidly as δ gets smaller and becomes near zero. The rate of increase in the t-values as δ

approaches to zero varies across different models. However, it is common to all models that

the t-values start to increase sharply as the sampling interval becomes approximately one

month or shorter, and eventually at daily frequency, the t-tests in all models unambiguously

and unanimously reject the null hypothesis β = 1. In contrast, the t-tests yield some mixed

results for the same hypothesis as the sampling interval moves away from a neighborhood of

zero and further increases. We have very similar results for the t-test for the null hypothesis

α = 0, as shown in Figure 7 in Appendix B.

The dependency of the test results on the sampling frequency is of course extremely un-

desirable, since in most cases the hypothesis of interest is not specific to sampling frequency

and we expect it to hold for all samples collected at any sampling interval. Subsequently,

we consider a continuous time regression model and build up an appropriate framework to

analyze this dependency of the test results on the sampling frequency. We find that what we

observe here as the common feature of the t-tests is not an anomaly. From our asymptotic

analysis relying on δ → 0 as well as T → ∞, it actually becomes clear that the test is ex-
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Figure 1: t-Tests for β in Models I-IV
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Notes: Presented in the top two panels are the absolute values of t-tests for testing β = 1 in Models
I and II, and in the bottom two panels those from Models III and IV. They are computed from
the samples of varying frequency, from daily observations with the sampling interval δ = 1/250 to
semi-annual observations with δ = 1/2. Each graph plots the absolute test values across different
levels of frequency parameter δ on the horizontal axis. The black dotted horizontal line signifies the
two-sided 5% standard normal critical value 1.96.

pected to diverge up to infinity with probability one as δ decreases down to zero. Roughly,

this happens since the serial correlation at any finite lag of discrete samples converges to

unity as the sampling frequency increases if the samples are taken from continuous time

stochastic processes. We may allow for the presence of jumps, if the jump activity is regular

and there are only a finite number of jumps in any time interval.

3 The Model, Set-Up and Preliminaries

Consider the standard regression model

yi = x′iβ + ui (1)

for i = 1, . . . , n, where (yi) and (xi) are respectively the regressand and regressor, β is the

regression coefficient and (ui) are the regression errors. Though it is possible to analyze

more general regressions, the simple model we consider here is sufficient to illustrate the
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main issue dealt with in the paper. Throughout, we denote by β̂ the OLS estimator of β.

The general linear hypothesis on β, formulated typically as Rβ = r with known matrix R

and vector r of conformable dimensions, is often tested using the Wald statistic defined by

F (β̂) = (Rβ̂ − r)′



R

(

n
∑

i=1

xix
′
i

)−1

R′





−1

(Rβ̂ − r)/σ̂2, (2)

where σ̂2 is the usual estimator for the error variance obtained from the OLS residuals (ûi).

In the presence of serial correlation in (ui), the Wald statistic introduced in (2) is in general

not applicable. Therefore, in this case, modified versions of the Wald statistics such as

G(β̂) = (Rβ̂ − r)′



R

(

n
∑

i=1

xix
′
i

)−1

R′





−1

(Rβ̂ − r)/ω̂2, (3)

where ω̂2 is a consistent estimator for the longrun variance of (ui) based on (ûi), or

H(β̂) = (Rβ̂ − r)′



R

(

n
∑

i=1

xix
′
i

)−1

Ω̂

(

n
∑

i=1

xix
′
i

)−1

R′





−1

(Rβ̂ − r), (4)

where Ω̂ is a consistent estimator for the longrun variance of (xiui) based on (xiûi). Subse-

quently, we consider two different types of regression given by (1): stationary type regression

and cointegration type regression. The test based on (4) is generally more appropriate for

the stationary type regression, whereas only the test based on (3) is sensible for the cointe-

gration type regression.1

In the paper, we analyze regression (1), when (yi) and (xi) are high frequency observa-

tions.2 Therefore, for the subsequent analysis, we let (yi) and (xi) be samples collected at

discrete time intervals from the underlying continuous time processes denoted respectively

by Y = (Yt) and X = (Xt), i.e.,

yi = Yiδ and xi = Xiδ

for i = 1, . . . , n be discrete samples from the continuous time processes Y and X over time

[0, T ] collected at the sampling interval with length δ > 0, where T = nδ. Under our setup,

1Note that the longrun variance of (xiui) does not exist if (xi) is nonstationary.
2In the paper, high frequency observations are defined to be samples collected at sampling intervals which

are small relative to their time span. For instance, five years of daily observations are considered to be high
frequency observationss.
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it is clear that we may define the continuous time regression

Yt = X ′
tβ + Ut (5)

for 0 ≤ t ≤ T corresponding to the regression model introduced in (1), where Y and X are

the regressand and regressor processes, and U = (Ut) is the error process, from which (ui)

are defined similarly as (yi) and (xi) are defined from Y and X.

For any stochastic process Z = (Zt) appearing in the paper, we assume that Z = Zc+Zd,

where Zc is the continuous part and Zd the jump part defined as Zd
t =

∑

0≤s≤t∆Zs with

∆Zt = Zt − Zt−.

Assumption A. Let Z be any element in U,XX ′ or XU . We have

∑

0≤t≤T

E|∆Zt| = O(T ).

Moreover, if we define ∆δ,T (Z) = sup0≤s,t≤T sup|t−s|≤δ |Zc
t − Zc

s |, then

max

(

δ,
δ

T
sup

0≤t≤T
|Zt|
)

= O
(

∆δ,T (Z)
)

as δ → 0 and T → ∞.

