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1 Introduction

Risk and risk premia of returns change over time, and investors can exploit their time vari-

ation by means of conditionally e¢ cient (CE) portfolio strategies, which yield the maximum

conditional Sharpe ratio. These strategies can be understood as an extension of the classic

mean-variance framework of Markowitz (1952) that considers return predictability. Hansen and

Richard (1987) developed the corresponding theoretical framework, and Ferson and Siegel (2001)

used that framework to guide portfolio choice.

Importantly, all CE returns are constructed by scaling a common optimal combination of

risky assets. The time variation of this scale does not a¤ect the conditional performance of CE

returns, but it is critical for their unconditional performance. This paper analyzes �ve relevant

types of CE returns, or equivalently �ve di¤erent choices of this time-varying scale. We focus on

how return predictability drives their di¤erences in terms of unconditional Sharpe ratios (Sharpe,

1994) and Sortino ratios (Sortino and Forsey, 1996), and their coe¢ cients of asymmetry and

kurtosis.

We use the residual Sharpe ratio1 of Peñaranda (2016) to decompose the unconditional

Sharpe ratio of a portfolio return as its residual ratio penalized by the coe¢ cient of determination

in the forecasting regression of the return. We also use the residual ratio to decompose the

unconditional Sortino ratio of a portfolio return as its residual ratio penalized by a covariance

term. In particular, the covariance between the return conditional variance and the conditional

semivariance of the standardized forecast error. We use these decompositions to understand the

performance di¤erences between types of CE returns.

The �rst two types of CE returns that we study are specially relevant for practitioners

who construct portfolios with a constant target for the conditional variance or mean of their

portfolio return. We denote them CE1 and CE2 returns, respectively. The next two types that

we study yield the maximum residual and unconditional Sharpe ratios. We denote them CE3

and CE4 returns, respectively. The �nal CE returns that we study, denoted CE5, maximize the

unconditional Sortino ratio among CE returns.

These �ve types of returns yield the same maximum conditional Sharpe ratio, but they may

have very di¤erent unconditional Sharpe and Sortino ratios. We �nd that the performance ratios

depend on di¤erent properties of a single variable, the maximum conditional Sharpe ratio. In

fact, a constant maximum conditional Sharpe ratio is the condition that makes these CE subsets

1Unlike traditional Sharpe ratios, residual ratios penalize the average conditional variance of the portfolio
return instead of its total variance. The average conditional variance can be interpreted as the residual variance
in the forecasting regression of the portfolio return.
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equivalent.2 Importantly, this condition does not mean lack of predictability, because there is

time-variation in both risk premia and risk that can be compatible with this condition. This

condition does not mean that predictability is irrelevant either, because the Sharpe ratio of these

strategies can still be higher than the maximum one obtained from �xed weight (FW) strategies.

The �ve types of returns also have the same conditional coe¢ cients of asymmetry and kur-

tosis, but they may di¤er considerably in their unconditional counterparts. We decompose the

unconditional coe¢ cients into di¤erent sources of asymmetry and kurtosis that are driven by

the maximum conditional Sharpe ratio.

We �nd strong di¤erences between the �ve types of strategies across several combinations

of mean and variance predictability, even though there is a single risky asset in our examples.

CE1 returns, which keep a constant variance target, yield higher performance ratios than FW

returns, but obviously lower than CE3, CE4 or CE5 returns. The asymmetry of CE1 returns is

similar to FW returns, but they remove the kurtosis that is derived from time variation in the

conditional variance of the risky asset return. In fact, CE1 returns are usually the CE return

with the lowest kurtosis. Interestingly, keeping a constant mean target yields very di¤erent

results. In our examples, the performance ratios of CE2 returns may be much worse than FW

returns, or may not even exist.

By de�nition, CE3 and CE4 returns are optimal with respect to the residual and Sharpe

ratios, respectively. In our examples CE3 and CE4 returns are not too di¤erent in terms of

these ratios, but they are more di¤erent in terms of the Sortino ratio, which is higher for CE3

returns. Moreover, these two returns can be very di¤erent in terms of asymmetry and kurtosis,

with CE3 returns generating more positive skewness and excess kurtosis. However, CE5 returns

may have the most extreme behavior. They yield the highest Sortino ratio among CE returns

by de�nition, but sometimes jointly with extreme values of the coe¢ cients of asymmetry and

kurtosis, and very low residual and Sharpe ratios.

The rest of the paper is organized as follows. Section 2 reviews conditionally e¢ cient returns,

and develops our decompositions of unconditional Sharpe and Sortino ratios. Section 3 shows

our propositions on the performance properties of �ve subsets of conditionally e¢ cient returns,

while Section 4 studies their asymmetry and kurtosis. Section 5 illustrates and quanti�es our

results by means of a single risky return, and Section 6 concludes. Proofs and auxiliary results

are relegated to appendices.

2The equivalence of CE5 returns also requires a second condition related to the conditional distribution of the
forecast errors of CE returns, as stated in point 2 of Corollary 1.
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2 Predictability and Performance

The investment set has a safe asset with gross return R0;t+1 known at t, and some risky

assets with excess return vector rt+1. The payo¤ from t to t+1 of a unit cost portfolio, or gross

return, is

Rp;t+1 = R0;t+1 + rp;t+1; rp;t+1 = w
0
trt+1;

where rp;t+1 denotes the portfolio excess return, and the vector wt denotes the wealth fraction

that is invested in each risky asset. In our notation, an object with subindex t is some function

of the information at t. For instance, the conditional �rst and second moments of the excess

returns are denoted

�t = Et (rt+1) ; �t = V art (rt+1) :

We assume that �t has at least one nonzero entry and �t is nonsingular with probability one

to simplify the exposition and avoid trivial settings.

The conditional Sharpe ratio of an excess return rp;t+1 is de�ned by

Spt =
Et (rp;t+1)

V ar
1=2
t (rp;t+1)

=
w0t�t
w0t�twt

:

When investors are concerned about asymmetric returns, they may prefer to measure risk with

the semivariance instead of the variance, and measure performance with the Sortino ratio instead

of the Sharpe ratio. The semivariance, or lower partial moment of order 2, penalizes only returns

below a reference point or threshold. If we use the safe asset return as the return threshold,3

or equivalently a zero threshold for excess returns, then we can de�ne the conditional Sortino

ratio as

Spt =
Et (rp;t+1)

E
1=2
t

h
r2p;t+1I (rp;t+1 � 0)

i ;
where I (A) is the indicator function that returns 1 if A is true and 0 otherwise.

2.1 Conditionally E¢ cient Returns

Conditionally e¢ cient (CE) returns are the counterpart of the textbook mean-variance

e¢ cient returns when investors exploit return predictability. These returns achieve the maximum

conditional Sharpe ratio with the portfolio weights

wct = !t't; 't = �
�1
t �t; (1)

3Pedersen and Satchell (2002) study the theoretical foundations of this measure, and advocate the use of the
safe asset return as the threshold.
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for some chosen scale !t that depends on information., while 't represents the optimal combi-

nation of risky assets. Equivalently, the CE excess returns can be expressed as

rc;t+1 = !tr
�
t+1; r�t+1 = '

0
trt+1;

where r�t+1 represents the excess return from the optimal combination of risky assets. The

conditional mean and variance of r�t+1 are equal, and denoted

S2t = Et
�
r�t+1

�
= V art

�
r�t+1

�
= �0t�

�1
t �t: (2)

Our assumptions on �t and �t imply that S2t is di¤erent from zero with probability one.