The conditions in Assumption A is very mild and expected to be satisfied by a wide class of

stochastic processes. The first condition is crucial in our asymptotic analysis. However, it

is not stringent and met, for instance, for all processes with compound Poisson type jumps

as long as their sizes are bounded in L1 and their intensity is proportional to T . The second

condition is just made to simplify our exposition. It is not critical and holds trivially for

virtually all stochastic processes used in practical applications. Typically, we have

∆δ,T (Z) = δ1/2−ǫλT (6)

for some ǫ ≥ 0 and a nonrandom sequence (λT ) of T that is bounded away from zero and,

as an example, the condition is clearly satisfied if sup0≤t≤T |Zt| = Op(T ). If T is fixed,

∆δ,T (Z) represents the usual modulus of continuity of the stochastic process Z. On the

other hand, we let T → ∞ in our set-up and therefore it may be regarded as the global

modulus of continuity.

The following lemma allows us to approximate the sample moments in discrete time by

the corresponding sample moments in continuous time. Here and elsewhere in the paper,
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we use ‖ · ‖ to denote the Euclidian norm for a vector or a matrix.

Lemma 3.1. Let Assumption A hold. If we define Z = U,XX ′ or XU and zi = Ziδ for

i = 1, . . . , n, we have

1

n

n
∑

i=1

zi =
1

T

∫ T

0
Ztdt+Op

(

∆δ,T (‖Z‖)
)

for all small δ and large T .

In our subsequent analysis, we impose a set of sufficient conditions to ensure the asymptotic

negligibility of the approximation error ∆δ,T (‖Z‖), for Z = U,XX ′ and XU , so that we

may approximate all relevant sample moments by their continuous analog without affecting

their asymptotics. Once the approximations are made, the rest of our asymptotics rely

entirely on the asymptotics of moments in continuous time. This will be introduced below.

Assumption B. T−1

∫ T

0
U2
t dt →p σ

2 for some σ2 > 0 as T → ∞.

Needless to say, Assumption B holds for a wide variety of asymptotically stationary stochas-

tic processes.

As discussed, we consider two different types of regressions. Below we introduce as-

sumptions for each of these regressions. We denote by D[0, 1] the space of cadlag functions

endowed with the usual Skorohod topology.

Assumption C1. We assume that

(a) T−1
∫ T
0 XtX

′
tdt →p M as T → ∞ for some nonrandom matrix M > 0, and

(b) we have

T−1/2

∫ T

0
XtUtdt →d N(0,Π)

as T → ∞, where Π = limT→∞ T−1
E

(

∫ T
0 XtUtdt

)(

∫ T
0 XtUtdt

)′
> 0, which is assumed to

exist.

Assumption C2. We assume that

(a) for XT defined on [0, 1] with an appropriately defined nonsingular normalizing sequence

(ΛT ) of matrices as

XT
t = Λ−1

T XTt,

we have XT →d X◦ in the product space of D[0, 1] as T → ∞ with linearly independent

limit process X◦, and
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(b) if we define UT on [0, 1] as

UT
t = T−1/2

∫ Tt

0
Usds,

then UT →d U◦ in D[0, 1] as T → ∞, where U◦ is Brownian motion with variance π2 =

limT→∞ T−1
E

(

∫ T
0 Utdt

)2
> 0, which is assumed to exist.

Both Assumptions C1 and C2 are expected to hold for a wide class of stationary and

nonstationary regressions. Assumption C1 is the continuous analog of the standard assump-

tions for stationary regressions in discrete time. Assumption C2(a) is satisfied for general

null recurrent diffusions and jump diffusions, as shown by Jeong and Park (2011), Jeong

and Park (2014) and Kim and Park (2014). Moreover, Assumption C2(b) is the continuous

time version of the usual invariance principle. In parallel with Assumptions C1 and C2,

respectively for the stationary and cointegrating regressions, we introduce Assumptions D1

and D2 below.

Assumption D1. ∆δ,T (U),∆δ,T (‖XX ′‖) → 0 and
√
T∆δ,T (‖XU‖) → 0 as δ → 0 and

T → ∞.

Assumption D2. ∆δ,T (U), ‖ΛT ‖2∆δ,T (‖XX ′‖) → 0 and
√
T‖ΛT ‖∆δ,T (‖XU‖) → 0 as

δ → 0 and T → ∞.

In our asymptotic analysis, we let δ → 0 and T → ∞ jointly, satisfying Assumption D1

or D2. Our asymptotics are joint, not sequential, in δ and T . We allow δ → 0 and T → ∞
jointly, as long as δ and T satisfy an appropriate condition in Assumption D. However, in

all these assumptions, we require δ → 0 sufficiently fast relative to T → ∞. It is therefore

expected that our joint asymptotics yield the same results as the sequential asymptotics

relying on δ → 0 followed by T → ∞.

4 Spuriousness of Regression at High Frequency

In this section, we establish the asymptotics of OLS estimator β̂ and analyze the asymptotic

behaviors of the standard Wald statistic F (β̂) under the null hypothesis.

Theorem 4.1. Assume Rβ = r and let Assumptions A and B hold.
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(a) Under Assumption C1, we have

√
T (β̂ − β) →d N

δF (β̂) →d N ′R′
(

RM−1R′
)−1

RN/σ2,

where N =d N
(

0,M−1ΠM−1
)

, as δ → 0 and T → ∞ satisfying Assumption D1.

(b) Under Assumptions C2, we have

√
TΛ′

T (β̂ − β) →d P

δF (β̂) →d P ′R′
(

RQ−1R′
)−1

RP/σ2

where P =
(

∫ 1
0 X◦

t X
◦′
t dt

)−1
∫ 1
0 X◦

t dU
◦
t and Q =

∫ 1
0 X◦

t X
◦′
t dt, as δ → 0 and T → ∞ satisfy-

ing Assumption D2.

For both stationary and cointegration type regressions, the OLS estimator β̂ is generally

consistent for β under our asymptotics relying on δ → 0 sufficiently fast relative to T → ∞.