In the following, we will focus on scales !t > 0. The choice !t = 0 is equivalent to holding

the safe asset, and it is also e¢ cient, but its Sharpe ratio is not de�ned. As we change the scale

!t to obtain di¤erent CE returns, the conditional mean and variance that we achieve are

Et (rc;t+1) = !tS2t ; V art (rc;t+1) = !
2
tS2t ;

but we always obtain the same conditional Sharpe ratio, which is the positive square root of (2)

Sct =
Et (rc;t+1)

V ar
1=2
t (rc;t+1)

=
Et
�
r�t+1

�
V ar

1=2
t

�
r�t+1

� = St:
Equivalently, (2) denotes the square of the maximum conditional Sharpe ratio. For instance, if

the conditional correlations across returns are zero, then S2t =
Pn
i=1 �

2
ti=�

2
ti and St = +

�Pn
i=1 �

2
ti=�

2
ti

�1=2.
If there is only one risky return, then S2t = �2t =�2t and St = j�tj =�t.

CE returns are also equivalent with respect to other measures of conditional performance.

All CE returns yield the same conditional Sortino ratio4 , the ratio provided by the optimal

combination of risky assets

Sct =
Et (rc;t+1)

E
1=2
t

h
r2c;t+1I (rc;t+1 � 0)

i = Et
�
r�t+1

�
E
1=2
t

�
r�2t+1I

�
r�t+1 � 0

�� :
2.2 Unconditional Sharpe Ratio Decomposition

We can always decompose an excess return as

rp;t+1 = Et (rp;t+1) + ep;t+1 = Et (rp;t+1) + V ar
1=2
t (rp;t+1)up;t+1; (3)

where ep;t+1 is the forecast error with zero conditional mean, and up;t+1 is the standardized

forecast error with unit conditional variance. Similarly, we can decompose the deviation of the

excess return with respect to its unconditional mean as

rp;t+1 � E (rp;t+1) = dpt + ep;t+1; (4)

4Unlike the conditional Sharpe ratio of CE returns, this conditional Sortino ratio does not need to be the
maximum one that can be achieved from the vector rt+1. Of course, if this vector is conditionally Gaussian, then
CE returns are also optimal with respect to this measure.
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where

dpt = Et (rp;t+1)� E (rp;t+1)

is the deviation of the conditional mean with respect to its average. Using this notation, we can

decompose the return unconditional variance as

V ar (rp;t+1) = E (rp;t+1 � E (rp;t+1))2

= E
�
e2p;t+1

�
+ E

�
d2pt
�
= E (V art (rp;t+1)) + V ar (Et (rp;t+1)) :

In Section 4 we provide similar decompositions for higher order moments, where additional

cross-moments appear.

The performance of a portfolio strategy is often evaluated by a Sharpe ratio computed from

the historical mean and variance of its excess return, that is, from unconditional moments. The

unconditional Sharpe ratio of an excess return rp;t+1 is the square root of

S2p =
E2 (rp;t+1)

V ar (rp;t+1)
=

E2 (Et (rp;t+1))

E (V art (rp;t+1)) + V ar (Et (rp;t+1))

=
E2 (w0t�t)

E (w0t�twt) + V ar (w
0
t�t)

:

Unconditional Sharpe ratios penalize the two sources of return variance, the mean of the con-

ditional variance and the variance of the conditional mean. The former captures the variance

of the forecast error, while the latter captures the time variation in the forecast. In Section 4

we provide similar decompositions for higher order moments, where additional cross-moments

appear.

We can decompose the squared unconditional Sharpe ratio as

S2p = S2p
�
1�R2p

�
; (5)

where

S2p =
E2 (rp;t+1)

E (V art (rp;t+1))
;

R2p =
V ar (Et (rp;t+1))

V ar (rp;t+1)
=

V ar (Et (rp;t+1))

E (V art (rp;t+1)) + V ar (Et (rp;t+1))
:

The ratio S2p is the square of the residual Sharpe ratio, de�ned in Peñaranda (2016) as a Sharpe

ratio that measures risk with E (V art (rp;t+1)) instead of V ar (rp;t+1). The second component is

the coe¢ cient of determination of rp;t+1, a measure of predictability that considers the fraction

of the time-variation in rp;t+1 that is due to the time-variation in the forecast Et (rp;t+1).

All CE returns have the same squared conditional Sharpe ratio, but they may di¤er in their

unconditional Sharpe ratio. The two components of the unconditional Sharpe ratio of CE returns
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are

S2! =
E2
�
!tS2t

�
E
�
!2tS2t

� ; R2! =
V ar

�
!tS2t

�
E
�
!2tS2t

�
+ V ar

�
!tS2t

� ;
and hence the unconditional Sharpe ratios of CE returns are equal to

S2! = S2!
�
1�R2!

�
=

E2
�
!tS2t

�
E
�
!2tS2t

�
+ V ar

�
!tS2t

� :
Therefore, only two variables are relevant for this performance measure, the scale !t and the

squared maximum conditional Sharpe ratio S2t . The former is chosen by the investor, while the

latter is given by the mean-variance properties of the vector rt+1.

2.3 Unconditional Sortino Ratio Decomposition

Following the decomposition of an excess return in (3), we can express the conditional

semivariance of rp;t+1 as

Et
�
r2p;t+1I (rp;t+1 � 0)

�
= V art (rp;t+1)Gpt;

where

Gpt = Et

h
(Spt + up;t+1)

2 I (up;t+1 � �Spt)
i
;

is the conditional semivariance of the standardized forecast error up;t+1 with a threshold of �Spt.

This semivariance depends only on Spt and the conditional distribution5 of up;t+1. Importantly,

given that distribution, Gpt decreases6 with Spt. It grows without bound as Spt ! �1, and

converges to zero as Spt ! +1. If rp;t+1 is conditionally symmetric, then Gpt = 0:5 at Spt = 0.

We can always express the conditional Sortino ratio as the conditional Sharpe ratio divided

by G1=2pt

Spt =
Spt

G
1=2
pt

:

Let us apply this expression to CE returns. All these returns have the same standardized forecast

error, given by the optimal combination of risky assets

rc;t+1 � Et (rc;t+1)
V ar

1=2
t (rc;t+1)

=
r�t+1 � Et

�
r�t+1

�
V ar

1=2
t

�
r�t+1

� = u�t+1;

5As an example, if rp;t+1 is conditionally Gaussian, and � (�) and � (�) denote the CDF and density of the
standard normal, then

Gpt =
�
1 + S2pt

�
� (�Spt)� Spt� (�Spt) :

6The corresponding derivative is

@Gpt
@Spt

= 2Et [(Spt + up;t+1) I (up;t+1 � �Spt)] < 0:
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and the same conditional Sharpe ratio St, and hence they share the same conditional semivari-

ance of the standardized forecast error

Gt = Et
h�
St + u�t+1

�2
I
�
u�t+1 � �St

�i
;

and their common conditional Sortino ratio is7

S2ct =
S2t
Gt
:

However, di¤erent CE returns may have di¤erent unconditional Sortino ratios. These ratios

are de�ned by the square root of

S2p =
E2 (rp;t+1)

E
h
r2p;t+1I (rp;t+1 � 0)

i
for a zero threshold. Following our decomposition of the conditional semivariance, we can also

decompose the unconditional semivariance in two terms

E
�
r2p;t+1I (rp;t+1 � 0)

�
= E [V art (rp;t+1)Gpt]

= E (V art (rp;t+1))E (Gpt) + Cov (V art (rp;t+1) ; Gpt) ;

and denote

Cp =
Cov (V art (rp;t+1) ; Gpt)

E [V art (rp;t+1)Gpt]

the relative importance of the covariance term in the total semivariance.

Using this notation, we can decompose an unconditional Sortino ratio as follows

S2p =
S2p

E (Gpt)
(1� Cp) : (6)

The square of a Sortino ratio is like a squared residual ratio scaled by the average Gpt and

penalized by Cp. Because of this last term, a return such that V art (rp;t+1) has a negative

correlation with Gpt, or similarly a positive correlation with Spt, will tend to have a higher

Sortino ratio.

The two components of the unconditional Sortino ratio of CE returns are

S2!
E (Gt)

=
E2
�
!tS2t

�
E
�
!2tS2t

�
E (Gt)

; C! =
Cov

�
!2tS2t ;Gt

�
E
�
!2tS2t Gt

� ;

and hence the unconditional Sortino ratios of CE returns are equal to

S2! =
S2!

E (Gt)
(1� C!) =

E2
�
!tS2t

�
E
�
!2tS2t Gt

� :
7The conditional variance V art (rp;t+1) cannot be zero for a risky return because we assume that �t is

nonsingular with probability one. Similarly, we assume that the distribution of the vector rt+1 is such that
Et
�
r2p;t+1I (rp;t+1 � 0)

�
, and hence Gt, is di¤erent from zero with probability one.
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Therefore, only three variables are relevant for this performance measure, the scale !t, the

squared maximum conditional Sharpe ratio S2t , and the conditional semivariance Gt. The �rst

variable is chosen by the investor, while the second and third variables are given by the prop-

erties of the vector rt+1. Below we show how di¤erent choices of the scale !t yield di¤erent

unconditional performances.

3 Performance of Conditionally E¢ cient Returns

This section studies �ve relevant choices of the scale !t in the CE portfolio weights (1) that

de�ne �ve di¤erent subsets of CE returns, or equivalently �ve portfolio strategies that achieve

the maximum conditional Sharpe ratio St. In this section we will focus on their di¤erences

in terms of unconditional Sharpe and Sortino ratios, and also provide the conditions for their

equivalence.

3.1 Constant Risk Target

Many investors choose to target a �xed risk level for their investment. If we measure risk in

terms of return variance, such investors are interested in CE returns with constant conditional

variance target �21,

w0t�twt = �
2
1:

We denote CE1 this subset of CE returns. Given the portfolio weights of CE returns in (1),

with conditional variance !2tS2t , those investors should choose

!1t =
�1
St
: (7)

CE1 returns decrease their position in the optimal combination of risky assets r�t+1 as St in-

creases. Their conditional mean and variance are

Et
�
!1tr

�
t+1

�
= �1St; V art

�
!1tr

�
t+1

�
= �21;

and hence the conditional Sharpe ratio of CE1 returns is St, like any other CE return. However,

CE1 returns di¤er from the rest of CE returns in other dimensions as the following proposition

states.

Proposition 1 Properties of the CE1 returns de�ned by portfolio weights (1) with (7):

1. They maximize Et (rp;t+1) for a constant target V art (rp;t+1), that is, they solve

max
wt

w0t�t subject to w
0
t�twt = �

2
1: (8)

8



2. Their unconditional Sharpe ratio has the following components

S21 = E2 (St) ; R21 =
V ar (St)

1 + V ar (St)
; (9)

and hence

S21 = S21
�
1�R21

�
=

E2 (St)
1 + V ar (St)

: (10)

3. Their unconditional Sortino ratio has the following components

S21 = E2 (St) ; C1 = 0;

and hence

S21 =
S21

E (Gt)
(1� C1) =

E2 (St)
E (Gt)

: (11)

Point 2 shows that both S21 and S21 increase in E (St), but S21 also decreases with V ar (St).

The latter e¤ect is due to R21, the predictability in the CE1 return, increasing with V ar (St).

Point 3 shows that the CE1 returns have a zero covariance component in their Sortino ratio,

which is simply their residual ratio divided by E1=2 (Gt).

3.2 Constant Mean Target

Some investors may strive to achieve a steady performance across di¤erent periods. This can

be represented by CE returns with constant mean target �2,

w0t�t = �2:

We denote CE2 this subset of CE returns. Given the portfolio weights of CE returns in (1),

with conditional mean !tS2t , these investors should choose

!2t =
�2
S2t
: (12)

Like CE1 returns, CE2 returns decrease their position in the optimal combination of risky assets

r�t+1 as St increases. Their conditional mean and variance are

Et
�
!2tr

�
t+1

�
= �2; V art

�
!2tr

�
t+1

�
=
�22
S2t
;

and hence the conditional Sharpe ratio of CE2 returns is St, like any other CE return. However,

CE2 returns di¤er from other CE returns in other dimensions as the following proposition states.

Proposition 2 Properties of the CE2 returns de�ned by portfolio weights (1) with (12):

1. They minimize V art (rp;t+1) for a constant target Et (rp;t+1), that is, they solve

min
wt
w0t�twt subject to w

0
t�t = �2: (13)
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2. Their unconditional Sharpe ratio has the following components

S22 =
1

E
�
S�2t

� ; R22 = 0; (14)

and hence
S22 = S22

�
1�R22

�
=

1

E
�
S�2t

� : (15)

3. Their unconditional Sortino ratio has the following components

S22 =
1

E
�
S�2t

� ; C2 =
Cov

�
S�2t ;Gt

�
E
�
S�2t Gt

� ;

and hence

S22 =
S22

E (Gt)
(1� C2) =

1

E
�
S�2t Gt

� : (16)

Point 2 shows that S22 = S22 decreases in E
�
S�2t

�
. No other moment of St is relevant for

these ratios. Of course, this proposition implicitly assumes that E
�
S�2t

�
exists but, even if

E (St) and E
�
S2t
�
exist, this may not be the case. CE1 and CE2 returns satisfy di¤erent

constraints, a constant conditional variance vs. a constant conditional mean, and hence there

is not a natural ranking in their performance measures. If lnSt � N
�
a; b2

�
for instance, then

S21 = exp
�
2a+ b2

�
> S22 = exp

�
2a� 2b2

�
whenever St is not constant. However, the forecast

time-variations in these returns are such that R21 > R
2
2 = 0, and this could revert the ranking

in terms of unconditional Sharpe ratios.

Point 3 shows that the CE2 returns should have a positive covariance term in their semivari-

ance because both S�2t and Gt decrease with St. They should not perform well with respect to

the Sortino ratio, which is con�rmed by our numerical examples below.

3.3 Maximum Residual Sharpe Ratio

Investors can also target a constant risk-return trade-o¤, and hence be interested in CE

returns such that
w0t�t
w0t�twt

=
1

�3
;

where we may think of �3 as a constant risk tolerance. We denote CE3 this subset of CE returns.

Given the portfolio weights of CE returns in (1), with conditional mean !tS2t and conditional

variance !2tS2t , those investors should choose

!3t = �3: (17)

Unlike CE1 and CE2 returns, CE3 returns do not decrease their position in the optimal combi-

nation of risky assets r�t+1 as St increases. Their conditional mean and variance are

Et
�
!3tr

�
t+1

�
= �3S2t ; V art

�
!3tr

�
t+1

�
= �23S2t ;
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and hence the conditional Sharpe ratio of CE3 returns is St, like any other CE return. However,

CE3 returns di¤er from other CE returns in other dimensions as the following proposition states.

Proposition 3 Properties of the CE3 returns de�ned by portfolio weights (1) with (17):

1. They maximize a constant risk-return trade-o¤ between V art (rp;t+1) and Et (rp;t+1)

max
wt

w0t�t �
1

2�3
w0t�twt; (18)

and they yield the maximum S2p.

2. Their unconditional Sharpe ratio has the following components

S23 = E
�
S2t
�
; R23 =

V ar
�
S2t
�

E
�
S2t
�
+ V ar

�
S2t
� ; (19)

and hence

S23 = S23
�
1�R23

�
=

E2
�
S2t
�

E
�
S2t
�
+ V ar

�
S2t
� : (20)

3. Their unconditional Sortino ratio has the following components

S23 = E
�
S2t
�
; C3 =

Cov
�
S2t ;Gt

�
E
�
S2t Gt

� ;

and hence

S23 =
S23

E (Gt)
(1� C3) =

E2
�
S2t
�

E
�
S2t Gt

� : (21)

Point 2 shows that both S23 and S23 increase in E
�
S2t
�
, but S23 also decreases with V ar

�
S2t
�
.