It is crucial that we have T → ∞ for the consistency of β̂. If, for instance, T is fixed,

δ → 0 alone is not sufficient for its consistency. On the other hand, for both stationary and

cointegration type regressions, we have

F (β̂) →p ∞

as δ → 0 and T → ∞. This implies that the Wald test would always lead us to reject

the null hypothesis when it is correct, and the asymptotic size would become unity. The

regressions therefore become spurious.

It is easy to see why this happens. Suppose that the law of large numbers and the

central limit theorem hold for U , as we assume in Assumption C1 or C2. Moreover, we

let Assumption A hold for U , and set ∆δ,T (U) →p 0 or more strongly
√
T∆δ,T (U) →p 0 if

needed as δ → 0 and T → ∞. We may easily deduce that

1

n

n
∑

i=1

ui =
1

T

∫ T

0
Utdt+ op(1) →p 0

as n → ∞ (with δ → 0 and T → ∞), and therefore, the law of large numbers holds for (ui).

However, we have

1√
n

n
∑

i=1

ui =
1√
δ

[

1√
T

∫ T

0
Utdt+ op(1)

]

→p ∞
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as n → ∞ (with δ → 0 and T → ∞), and consequently, the central limit theory fails to

hold for (ui). In fact, in our setup, (ui) becomes strongly dependent as δ → 0, since the

correlation between ui and ui−j for any i and j becomes unity as δ → 0. Therefore, it is

well expected that the central limit theory does not hold for (ui).

Our results here are very much analogous to those from the conventional spurious re-

gression, which was first investigated through simulations by Granger and Newbold (1974)

and explored later analytically by Phillips (1986). As is now well known, the regression of

two independent random walks, or more generally, integrated time series with no cointe-

gration, yields spurious results, and the Wald statistic for testing no longrun relationship

diverges to infinity, implying falsely the presence of cointegration. Granger and Newbold

(1974) originally suggest that this is due to the existence of strong serial dependence in the

regression error. On the other hand, we show in the paper that an authentic relationship in

stationary time series or the presence of cointegration among nonstationary time series is

always rejected if the test is based on the Wald statistic relying on observations collected at

high frequencies. Our spurious regression here is therefore in contrast with the conventional

spurious regression. True relationship is rejected and tested to be false in the former, while

false relationship is rejected and tested to be true in the latter. However, our regression

and the conventional spurious regression have the same reason why they yield nonsensical

results: They both have the regression errors that are strongly dependent, and the central

limit theory does not hold for them.

To further analyze the serial dependency in (ui), we consider the AR(1) regression

ui = ρui−1 + εi, (7)

and introduce some additional assumptions

Assumption E. (a) We let U c, the continuous part of U , be a semimartingale given

by U c = A + B, where A and B are respectively the bounded variation and martingale

components of U c satisfying

sup
0≤s,t≤T

|At −As|
|t− s| = Op(aT ) and sup

0≤s,t≤T

∣

∣[B]t − [B]s
∣

∣

|t− s| = Op(bT ),

and aT∆δ,T (U) → 0 and (bT /
√
T )∆δ,T (U) → 0 with δ = ∆2

δ,T (U) as δ → 0 and T → ∞. (b)

Moreover, we assume that
∑

0≤t≤T E(∆Ut)
4 = O(T ) and T−1[U ]T →p τ2 for some τ2 > 0

as T → ∞.

Note that [U ]T = [U c]T +
∑

0≤t≤T (∆Ut)
2 and [U c]T = [B]T .
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Figure 2: Estimated Residual AR Coefficients for Models I-IV
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Notes: Figure 2 plots the estimated autoregressive coefficient in the first order autoregression of the
fitted regression error from Models I-IV against various sampling intervals δ on the horizontal axis,
from six month with δ = 1/2 to one day with δ = 1/250 in yearly unit. Two two panels present the
estimated AR coefficients from Models I and II, and the bottom two those from Models III and IV.

Lemma 4.2. Under Assumption E, we have

ρ̃ = 1− δτ2

σ2
+ op(δ)

as δ → 0 and T → ∞.

It follows immediately from Lemma 4.2 that

ρ̃ →p 1

as δ → 0 (and T → ∞ satisfying Assumption E(a)). Therefore, (ui) becomes strongly

dependent, and the regression becomes spurious as the sampling interval δ approaches to

0. Our regression is completely analogous to the conventional spurious regression, except

that we let δ → 0 in contrast with the conventional spurious regression requiring n → ∞.

Therefore, the results in Theorem 4.1 may well be expected.

Though we let T → ∞, as well as δ → 0, to get more explicit limit of ρ̃ as in Lemma 4.2,

the condition T → ∞ is not essential for the spuriousness in regression (1). This is clear
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from our proof of Lemma 4.2. Of course, it is also possible to formulate and analyze the

classical spurious regression in continuous time. If the underlying regression error process U

is indeed nonstationary and has a stochastic trend, we have T−1
∫ T
0 U2

t dt →p ∞ as T → ∞.

Therefore, we expect that our regression becomes spurious as long as T is large even if δ is

not small. However, we assume T−1
∫ T
0 U2

t dt →p σ2 as T → ∞, and let δ → 0 to analyze

the spuriousness generated by high frequency observations. In our setup, the regression

error (ui) becomes strongly persistent and the regression becomes spurious, simply because

we collect samples too frequently.

The speed at which ρ̃ diverges from the unity as δ increases depends on the ratio τ2/σ2.

The larger the value of the ratio is, ρ̃ more quickly moves away from the unity. Roughly,

τ2 measures the mean local variation, while σ2 represents the mean global variation of

the error process U . Therefore, we may say that at a given value of δ, ρ̃ is more distinct

from the unity if the underlying error process U has more local variation relative to its

global variation. As an immediate consequence, we may well expect that the spuriousness

of regression becomes less severe as the ratio gets larger, since then ρ̃ is more likely further

away from one. Loosely put, if U fluctuate more locally compared with its overall scale, it

is less likely that we have spurious results from our regression.