The latter e¤ect is due to R23, the forecast time-variation in the CE3 return. Following the

proposition, S2p = E
�
S2t
�
is the maximum value of a squared residual Sharpe ratio. This

property was found by Peñaranda (2016), who called these returns residually e¢ cient. From

Proposition 3 and 1, we can easily see that S23 � S21, and from Proposition 3 and 2, we can easily

see that S23 � S22. On the other hand, we can also see from those propositions that S21 and S22 are

the maximum residual Sharpe ratios that can be achieved for a constant risk and a constant risk

premium, respectively. Importantly, there could be cases where R23 was high enough to make

S23 lower than the unconditional Sharpe ratios of CE1 and CE2 returns.

Point 3 of Proposition 3 shows that the CE3 returns should have a negative covariance term

in their semivariance because S2t and Gt move in opposite directions. This e¤ect, jointly with the

fact that CE3 returns yield the maximum residual ratio, suggest that these returns should also

perform better than CE1 and CE2 returns in terms of Sortino ratios. Our numerical examples

below con�rm this point.
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3.4 Maximum Unconditional Sharpe Ratio

The fourth subset of CE returns that we study has a constant ratio of conditional mean to

second moment
w0t�t

w0t�twt + (w
0
t�t)

2 =
w0t�t
w0t�twt

=
1

�4
;

where �t denotes the uncentred conditional second moment of rt+1

�t = Et
�
rt+1r

0
t+1

�
= �t + �t�

0
t:

We denote CE4 this subset of CE returns. Given the portfolio weights of CE returns in (1), with

conditional mean !tS2t and conditional second moment !2tS2t + !2tS4t , this subset of CE returns

requires

!4t =
�4

1 + S2t
: (22)

Like CE1 and CE2 returns, but unlike CE3 returns, CE4 returns decrease their position in the

optimal combination of risky assets r�t+1 as St increases.

Let us de�ne the ratio

Ut =
E2t
�
r�t+1

�
Et
�
r�2t+1

� = S2t
1 + S2t

; (23)

where we divide by the uncentred second moment instead of the variance. This ratio is also

common across CE returns
E2t (rc;t+1)

Et (rc;t+1)
= Ut:

The conditional mean and variance of CE4 returns are

Et
�
!4tr

�
t+1

�
= �4Ut; V art

�
!4tr

�
t+1

�
= �24Ut (1� Ut) ;

and hence the conditional Sharpe ratio of CE4 returns is St, like any other CE return. However,

CE4 returns di¤er from other CE returns in other dimensions as the following proposition states.

Proposition 4 Properties of the CE4 returns de�ned by portfolio weights (1) with (22):

1. They maximize a constant risk-return trade-o¤ between Et
�
r2p;t+1

�
and Et (rp;t+1)

max
wt

w0t�t �
1

2�4
w0t�twt; (24)

and they yield the maximum S2p .

2. Their unconditional Sharpe ratio has the following components

S24 =
E2 (Ut)

E (Ut (1� Ut))
; R24 =

V ar (Ut)
E (Ut) (1� E (Ut))

; (25)

and hence

S24 = S24
�
1�R24

�
=

E (Ut)
1� E (Ut)

: (26)
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3. Their unconditional Sortino ratio has the following components

S24 =
E2 (Ut)

E (Ut (1� Ut))
; C4 =

Cov (Ut (1� Ut) ;Gt)
E (Ut (1� Ut)Gt)

;

and hence

S24 =
S24

E (Gt)
(1� C4) =

E2 (Ut)
E (Ut (1� Ut)Gt)

: (27)

Point 2 shows that S24 increases in E (Ut), and no other information of St is relevant. However,

this does not need to be the case with S24. Following the proposition, S2p = E (Ut) = (1� E (Ut))

is the maximum value of a squared unconditional Sharpe ratio. Jagannathan (1996) obtained

a similar expression for the unconditional Sharpe ratio of unconditionally e¢ cient returns when

the safe asset return is constant over time. These returns were later studied by Ferson and

Siegel (2001). However, if the safe asset return changes over time, then unconditionally e¢ cient

returns are not equivalent to CE4 returns. Peñaranda (2016) clari�ed this point, and denoted

performance e¢ cient this fourth type of CE returns.

We can also see from Proposition 2 that S2 is the maximum unconditional Sharpe ratio that

can be achieved for a constant mean target. In fact, we can be explicit about the inequality

S24 � S22 because we can relate these ratios by means of S�2t = U�2t � 1. Then it is easy to see

that

S24 =
E (Ut)

1� E (Ut)
> S22 =

1

E
�
U�2t

�
� 1

whenever St is not constant.

Point 2 of Proposition 4 shows that, like CE3 returns, the CE4 returns should have a negative

covariance term in their semivariance because Ut (1� Ut) and Gt move in opposite directions.

3.5 Maximum Unconditional Sortino Ratio

CE returns have conditional mean !tS2t and conditional semivariance !2tS2t Gt, where Gt is

the conditional semivariance of the standardized forecast error of CE returns. The �nal subset of

CE returns that we study, which we denote CE5, has the following constant risk-return trade-o¤

!5tS2t
!25tS2t Gt

=
1

�5
;

and therefore

!5t =
�5
Gt
: (28)

The conditional semivariance Gt decreases with St and hence, unlike the previous types of CE

returns, CE5 returns increase their position in the optimal combination of risky assets r�t+1 as

St increases.
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Let us de�ne the ratio

Vt =
E2t
�
r�t+1

�
V art

�
r�t+1

�
Gt
=
S2t
Gt
;

which is the squared conditional Sortino ratio of r�t+1. This ratio is also common across CE

returns
E2t (rc;t+1)

V art (rc;t+1)Gt
= Vt:

The conditional mean and variance of CE5 returns are

Et
�
!5tr

�
t+1

�
= �5Vt; V art

�
!5tr

�
t+1

�
= �25

Vt
Gt
;

and hence the conditional Sharpe ratio of CE5 returns is St, like any other CE return. However,

CE5 returns di¤er from other CE returns in other dimensions as the following proposition states.

Proposition 5 Properties of the CE5 returns de�ned by portfolio weights (1) with (28):

1. They maximize a constant risk-return trade-o¤ between V art (rc;t+1)Gpt and Et (rc;t+1)
among CE returns

max
!t

!tS2t �
1

2�5
!2tS2t Gt; (29)

and they yield the maximum S2!.

2. Their unconditional Sharpe ratio has the following components

S25 =
E2 (Vt)
E (Vt=Gt)

; R25 =
V ar (Vt)

E (Vt=Gt) + V ar (Vt)
; (30)

and hence

S25 = S25
�
1�R25

�
=

E2 (Vt)
E (Vt=Gt) + V ar (Vt)

: (31)

3. Their unconditional Sortino ratio has the following components

S25 =
E2 (Vt)
E (Vt=Gt)

; C5 =
Cov (Vt=Gt;Gt)

E (Vt)
;

and hence

S25 =
S25

E (Gt)
(1� C5) = E (Vt) : (32)

Like in the previous propositions, the properties of CE5 returns are driven by the maximum

conditional Sharpe ratio St. However, unlike the previous propositions, point 1 of Proposition

5 describes an optimality property of CE5 returns among CE returns, not all returns. The

reason is that the optimality in the �rst point of the previous propositions was based on mean

and variance properties, while the semivariance also involves the conditional distribution of the

standardized forecast error. This distribution is the same across CE returns, as they share the

same error u�t+1, but not necessarily across all returns.
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Point 2 shows that both S25 and S25 increase in E (Vt) and decrease with E (Vt=Gt), but S25
also decreases with V ar (Vt). The latter e¤ect is due to R25, the forecast time-variation in the

CE5 return.

Section 2.3 pointed out that returns such that V art (rp;t+1) has a negative correlation with

Gpt, or similarly a positive correlation with St, will tend to have a higher Sortino ratio. For CE5

returns, the conditional variance is a ratio with S2t in the numerator and G2t in the denominator,

and hence there are two sources of negative correlation with Gt. However, CE3 returns have a

conditional variance that is driven only by S2t , and hence there is only one source of negative

correlation.

Following the proposition, S2c = E (Vt) is the maximum value of a squared Sortino ratio

among CE returns. For instance, from Proposition 3 and 5, we can easily see that S25 � S23. Of

course, we can also see that S25 � S23 because CE3 returns yield the maximum residual Sharpe

ratio.

3.6 Equivalence Conditions

The following table summarizes the previous results.

(Table 1: Properties of �ve types of CE returns)

The �ve subsets of CE returns that we have studied are di¤erent in general. For instance,

as we computed above, a CE3 return yields a conditional mean �3S2t and a conditional variance

�23S2t . Therefore, a CE3 return cannot yield a constant conditional mean or a constant conditional

variance unless St is constant. In general though, CE3 returns do not even satisfy the target

constraint of the CE1 and CE2 returns that we de�ned.

We can study each pair of the �ve strategies to obtain equivalence conditions. For instance,

we can �nd a scale of CE1 returns (7) equal to a particular scale of CE2 returns (12) if and only

if St is constant. It turns out that we �nd a similar condition when we compare any other pair

of those strategies, as the following corollary of Propositions 1-5 shows.

Corollary 1 Equivalence of CE returns:

1. CE1, CE2, CE3, and CE4 returns are equivalent if and only if the maximum conditional
Sharpe ratio St is constant. In this case, their common R2 is zero, and their common
unconditional Sharpe ratio is equal to the constant St. Their common Sortino ratio is
equal to St=E1=2 (Gt).

2. CE5 returns are equivalent to the other four types of CE returns if and only if St and Gt
are constant. In this case, CE5 returns have the properties commented in point 1, and the
common Sortino ratio is equal to the constant St=G1=2t .

15



CE5 returns require an additional condition because Gt is the conditional semivariance of u�t+1
for a threshold �St, which may still show time-variation when St is constant if the conditional

distribution of u�t+1 changes over time.

A constant St does not mean lack of predictability because there is time-variation in both

risk premia �t and risk �t that can be compatible with this condition. A constant St does not

mean that predictability is irrelevant either, because the Sharpe ratio of these strategies can still

be higher than the maximum one obtained from �xed weight (FW) strategies, whose square is

S20 = E (rt+1)
0 [V ar (rt+1)]

�1E (rt+1) = E (�t)
0 [E (�t) + V ar (�t)]

�1E (�t) : (33)

Let us illustrate this point with a single risky return with conditional mean �t and conditional

variance �2t . In this case, a constant St
St = k;

is equivalent to the conditional mean and the volatility of the risky return being proportional

�t = k�t:

Let us denote CV the coe¢ cient of variation of �t, which is equal to the coe¢ cient of variation

of �t in this setting,

CV =
V ar1=2 (�t)

E (�t)
=
V ar1=2 (�t)

E (�t)
:

In this context, following point 1 of Corollary 1, the CE returns in Propositions 1-4 yield

S2i = k2; R2i = 0;

S2i = S2i
�
1�R2i

�
= k2; i = 1; 2; 3; 4:

However, FW strategies (which are also CE with a single risky return) provide

S20 =
E2 (�t)

E
�
�2t
� = k2

1 + CV 2
;

R20 =
V ar (�t)

E
�
�2t
�
+ V ar (�t)

=
k2V ar (�t)

E2 (�t) + (1 + k2)V ar (�t)
;

S20 = S20
�
1�R20

�
=

E2 (�t)

E
�
�2t
�
+ V ar (�t)

=
k2E2 (�t)

E2 (�t) + (1 + k2)V ar (�t)
:

Note that the CE returns above are unpredictable in the sense of R2i = 0, while that does

not need to be the case for the original return because R20 � 0. In this situation, unconditional

and residual Sharpe ratios are equal for these CE returns, S2i = S2i , but not necessarily for FW

returns, S20 � S20 .
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The residual Sharpe ratio of CE1 to CE4 returns is higher than the ratio of the FW returns

whenever V ar (�t) > 0, and hence also V ar (�t) > 0, i.e., whenever there is predictability in the

risky return. Moreover, the gap between both Sharpe ratios is given by CV

k2

S20
= 1 + CV 2:

The higher this coe¢ cient of variation, which we can associate to higher predictability in the

risky return (R20 increases), the higher the gap between the performances. In any case, as k
2

grows without bound, both S2i = k2 and S20 grow without bound.

Regarding unconditional Sharpe ratios, we can express the relationship between S2i = k
2 and

S20 as
S�20 � k�2
1 + k�2

= CV 2:

Once again, S20 is lower than k
2 whenever V ar (�t) > 0, and the gap between both Sharpe ratios

is given by CV . As CV increases while we �x k2, S20 decreases and R20 increases, and both e¤ects

decrease S20 . On the other hand, S
2
0 converges to CV

�2 as k2 grows without bound. This is due

to the fact that, while R2i = 0, R
2
0 converges to one.

4 Higher Order Moments

We have seen that all CE returns are equivalent in terms of conditional Sharpe and Sortino

ratios. This equivalence also holds in terms of conditional skewness and kurtosis, which are

de�ned as

Apt =
Et (rp;t+1 � Et (rp;t+1))3

V ar
3=2
t (rp;t+1)

;

and

Kpt =
Et (rp;t+1 � Et (rp;t+1))4

V ar2t (rp;t+1)
� 3;

respectively.

Given that CE returns can be represented by rc;t+1 = !tr�t+1 for di¤erent choices of !t with a

common optimal combination of risky assets r�t+1, they all share the same conditional coe¢ cients

Act =
Et (rc;t+1 � Et (rc;t+1))3

V ar
3=2
t (rc;t+1)

=
Et
�
r�t+1 � Et

�
r�t+1

��3
V ar

3=2
t

�
r�t+1

� = At;

Kct =
Et (rc;t+1 � Et (rc;t+1))4

V ar2t (rc;t+1)
� 3 =

Et
�
r�t+1 � Et

�
r�t+1

��4
V ar2t

�
r�t+1

� � 3 = Kt;

which are given by the higher order conditional properties of r�t+1. However, di¤erent CE

returns may di¤er considerably in their unconditional asymmetry and kurtosis, as we show in
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this section. In fact, they can show high unconditional coe¢ cients even if that is not the case

conditionally.8

4.1 Asymmetry

The unconditional coe¢ cient of asymmetry of an excess return rp;t+1 is

Ap =
E (rp;t+1 � E (rp;t+1))3

V ar3=2 (rp;t+1)
:

Following the decomposition of an excess return in (3) and (4), the third moment in the previous

numerator is equal to

E (rp;t+1 � E (rp;t+1))3 = E
�
e3p;t+1

�
+ E

�
d3pt
�
+ 3E

�
e2p;t+1dpt

�
(34)

= E
h
Et [rp;t+1 � Et (rp;t+1)]3

i
+ E [Et (rp;t+1)� E (rp;t+1)]3

+3Cov (V art (rp;t+1) ; Et (rp;t+1)) :

The �rst component is the average of the conditional third moment of rp;t+1, the second compo-

nent is the third moment of Et (rp;t+1), and the third component is three times the covariance

between the conditional �rst and second moments of rp;t+1. Even if rp;t+1 is conditionally sym-

metric, and hence the �rst component is zero, the other two components may yield asymmetry

in the unconditional distribution of rp;t+1.