The actual estimates of the autoregressive coefficients for the fitted residuals fromModels

I-IV are plotted in Figure 2 against various values of the sampling interval. It is clearly

seen that the estimates tend to increase as the sampling interval shrinks. In particular,

except for Model IV, the estimates approach to unity as the decrease in sampling interval.

This is exactly what we expect from Lemma 4.2. Model IV is rather exceptional. For

Model IV, the estimated autoregressive coefficients do not have any monotonous increasing

trend, unlike all other models. We believe that this is due to the irregular and frequent

jump activities existing in stock prices. The existence of such a jump component in the

underlying continuous time stochastic process is not allowed in the paper. Note in particular

that we assume the jump intensity is proportional to time span.

We assume that U is stationary at least asymptotically. As a result, U cannot be a

martingale if it is continuous. For a continuous martingale, we have EU2
t − EU2

0 = E[U ]t,

and therefore, U cannot be stationary if it is not a constant process. Consequently, U

must have either a jump component or a bounded variation component, as well as the

martingale component, to induce the mean reversion and make it stationary. If U is the

stationary Ornstein-Uhlenbeck process given by dUt = −aUt + bdWt with a, b > 0, we have

σ2 = EU2
t = b2/2a and τ2 = b2. Therefore, ρ̃ = 1 − 2aδ. The rate of divergence of ρ̃ from

the unity is determined by the mean reversion parameter a. If a is large, ρ̃ quickly gets

smaller as δ increases and less likely generates spuriousness.
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Needless to say, all our analysis for (ui) applies also to any linear combination of the

vector time series (xiui), (c
′xiui) for an arbitrary nonrandom vector c, say, if we assume

the vector process c′XU satisfies the same conditions as those we impose on U above in

Assumption E.

5 Asymptotics of Modified Tests

Now we investigate the asymptotic behaviors of the modified Wald statistics, G(β̂) and

H(β̂). To analyze the asymptotic longrun variance estimates ω̂2 and Ω̂ in the statistics, we

momentarily assume that (ui) are observed and let ω̃2 and Ω̃ denote the longrun variance

estimates based on (ui), in place of (ûi). Given the consistency of the OLS estimator β̂ we

established in the previous section, it is well expected that ω̂2 and ω̃2, and also Ω̂ and Ω̃,

are asymptotically equivalent. The commonly used longrun variance estimators ω̃2 and Ω̃

may be written as

ω̃2 =
∑

|j|≤m

K

(

j

m

)

γ̃(j) and Ω̃ =
∑

|j|≤m

K

(

j

m

)

Γ̃(j) (8)

where K is the kernel function, γ̃(j) = T−1
∑

i uiui−j and Γ̃(j) = T−1
∑

i xiuix
′
i−jui−j are

the sample autocovariances, and m is the lag truncation parameter or bandwidth parameter

that determines the number of sample autocovariances included in the estimators. As will

be shown below, the asymptotics of G(β̂) and H(β̂) statistics are crucially dependent upon

the choice of lag length m in the estimation of the longrun variance estimators in (8).

The longrun variance estimators ω̃2 and Ω̃ are not consistent estimators for the longrun

variances π2 and Π of U and XU defined in Assumptions C1 and C2. However, for a general

mean zero stationary process V and its discrete samples (vi) with vi = Viδ for i = 1, . . . , n,

we have √
δ√
n

n
∑

i=1

vi ≈
1√
T

∫ T

0
Vtdt

as shown earlier, and therefore, we may expect that

δω̃2 ≈ π2 and δΩ̃ ≈ Π.

In fact, under very mild regularity conditions, Lu and Park (2014) show that δω̃2 and δΩ̃

become consistent for π2 and Π as δ → 0 and T → ∞, if we choosem such thatmδ → ∞ and

m/n → 0. Here we just assume their consistency, instead of introducing all the necessary

low level assumptions, which involve the decaying rate of the autocovariance functions γ̃

14



and Γ̃ and the global modulus of continuity of V = U or XU .

Assumption F. Ifmδ → ∞ and m/n → 0 as δ → 0 and T → ∞, then we have δω̃2 →p π
2

and δΩ̃ →p Π as δ → 0 and T → ∞.

If we let S = mδ, then the conditions mδ → ∞ and m/n → 0 imply that S → ∞ and

S/T → 0.

The following theorem establishes the asymptotic distributions of G(β̂) and H(β̂) statis-

tics. We let q be the number of restrictions, and χ2
q denotes the chi-square distribution with

q degrees of freedom.

Theorem 5.1. Assume Rβ = r and let Assumptions A, B and F hold.

(a) Under Assumption C1, we have

H(β̂) →d χ2
q

as δ → 0 and T → ∞ jointly satisfying Assumption D1.

(b) Under Assumption C2, we have

G(β̂) →d P
′
R′
(

RQ−1R′
)−1

RP

where P =
(

∫ 1
0 X◦

t X
◦′
t dt

)−1
∫ 1
0 X◦

t dU
◦
t with U◦ = πU

◦
and Q =

∫ 1
0 X◦

t X
◦′
t dt using the

notations in Theorem 4.1, as δ → 0 and T → ∞ jointly satisfying Assumption D2.

Both of the statistics H(β̂) and G(β̂) have well defined limit null distributions respec-

tively for general stationary and nonstationary regressions. This is in sharp contrast to the

standard Wald statistic F (β̂) that diverges to infinity. The reason is simple and obvious.

As the sampling interval shrinks, we have stronger dependencies and the H(β̂) and G(β̂)

statistics take care of these dependencies by using the longrun variance estimates instead

of the standard error variance estimates. The H(β̂) statistic has the standard chi-square

limit null distribution for stationary regressions. On the other hand, the limit null distri-

bution of the G(β̂) statistic is generally nonnormal and nonstandard. If, however, the limit

processes X◦ and U◦ are independent, then its limit null distribution reduces to chi-square

distribution.