The third order moment of CE returns is

E (rc;t+1 � E (rc;t+1))3 = E
�
!3tS3tAt

�
+ E

�
!tS2t � E

�
!tS2t

��3
+ 3Cov

�
!2tS2t ; !tS2t

�
:

We expect the last two components to be nonnegative because !t > 0 for risky CE returns,

and hence their contribution to asymmetry should be nonnegative. The following corollary of

Propositions 1-5 characterizes the asymmetry of the �ve types of CE returns that we study:

Corollary 2 The unconditional coe¢ cients of asymmetry of the �ve strategies de�ned in (7),

8CE returns do not need to be optimal under general patterns of conditional asymmetry and kurtosis. The
justi�cation of mean-variance preferences under the expected utility paradigm was linked to elliptical distribu-
tions by Chamberlain (1983) and Owen and Rabinovitch (1983) in the Markowitz set-up without conditioning
information. Therefore, once we consider return predictability, we can justify the optimality of CE returns when
the vector rt+1 is conditionally elliptical. This family of distributions nests the normal distribution, and allows
for conditional excess kurtosis, but not conditional asymmetry.
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(12), (17), (22) ,and (28) are given by

A1 [1 + V ar (St)]3=2 = E (At) + E [St � E (St)]3 ;

A2E
3=2
�
S�2t

�
= E

�
S�3t At

�
;

A3
�
E
�
S2t
�
+ V ar

�
S2t
��3=2

= E
�
S3tAt

�
+ E

�
S2t � E

�
S2t
��3

+3V ar
�
S2t
�
;

A4 [E (Ut) (1� E (Ut))]3=2 = E
h
U3=2t (1� Ut)3=2At

i
+ E [Ut � E (Ut)]3

+3Cov (Ut (1� Ut) ;Ut) ;

A5 [E (Vt=Gt) + V ar (Vt)]3=2 = E
h
(Vt=Gt)3=2At

i
+ E [Vt � E (Vt)]3

+3Cov (Vt=Gt;Vt) ;

respectively.

CE1 returns do not have a covariance component in their coe¢ cient of asymmetry, the

asymmetry in St and the average At are the only sources of asymmetry. CE2 returns would

not show asymmetry if there was no conditional asymmetry. However, CE3, CE4, and CE5

returns have two di¤erent sources of asymmetry on top of the conditional asymmetry term:

the asymmetry in S2t , Ut, and Vt, respectively, and a covariance component given by V ar
�
S2t
�
,

Cov (Ut (1� Ut) ;Ut), and Cov (Vt=Gt;Vt), respectively. We expect CE3, CE4, and specially

CE5 returns to have a positive contribution to skewness from these two sources that cannot

be matched by CE1 and CE2. In all cases, apart from At itself, the asymmetry is driven by

moments of the maximum conditional Sharpe ratio St, or its functions Ut and Vt.

4.2 Kurtosis

The unconditional coe¢ cient of (excess) kurtosis of an excess return rp;t+1 is

Kp =
E (rp;t+1 � E (rp;t+1))4

V ar2 (rp;t+1)
� 3:

Following the decomposition of an excess return in (3) and (4), the fourth moment in the previous

numerator is equal to

E (rp;t+1 � E (rp;t+1))3 = E
�
e4p;t+1

�
+ E

�
d4pt
�
+ 6E

�
e3p;t+1dpt

�
+ 4E

�
e2p;t+1d

2
pt

�
(35)

= E
h
Et [rp;t+1 � Et (rp;t+1)]4

i
+ E [Et (rp;t+1)� E (rp;t+1)]4

+6Cov
�
Et [rp;t+1 � Et (rp;t+1)]3 ; Et (rp;t+1)

�
+ 4E

h
V art (rp;t+1) [Et (rp;t+1)� E (rp;t+1)]2

i
:
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The �rst component is the average of the conditional fourth moment of rp;t+1, the second

component is the fourth moment of Et (rp;t+1), the third component is six times the covariance

between the conditional third and �rst moments of rp;t+1, and the fourth component is four

times the cross-moment between V art (rp;t+1) and the squared deviations of Et (rp;t+1) with

respect to its mean. If the return is conditionally symmetric and mesokurtic (e.g., the return is

conditionally Gaussian), then the �rst term simpli�es to 3E
�
V ar2t (rp;t+1)

�
and the third term

becomes zero, but there are still two more potential sources of unconditional kurtosis.

The fourth order moment of CE returns is

E (rc;t+1 � Et (rc;t+1))4 = E
�
!4tS4t (Kt + 3)

�
+ E

�
!tS2t � E

�
!tS2t

��4
+6Cov

�
!3tS3tAt; !tS2t

�
+ 4E

h
!2tS2t

�
!tS2t � E

�
!tS2t

��2i
:

The following corollary of Propositions 1-5 characterizes the kurtosis of the �ve types of CE

returns that we study:

Corollary 3 The unconditional coe¢ cients of kurtosis of the �ve strategies de�ned in (7), (12),
(17), (22) ,and (28) are given by

(K1 + 3) [1 + V ar (St)]2 = E (Kt + 3) + E [St � E (St)]4

+6Cov (At;St) + 4V ar (St) ;

(K2 + 3)E
2
�
S�2t

�
= E

�
S�4t (Kt + 3)

�
;

(K3 + 3)
�
E
�
S2t
�
+ V ar

�
S2t
��2

= E
�
S4t (Kt + 3)

�
+ E

�
S2t � E

�
S2t
��4

+6Cov
�
S3tAt;S2t

�
+ 4E

h
S2t
�
S2t � E

�
S2t
��2i

;

(K4 + 3) [E (Ut) (1� E (Ut))]2 = E
h
U2t (1� Ut)

2 (Kt + 3)
i
+ E [Ut � E (Ut)]4

+6Cov
�
U3=2t (1� Ut)3=2At;Ut

�
+ 4E

h
Ut (1� Ut) [Ut � E (Ut)]2

i
;

(K5 + 3) [E (Vt=Gt) + V ar (Vt)]2 = E
h
(Vt=Gt)2 (Kt + 3)

i
+ E [Vt � E (Vt)]4

+6Cov
�
(Vt=Gt)3=2At;Vt

�
+ 4E

h
(Vt=Gt) [Vt � E (Vt)]2

i
;

respectively.

The �rst kurtosis component, the one driven by conditional kurtosis, is given by the cross-

moment of Kt + 3 and the square of 1, S�2t , S2t , Ut (1� Ut) and Vt=Gt for CE1, CE2, CE3, CE4

and CE5 returns, respectively. CE2 returns do not have additional sources of kurtosis. The

second kurtosis component is given by the fourth moment of St, S2t , Ut and Vt for CE1, CE3,

CE4 and CE5 returns, respectively. The third kurtosis component is given by the covariances
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of a scaled At and St, S2t , Ut and Vt for CE1, CE3, CE4 and CE5 returns, respectively. The

fourth kurtosis component is given by V ar (St) for CE1 returns, the cross-moment of S2t and�
S2t � E

�
S2t
��2 for CE3 returns, the cross-moment of Ut (1� Ut) and [Ut � E (Ut)]2 for CE4

returns, and the cross-moment of Vt=Gt and [Vt � E (Vt)]2 for CE5 returns. In all cases, apart

from Kt and At and themselves, the kurtosis is driven by moments of the maximum conditional

Sharpe ratio St, or its functions Ut and Vt.

5 Examples with a Single Risky Return

This section illustrates the properties of CE returns by means of some examples with a

single risky excess return rt+1. Following the decomposition (3), we can always decompose this

excess return as

rt+1 = �t + et+1 = �t + �tut+1;

where �t is the conditional mean given information at t, and et+1 = �tut+1 is the forecast error,

with �2t being the conditional variance, and ut+1 having zero mean and unit variance.