It should be emphasized that Assumption F, which is crucial to derive the asymptotics

in Theorem 5.1, may not hold if the bandwidth parameter m is not carefully chosen in the

usual discrete time set-up. If, for instance, we let

m = nκ

15



for some 0 < κ < 1, Assumption F does not hold and the tests based on the H(β̂) and G(β̂)

statistics yield spurious results. In this case, we have

mδ = nκδ = T κδ1−κ → 0,

if δ → 0 fast enough so that δ = o(T−κ/(1−κ)). In this case, we have δω̂2 →p 0 and δΩ̂ →p 0,

and consequently, H(β̂) →p ∞ and G(β̂) →p ∞, exactly as for the standard Wald statistic

F (β̂).

The longrun variance estimators like those in (8) are typically implemented in practical

applications with an optimal choice of bandwidth parameter m. We first consider the

estimator ω̃2 for the longrun variance of (ui). The optimal bandwidth parameter m∗, which

balances off the asymptotic variance and the squared asymptotic bias and hence minimizes

the asymptotic mean squared error variance, is given by

m∗
ν =

(

νK2
νC

2
ν

∫

K(x)2dx
n

)1/(2ν+1)

, (9)

where ν is the so-called characteristic exponent, Kν = limx→0(1 − K(x))/|x|ν and Cν =
∑

j |j|νγ(j)/
∑

j γ(j). We have ν = 1 for the Bartlett kernel, and ν = 2 for all other

commonly used kernels such as Parzen, Tukey-Hanning and Quadratic Spectral kernels.

Note that ν,Kν , as well as
∫

K(x)2dx, are determined entirely by the choice of kernel

function K, whereas Cν is given by the covariance structure of the underlying random

sequence (ui). If, in particular, (ui) is AR(1) with the autoregressive coefficient ρ, then we

have

C
2
1 =

4ρ2

(1− ρ)2(1 + ρ)2
, C

2
2 =

4ρ2

(1− ρ)4
(10)

for ν = 1, 2. In fact, Andrews (1991) suggests that we fit AR(1) model to (ûi) and obtain

the OLS estimate ρ̂ of the autoregressive coefficient ρ and use it to estimate Cν , ν = 1, 2,

in (10), and get an estimate of the optimal bandwidth parameter m∗ in (9) from these

estimates of Cν , ν = 1, 2.

We may follow Andrews (1991) by fitting the AR(1) regression as in (7) to obtain ρ̃,

and use it to estimate the constants Cν in (10). In this case, we have

C̃
2
1 =

τ4

δ2σ4
+ op(δ

−2), C̃
2
2 =

4τ8

δ4σ8
+ op(δ

−4),

and in particular C̃
2
ν = Op(δ

−2ν) as δ → 0 and T → ∞ satisfying Assumption E(a). With
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these choices of C̃
2
1 and C̃

2
2 for C

2
1 and C

2
2, the optimal bandwidth m∗ in (9) becomes

m̃∗
1 =

(

τ4K2
1

σ4
∫

K(x)2dx
n

)1/3

δ−2/3
(

1 + op(1)
)

m̃∗
2 =

(

8τ8K2
2

σ8
∫

K(x)2dx
n

)1/5

δ−4/5
(

1 + op(1)
)

,

and therefore,

m̃∗
1δ =

(

τ4K2
1

σ4
∫

K(x)2dx
T

)1/3

(1 + op(1)), m̃∗
2δ =

(

8τ8K2
2

σ8
∫

K(x)2dx
T

)1/5

(1 + op(1))

as δ → 0 and T → ∞ satisfying Assumption E(a). Consequently, we have m̃∗
νδ → ∞ and

m̃∗
ν/n →p 0, for ν = 1, 2, and the conditions in Assumption F are automatically satisfied if

we use the Andrews’ automatic bandwidth selection based on AR(1) regression.

The choice of the optimal bandwidth in estimating the longrun variance Ω of a vector

time series (xiui) can be made similarly as in the scalar case above, once we take a partic-

ular linear combination of (xiui), as in Newey and West (1994). More generally, we may

introduce an arbitrary weight function to define a matrix norm we can use to measure the

bias and variance of the longrun variance matrix of (xiui) as in Andrews (1991). The An-

drews’ automatic bandwidth selection procedure is typically implemented in practice using

the formula (9) is given by

C
2
ν =

∑p
k=1

(

∑

j |j|νγk(j)
)2

∑p
k=1

(

∑

j γk(j)
)2 ,

where γk(j) is the autocovariance function of the k-th component of the p-dimensional

vector time series (xiui), which is assumed to be AR(1) with autoregressive coefficient ρk,

say, for k = 1, . . . , p. It is straightforward to show that Assumption F holds in this case as

well.

6 Concluding Remarks

To be written.
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Figure 3: Estimated Optimal Bandwidth Parameters for Residuals in Models I-IV
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Notes: The optimal bandwidth parameters used in the estimation of the longrun variance Ω of the
bivariate time series (ûi, ûixi)

′ from Models I and II are presented in the top two panels. Similarly,
the bottom two panels present the optimal bandwidth parameters used to estimate the longrun
variance ω2 of the fitted residuals ûi from Models III and IV. The optimal bandwidth parameter
is computed following the automatic selection procedure by Andrews (1991) for various sampling
intervals δ, and plotted against δ on the horizontal axis, from six month with δ = 1/2 to one day
with δ = 1/250 in yearly unit.
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Figure 4: Modified Tests for β in Models I-IV
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Appendices

A Mathematical Proofs

Proof of Lemma 3.1 We may assume without loss of generality that Z is univariate by
looking at each component separately. Note that

1

T

∫ T

0
Ztdt =

1

T

n
∑

i=1

∫ iδ

(i−1)δ
Ztdt

1

n

n
∑

i=1

zi =
1

T

n
∑

i=1

δZ(i−1)δ +
δ

T
(ZT − Z0),

from which it follows that

1

T

∫ T

0
Ztdt−

1

n

n
∑

i=1

zi =
1

T

n
∑

i=1

∫ iδ

(i−1)δ
(Zt − Z(i−1)δ)dt+Op

(

δ

T
sup

0≤t≤T
|Zt|
)

.

However, we have

|Zt − Z(i−1)δ | ≤ |Zc
t − Zc

(i−1)δ |+
∑

(i−1)δ<s≤t

∆Zt

for all i = 1, . . . , n and t such that (i− 1)δ < t ≤ iδ. Consequently, we have

∣

∣

∣

∣

∣

1

n

n
∑

i=1

zi −
1

T

∫ T

0
Ztdt

∣

∣

∣

∣

∣

≤ 1

T

n
∑

i=1

∫ iδ

(i−1)δ
|Zt − Z(i−1)δ |dt+Op

(

δ

T
sup

0≤t≤T
|Zt|
)

and

1

T

n
∑

i=1

∫ iδ

(i−1)δ
|Zt − Z(i−1)δ |dt ≤

1

T

n
∑

i=1

∫ iδ

(i−1)δ



|Zc
t − Zc

(i−1)δ |+
∑

(i−1)δ<s≤t

|∆Zt|



 dt

≤ 1

T

n
∑

i=1

∫ iδ

(i−1)δ



|Zc
t − Zc

(i−1)δ |+
∑

(i−1)δ<s≤iδ

|∆Zt|



 dt

≤
(

sup
|t−s|≤δ

|Zc
t − Zc

s |
)

+
δ

T

∑

0<t≤T

|∆Zt|

= Op

(

∆δ,T (Z)
)

+Op(δ),

and we may deduce the stated result immediately. �

20



Proof of Theorem 4.1 Under Assumptions A and B, we have

1

n

n
∑

i=1

u2i =
1

T

∫ T

0
U2
t dt+ op(1) →p σ

2

as δ → 0 and T → ∞ with ∆δ,T (U) = o(1) as in Assumption D1 or D2.
For the proof of part (a), we write

√
T (β̂ − β) =

(

1

n

n
∑

i=1

xix
′
i

)−1 √
δ√
n

n
∑

i=1

xiui,

and note that, under Assumptions A and C1, we have

1

n

n
∑

i=1

xix
′
i =

1

T

∫ T

0
XtX

′
tdt+ op(1) →p M > 0

√
δ√
n

n
∑

i=1

xiui =
1√
T

∫ T

0
XtUtdt+ op(1) →d N(0,Π)

as δ → 0 and T → ∞ satisfying Assumption D1, and that

σ̂2 =
1

n

n
∑

i=1

u2i −
1

T

(√
δ√
n

n
∑

i=1

uix
′
i

)(

1

n

n
∑

i=1

xix
′
i

)−1(√
δ√
n

n
∑

i=1

xiui

)

=
1

n

n
∑

i=1

u2i +Op(T
−1).

Therefore, the stated results follow immediately.
The proof of part (b) is completely analogous. We write

√
TΛ′

T (β̂ − β) =

(

1

n

n
∑

i=1

Λ−1
T xix

′
iΛ

1′
T

)−1 √
δ√
n

n
∑

i=1

Λ−1
T xiui,

and note that, under Assumptions A and C2, we have

1

n

n
∑

i=1

Λ−1
T xix

′
iΛ

−1′
T =

1

T

∫ T

0
Λ−1
T XtX

′
tΛ

−1′dt+ op(1)

=

∫ 1

0
XT

t X
T ′
t dt+ op(1) →d

∫ 1

0
X◦

t X
◦′

t dt
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and
√
δ√
n

n
∑

i=1

Λ−1
T xiui =

1√
T

∫ T

0
Λ−1
T XtUtdt+ op(1)

=

∫ 1

0
XT

t dU
T
t + op(1) →d

∫ 1

0
X◦

t dU
◦
t

as δ → 0 and T → ∞ satisfying Assumption D2, and that

σ̂2 =
1

n

n
∑

i=1

u2i −
1

T

(√
δ√
n

n
∑

i=1

uix
′
iΛ

−1′
T

)(

1

n

n
∑

i=1

Λ−1
T xix

′
iΛ

1′
T

)−1(√
δ√
n

n
∑

i=1

Λ−1
T xiui

)

=
1

n

n
∑

i=1

u2i +Op(T
−1),

from which the stated results readily follow. �

Proof of Lemma 4.2 Write

ρ̃− 1 =

n
∑

i=1

ui−1(ui − ui−1)

n
∑

i=1

u2i−1

. (11)

As shown earlier, we have n−1
∑n

i=1 u
2
i−1 →p σ

2. Moreover, note that

ui−1 =
1

2
[(ui + ui−1)− (ui − ui−1)] ,

and therefore, we may deduce that

n
∑

i=1

ui−1(ui − ui−1) =
1

2

[

n
∑

i=1

(u2i − u2i−1)−
n
∑

i=1

(ui − ui−1)
2

]

=
1

2

(

u2n − u20
)

− 1

2

n
∑

i=1

(ui − ui−1)
2,

which will be further analyzed subsequently.
We have

(Uiδ − U(i−1)δ)
2 = 2

∫ iδ

(i−1)δ
(Ut− − U(i−1)δ)dU

c
t +

(

[U c]iδ − [U c](i−1)δ

)

+
∑

(i−1)δ<t≤iδ

∆(Ut − U(i−1)δ)
2, (12)
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and

∆(Ut − U(i−1)δ)
2 = (Ut − U(i−1)δ)

2 − (Ut− − U(i−1)δ)
2

= (Ut − Ut−)(Ut + Ut− − 2U(i−1)δ)

= (Ut − Ut−)
[

(Ut − Ut−) + 2(Ut− − U(i−1)δ)
]

= 2(Ut− − U(i−1)δ)∆Ut + (∆Ut)
2 (13)

for i = 1, . . . , n. Therefore, it follows from (12) and (13) that

n
∑

i=1

(Uiδ− − U(i−1)δ)
2 = [U ]T + 2ZT , (14)

where Z = Zc + Zd with

Zc
T =

n
∑

i=1

∫ iδ

(i−1)δ
(Ut− − U(i−1)δ)dU

c
t

Zd
T =

n
∑

i=1

∑

(i−1)δ<t≤iδ

(Ut− − U(i−1)δ)∆Ut.