The next sections study the performance of CE returns for di¤erent combinations of dynamics

models for �t and �t. We simulate 500; 000 excess returns in each design. We calibrate the DGP

of rt+1 to well known properties of the monthly excess return on the US stock market. The

unconditional Sharpe ratio is �xed to 0:14, or equivalently an annualized value of 0:5. In each

design, the skewness and excess kurtosis of rt+1 are set close to �0:5 and 2, respectively. We

accommodate the skewness and kurtosis that is not explained by the dynamic properties of the

DGP by generating ut+1 from a mixture of normal distributions. The autocorrelation in rt+1 is

set to zero by means of the appropriate negative correlation between the mean and return socks.

The optimal combination of risky assets is simply r�t+1 = rt+1�t=�
2
t in this setting, and the

maximum conditional Sharpe ratio is equal to the conditional Sharpe ratio of the risky return,

whose square is S2t = �2t =�2t . The optimal weights in (1) evaluated at a particular !t are equal

to !t�t=�
2
t , and they become

w1t =
�1`t
�t
; w2t =

�2
�t
; w3t =

�3�t
�2t

;

w4t =
�4�t
�2t + �

2
t

; w5t =
�5�t
�2tGt

;

for each one of the �ve CE returns that we study, where `t is a variable that only takes values

�1 depending on the sign of �t, and �2tGt is the conditional semivariance of rt+1.

We compare these strategies between them, and with a FW strategy

w0t = �0

which is also CE when there is only a single risky return.
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5.1 Time-varying mean

In this section we focus on the mean predictability of rt+1, keeping the conditional variance

constant. We �rst consider that �t follows a Gaussian AR(1). Table 2 reports the corresponding

results when the autocorrelation of the mean process is 0:8, and the coe¢ cient of determination

in the forecasting regression is 0:05. This coe¢ cient value is relatively high for monthly returns,

but helps to clarify the di¤erences across portfolio strategies. The results for lower values of the

coe¢ cient of determination show similar patterns, albeit weaker because of the weaker mean

predictability. These results are available upon request from the authors.

The performance measures are reported for FW and four types of CE returns. CE2 returns

are not reported because their moments are not well de�ned in this design. These returns scale

rt+1 by 1=�t and the latter has no well de�ned moments when the mean is normal. For instance,

the Sharpe ratio of CE2 returns should be the square root of the inverse of E
�
S�2t

�
= �2E

�
��2t

�
when the conditional variance is constant, but this moment does not exist in this design.

(Table 2: Performance for a normal mean and constant variance)

The residual, Sharpe, and Sortino ratios of CE1, CE3, CE4, and CE5 returns are provided

in Propositions 1, 3, 4, and 5, respectively. The only di¤erence between CE1 and FW returns in

this design is that CE1 returns switch from +rt+1 to �rt+1 depending on the sign of �t. Still,

they increase considerably the residual ratio. Of course, the highest residual ratio is achieved by

CE3 returns (the bold ratios report the maximum values), but CE4 returns yield a close value.

CE5 returns lay in between those two returns and CE1 returns.

The decomposition (5) shows that the Sharpe ratio of a portfolio strategy can be understood

as penalizing the residual ratio by the mean predictability of the strategy. We can see that CE1

returns show half the coe¢ cient of determination of FW returns, but the rest of CE returns

su¤er from a higher coe¢ cient. Still, the superiority of their residual ratios is such that their

Sharpe ratios are much higher than for FW returns. Of course, CE4 returns have a similar

residual ratio to CE3 returns but a lower R2, which translates into the highest Sharpe ratio, but

not far from CE3 returns. CE5 returns lay in between those two returns and CE1 returns.

The decomposition (6) shows that the Sortino ratio of a portfolio strategy can be understood

as penalizing the residual ratio by a covariance term. In particular, the covariance between the

return conditional variance and a decreasing function of St. In this design, the conditional

variance of rt+1 is constant, and hence FW returns have a zero covariance term. CE1 returns

have a zero covariance term by construction because they are de�ned by a constant variance

target. Therefore, the ordering of their Sortino ratios is the same as their residual ratios, being
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much higher for CE1 returns.

Still, the Sortino ratio of CE1 returns is lower than the rest of CE returns. CE3, CE4, and

CE5 yield a negative covariance term because their conditional variances are positively correlated

to St. As expected, this term is specially negative for CE5 returns, which compensates their

lower residual ratio, and �nally they yield the maximum Sortino ratio. It is also expected that

the covariance term is more negative for CE3 returns than CE4 returns, and hence CE3 returns

yield the second highest value of the Sortino ratio.

Equation (34) decomposes the third moment of a return into three components. The �rst

one E
�
e3p;t+1

�
is the average conditional third moment, and in this design it is the only source

of asymmetry for rt+1, or equivalently FW returns. CE1 returns have a nonzero but negligible

second source of asymmetry E
�
d3pt
�
, the asymmetry in the conditional mean of the portfolio

return.

However, the asymmetry of the conditional mean is positive for the rest of CE returns,

specially CE3 and CE5 returns, as expected from Corollary 2. These two returns have an

even stronger third source of positive asymmetry 3E
�
e2p;t+1dpt

�
, the covariance between their

conditional variance and mean, as both are positively related to St. This e¤ect is similar to the

negative covariance term of the Sortino ratio commented above. These two positive sources of

asymmetry more than o¤set the more negative conditional asymmetry of these returns, and we

�nd a strongly positive total asymmetry, unlike with CE1 and FW returns. Like the ranking of

Sortino ratios, CE5 show the highest skewness, followed by CE3 returns.

Equation (35) decomposes the fourth moment of a return into four components. The �rst

one E
�
e4p;t+1

�
is the average conditional fourth moment, and it is the main source of excess

kurtosis for rt+1, or equivalently FW returns. These returns have a negligible second and

third components, E
�
d4pt
�
and 6E

�
e3p;t+1dpt

�
, related to the kurtosis of its conditional mean

(�t is normal in this design) and the covariance between this mean and the return conditional

asymmetry, respectively. However, the fourth source of kurtosis 4E
�
e2p;t+1d

2
pt

�
, the cross-moment

between the return conditional variance and the squared deviations of the conditional mean with

respect to its average, has a nonnegligible positive contribution. CE1 returns have a higher �rst

source of kurtosis, but a lower fourth source. The net e¤ect is a slightly higher excess kurtosis

than FW returns. This will not be the case once we introduce variance predictability in other

designs.

Once again, the rest of CE returns, and specially CE3 and CE5 returns, have stronger extra

sources of kurtosis, which follows from Corollary 3. CE5 returns have strongly positive second

and fourth sources, and a strongly negative third source. The net e¤ect, jointly with a highly
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positive �rst source, is a high excess kurtosis. CE3 returns show similar signs in their four

sources, but less extreme values, and they yield the next value of kurtosis.

We also consider a dynamic model where ln�t follows a Gaussian AR(1), in which case CE2

returns have well de�ned performance measures. Table 3 reports the corresponding performance

results when the autocorrelation of the mean process is 0:8, and the coe¢ cient of determination

in the forecasting regression is 0:03. We lower this coe¢ cient with respect to Table 2 because

CE3 returns become more extreme in designs with a log-normal mean. These returns scale rt+1

by �t=�
2
t , which is log-normally distributed and hence can show high skewness and kurtosis if

ln
�
�t=�

2
t

�
has a relatively high variance. Moreover, the performance of CE5 returns is even

more sensitive to that variance because they actually scale CE3 returns by 1=Gt, which increases

with �t=�t. For that reason, we do not report CE5 returns when the mean is log-normal. But

the reader should keep in mind that, with respect to CE3 returns, their residual and Sharpe

ratios will be lower, while their Sortino ratio and their coe¢ cients of asymmetry and kurtosis

will be higher.9

(Table 3: Performance for a log-normal mean and constant variance)

CE1 and FW returns coincide in this constant variance design because �t cannot be negative.