Note that

[U ]T =

n
∑

i=1

(

[U c]iδ − [U c](i−1)δ

)

+
∑

0<t≤T

(∆Ut)
2

for any n and δ such that T = nδ. In what follows, we use

Ut− − U(i−1)δ = (U c
t − U c

(i−1)δ) +
∑

(i−1)δ<s<t

∆Us, (15)

which holds for t, (i− 1)δ < t ≤ iδ, and all i = 1, . . . , n.
To consider Zc, we write

Zc = Za + Zb, (16)

where

Za
T =

n
∑

i=1

∫ iδ

(i−1)δ
(Ut− − U(i−1)δ)dAt

=

n
∑

i=1

∫ iδ

(i−1)δ
(U c

t − U c
(i−1)δ)dAt +

n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

∆Us



 dAt
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and

Zb
T =

n
∑

i=1

∫ iδ

(i−1)δ
(Ut− − U(i−1)δ)dBt

=

n
∑

i=1

∫ iδ

(i−1)δ
(U c

t − U c
(i−1)δ)dBt +

n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

∆Us



 dBt,

which we analyze subsequently. For Za, we have

∣

∣

∣

∣

∣

n
∑

i=1

∫ iδ

(i−1)δ
(U c

t − U c
(i−1)δ)dAt

∣

∣

∣

∣

∣

≤
n
∑

i=1

∫ iδ

(i−1)δ
|U c

t − U c
(i−1)δ ||dAt|

≤ aT

n
∑

i=1

∫ iδ

(i−1)δ
|U c

t − U c
(i−1)δ |dt

≤ aT∆δ,T (U)

n
∑

i=1

∫ iδ

(i−1)δ
dt = Op

(

aTT∆δ,T (U)
)

and
∣

∣

∣

∣

∣

∣

n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

∆Us



 dAt

∣

∣

∣

∣

∣

∣

≤
n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

|∆Us|



 |dAt|

≤ aT

n
∑

i=1





∑

(i−1)δ<t≤iδ

|∆Ut|





∫ iδ

(i−1)δ
dt

= aT δ
∑

0<t≤T

|∆Ut| = Op(aTTδ),

from which it follows that

Za
T = Op(aTT∆δ,T (U)) +Op(aTTδ) = Op(aTT∆δ,T (U)), (17)

since δ = O(∆δ,T (U)).
For Zb, it suffices to look at its quadratic Variation, since it can be embedded into a

continuous martingale. However, we have

n
∑

i=1

∫ iδ

(i−1)δ
(U c

t − U c
(i−1)δ)

2d[B]t ≤ bT

n
∑

i=1

∫ iδ

(i−1)δ
(U c

t − U c
(i−1)δ)

2dt

≤ bT∆
2
δ,T (U)

n
∑

i=1

∫ iδ

(i−1)δ
dt = Op

(

bTT∆
2
δ,T (U)

)

.
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Furthermore, it follows that

n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

∆Us





2

d[B]t ≤ bT

n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

∆Us





2

dt,

and that

E





n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

∆Us





2

dt



 =
n
∑

i=1

∫ iδ

(i−1)δ
E





∑

(i−1)δ<s<t

∆Us





2

dt

=

n
∑

i=1

∫ iδ

(i−1)δ





∑

(i−1)δ<s<t

E(∆Us)
2



 dt

≤
n
∑

i=1

∑

(i−1)δ<t≤iδ

E(∆Ut)
2

∫ iδ

(i−1)δ
dt

= δ
∑

0<t≤T

E(∆Ut)
2 = O(δT ).

Therefore, we may deduce that

Zb
T = Op

(

√

bTT∆δ,T (U)
)

+Op

(

√

bTTδ
)

= Op

(

√

bTT∆δ,T (U)
)

, (18)

since
√
δ = O(∆δ,T (U)). The order of Zc may now be easily obtained as

Zc
T = Op (aTT∆δ,T (U)) +Op

(

√

bTT∆δ,T (U)
)

= T
[

Op (aT∆δ,T (U)) +Op

(

√

bT /T∆δ,T (U)
)]

(19)

from (17) and (18).
To analyze Zd, we let

Zd
T =

n
∑

i=1

∑

(i−1)δ<t≤iδ

(Ut− − U(i−1)δ)∆Ut

=

n
∑

i=1

∑

(i−1)δ<t≤iδ

(U c
t − U c

(i−1)δ)∆Ut +

n
∑

i=1

∑

(i−1)δ<t≤iδ





∑

(i−1)δ<s<t

∆Us



∆Ut
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We have

E





n
∑

i=1

∑

(i−1)δ<t≤iδ

(U c
t − U c

(i−1)δ)∆Ut





2

=

n
∑

i=1

∑

(i−1)δ<t≤iδ

E(U c
t − U c

(i−1)δ)
2
E(∆Ut)

2

≤
[

max
1≤i≤n

sup
(i−1)δ<t≤iδ

E(U c
t − U c

(i−1)δ)
2

]

n
∑

i=1

∑

(i−1)δ<t≤iδ

E(∆Ut)
2

=

[

max
1≤i≤n

sup
(i−1)δ<t≤iδ

E(U c
t − U c

(i−1)δ)
2

]

∑

0<t≤T

E(∆Ut)
2 = O

(

T∆2
δ,T (U)

)

. (20)

Moreover, we may easily deduce that

E





n
∑

i=1

∑

(i−1)δ<t≤iδ





∑

(i−1)δ<s<t

∆Us



∆Ut





2

=

n
∑

i=1

∑

(i−1)δ<t≤iδ

E





∑

(i−1)δ<s<t

∆Us





2

E(∆Ut)
2

=

n
∑

i=1

∑

(i−1)δ<t≤iδ





∑

(i−1)δ<s<t

E(∆Us)
2



E(∆Ut)
2

≤
n
∑

i=1

∑

(i−1)δ<s,t≤iδ

E(∆Us)
2
E(∆Ut)

2

≤
n
∑

i=1

∑

(i−1)δ<s,t≤iδ

E(∆Ut)
4 =

∑

0<t≤T

E(∆Ut)
4 = O(T ). (21)

Therefore, it follows from (20) and (21) that

Zd
T = Op

(√
T∆δ,T (U)

)

+Op(
√
T ) = Op(

√
T ) = op(T ) (22)

as δ → 0 and T → ∞.
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Now we have, due in particular to (19) and (22),

1

n

n
∑

i=1

ui−1(ui − ui−1) =
1

2n
(u2n − u20)−

1

2n

n
∑

i=1

(ui − ui−1)
2

= δ

[

1

2T
(U2

T − U2
0 )−

1

2T

n
∑

i=1

(Uiδ − U(i−1)δ)
2

]

= −δ

(

1

2T
[U ]T + op(1)

)

= −δτ2

2
+ op(δ)

as δ → 0 and T → ∞. Consequently, the stated result follows immediately from (11), and
the proof is complete. �

Proof of Theorem 5.1 Given Theorem 4.1, it is straightforward to show that

δω̂2 = δω̃2 + op(1) and δΩ̂ = δΩ̃ + op(1),

and therefore, we have δω̂2 →p π
2 and δΩ̂ →p Π, due to Assumption F. Once this is estab-

lished, the rest of the proof is entirely analogous to the proof of Theorem 4.1. Therefore,
we do not provide the details to save the space. �

B Additional Figures

In this section, we present some additional figures. In Figure 5, we plot the regressands and
regressors for each of our Models I-IV. On the other hand, Figure ?? presents the values
of the G-statistics at different frequencies for Models I and II. As discussed, the underlying
stochastic processes generating regressands and regressors for Models I and II appear to be
at the boundary of the stationary and nonstationary regions.
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Figure 5: Data Plots
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Notes: Each graph in Figure 5 presents the sample paths of the regressand yi displayed in red
line and the regressor xi in blue line used for empirical illustrations of Models I-IV. Top left panel
presents sample paths of 20-Year T-Bond rate and 3-Month T-Bill rate as yi and xi for Model I.
Similarly, 3-Month Eurodollar rate and 3-Month T-Bill rate are presented in top right panel for
Model II; log US/UK forward exchange rate and log US/UK spot exchange rate in bottom left panel
for Model III, and log SP500 Index future and log SP500 Index in bottom right panel.
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Figure 6: G-Tests for β in Models I and II
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Notes: The modified t-tests for β = 1 based on the nonparametric estimator ω̂2 of longrun variance
ω2 of the fitted error (ûi) from Models I and II are presented respectively in the left and right panels.
They are computed from the samples of varying frequency, from daily observations with the sampling
interval δ = 1/250 to semi-annual observations with δ = 1/2 in yearly unit, and displayed as blue
line across different levels of frequency parameter δ on the horizontal axis. For easy comparison,
the conventional t-test is also presented in each graph as red line along with the black dotted line
signifying the two-sided 5% standard normal critical value 1.96.

Figure 7: t-Tests for α in Models I-IV
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Notes: Presented in the top two panels are the absolute values of t-tests for α = 0 in Models I and II,
and in the bottom two panels those from Models III and IV. They are computed from the samples
of varying frequency, from daily observations with the sampling interval δ = 1/250 to semi-annual
observations with δ = 1/2 in yearly unit. Each graph plots the absolute test values across different
levels of frequency parameter δ on the horizontal axis. The black dotted horizontal line signifies the
two-sided 5% standard normal critical value 1.96.
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Figure 8: G-Tests for α in Models I and II
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Notes: The modified t-tests for α = 0 based on the nonparametric estimator ω̂2 of longrun variance
ω2 of the fitted error (ûi) from Models I and II are presented respectively in the left and right panels.
They are computed from the samples of varying frequency, from daily observations with the sampling
interval δ = 1/250 to semi-annual observations with δ = 1/2 in yearly unit, and displayed as blue
line across different levels of frequency parameter δ on the horizontal axis. For easy comparison,
the conventional t-test is also presented in each graph as red line along with the black dotted line
signifying the two-sided 5% standard normal critical value 1.96.
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Figure 9: Modified Tests for α in Models I-IV
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Notes: Presented in the top two panels are the absolute values of the modified t-tests for α = 0
based on the nonparametric estimator Ω̂ of longrun variance Ω of the bivariate process (ûi, xiûi)

′

from Models I and II. Similarly, presented in the bottom two panels are the modified t-tests based
on the nonparametric estimator ω̂2 of longrun variance ω2 of the fitted error (ûi) from Models III
and IV. They are computed from the samples of varying frequency, from daily observations with
the sampling interval δ = 1/250 to semi-annual observations with δ = 1/2 in yearly unit, and
displayed as blue line across different levels of frequency parameter δ on the horizontal axis. For
easy comparison, the conventional t-test is also presented in each graph as red line along with the
black dotted line signifying the two-sided 5% standard normal critical value 1.96.
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