The properties of CE2 returns were stated in Proposition 2. Their Sharpe ratio is equal to their

residual ratio because, by de�nition, their R2 is zero. Importantly, CE2 returns seem much worse

than FW returns in terms of these ratios. They also seem much worse in terms of the Sortino

ratio because, in addition to a low residual ratio, they are penalized by a positive covariance

term, due to both S�2t and Gt decreasing with St.

Regarding the ratios of CE3 and CE4 returns, we �nd similar patterns to Table 2. A

noteworthy feature is that, even though the R2 of rt+1 is lower in Table 3, the R2 of CE3

returns is much higher in this table. Similarly, the covariance term of the Sortino ratio is much

more negative. This feature is another dimension of the commented sensitivity of CE3 returns

in this design, which is con�rmed by the coe¢ cients of asymmetry and kurtosis. We �nd high

coe¢ cient values in this design, and their main component is the asymmetry and kurtosis of

their conditional mean, which is driven by the log-normal S2t .

The asymmetry of CE2 returns is much more negative than FW returns in this design, and

they also show much more excess kurtosis.10 This is true even though there is only one nonzero

component in the coe¢ cients of CE2 returns. The conditional mean of these returns is constant
9For instance, in this particular design, their residual and Sharpe ratios are as low as 0:012 and 0:002, respec-

tively. However, their Sortino ratio becomes 2:333.
10There is a small positive contribution of the positive asymmetry of �t to the asymmetry of rt+1, or FW

returns, which is not the case in the normal mean design of Table 2. Similarly, the contribution of the kurtosis of
�t to the kurtosis of rt+1 is slightly more relevant than in Table 2.
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by construction, and therefore only the average conditional asymmetry and kurtosis drive the

corresponding coe¢ cients.

5.2 Time-varying variance

In this section we focus on the variance predictability of rt+1, keeping the conditional mean

constant. In particular, ln�2t follows a Gaussian AR(1). Table 4 reports the corresponding

results when the autocorrelation of ln�2t is 0:9, and the coe¢ cient of variation of �
2
t is 1, which is

relatively high for monthly returns, but helps to clarify the di¤erences across portfolio strategies.

Once again, the results for lower values of the coe¢ cient of variation show similar patterns, albeit

weaker because the variance predictability becomes weaker. These results are also available upon

request from the authors.

(Table 4: Performance for constant mean and a log-normal variance)

In this table, both CE2 and CE5 appear simultaneously, although CE2 are actually equivalent

to FW returns in this design. Another di¤erence with respect to the previous tables is that the

R2 of FW returns is zero because there is no mean predictability. At the same time, there is a

positive covariance term in the Sortino ratio of FW returns due to the variance predictability.

CE1 returns improve the residual, Sharpe, and Sortino ratios with respect to FW returns.

The penalization in their Sharpe ratio for their mean predictability is negligible, while the

covariance penalization in their Sortino ratio is exactly zero because their conditional variance

is constant by construction.

The patterns in the performance ratios of CE3, CE4, and CE5 are similar to Table 2. In fact,

CE3 and CE4 returns are very similar in terms of these ratios in this design. However, these

returns seem less similar in terms of skewness and kurtosis. In particular, CE5 returns yield

a much higher positive skewness and excess kurtosis. Once again, CE3 returns lay in between

CE5 and CE4 returns in terms of higher order moments, but being much closer to the latter.

The excess kurtosis results have some special features with respect to Table 2. The fourth

source of kurtosis 4E
�
e2p;t+1d

2
pt

�
is zero for FW returns, while it is slightly positive for CE1

returns. In any case, the main point is that their average conditional kurtosis is so low that

their excess kurtosis is around zero. CE1 returns scale rt+1 by 1=�t, and hence remove the

kurtosis that a time-varying volatility generates.

5.3 Time-varying mean and variance

In this section we model jointly the mean and variance predictability of rt+1. We �rst

consider that �t and ln�
2
t follow a Gaussian AR(1). Once again, we set the autocorrelation of
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the mean process to 0:8, and the autocorrelation of ln�2t to 0:9. We lower the R
2 of rt+1 to 0:01

with respect to Table 2, and the coe¢ cient of variation of �2t to 0:8 with respect to Table 4,

because now we have two sources of predictability. Table 5 displays the corresponding results.

Panel A reports the results for a correlation of �0:1 between mean and log-variance shocks, while

Panel B reports the results for a correlation of 0:1. Panel A represents slightly better mean-

variance opportunities than independent mean and variance shocks, and Panel B represents

slightly worse opportunities. A design with a zero correlation, and hence independence between

the mean and variance predictability, yields results in between Panel A and Panel B. Similarly,

a design with a more negative correlation strengths the patterns in Panel A, while a design

with a more positive correlation weakens the patterns in Panel B. CE2 returns are not reported

because their moments are not well de�ned for a normal mean.

(Table 5: Performance for a normal mean and a log-normal variance)

In general, we �nd a combination of the properties in Tables 2 and 4, which separated the

e¤ects of mean and variance predictability. The main novelty in Panel A11 is in the performance

of CE5 returns. Their Sharpe ratio is lower than for CE1 returns,12 while the gap in Sortino

ratios between CE5 returns and the rest increases, due to the stronger negative covariance term.

Similarly, the skewness and kurtosis of CE5 returns becomes much more higher than in Tables

2 and 4.

The performance of the di¤erent returns is closer to each other in Panel B. The skewness

and kurtosis of CE5 returns are still very high but less than in Panel A.

Finally, we consider a dynamic model where ln�t follows a Gaussian AR(1), in which case

CE2 returns have well de�ned performance measures. Table 6 reports the corresponding per-

formance results for the same mean and variance parameters of Table 5. Panel A reports the

results for a correlation of �0:1 between log-mean and log-variance shocks, while Panel B reports

the results for a correlation of 0:1. Once again, a design with a zero correlation yields results in

between Panel A and Panel B, a design with a more negative correlation strengths the patterns

in Panel A, and a design with a more positive correlation weakens the patterns in Panel B.

The performance of CE5 returns is not reported but the reader should keep in mind that, with

respect to CE3 returns, their residual and Sharpe ratios will be lower, while their Sortino ratio

and their coe¢ cients of asymmetry and kurtosis will be higher.13

11A less relevant novelty is that FW returns show a small contribution of the third sources of skewness and
kurtosis.
12Like in Table 4 with variance predictability, CE1 returns do not show excess kurtosis.
13 In this particular design, their residual and Sharpe ratios are as low as 0:014 and 0:004 in Panel A, respectively.

However, their Sortino ratio becomes 1:616. The results are slightly less extreme in Panel B, where the residual,
Sharpe, and Sortino ratios are 0:040, 0:015, and 0:516, respectively.
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(Table 6: Performance for a log-normal mean and a log-normal variance)

In general, we �nd a combination of the properties in Tables 3 and 4, which separated the

e¤ects of mean and variance predictability. Like in Table 3, both panels of Table 6 show that

CE2 returns seem much worse than FW returns in terms of performance ratios. Similarly, the

asymmetry of CE2 returns is much more negative than FW returns, and they also show much

more excess kurtosis. Of course, CE2 and FW returns coincide in Table 4.

Comparing Tables 5 and 6, the skewness and kurtosis of CE3 returns become much higher

with a log-normal mean,. This was also the case with Tables 2 and 3. Nevertheless, there is a

di¤erence with respect to Table 3. The main source does not need to be the asymmetry and

kurtosis of their conditional mean.

6 Conclusions

Our main contribution is the analysis of �ve relevant types of conditionally e¢ cient (CE)

strategies, with a focus on how return predictability drives the di¤erences in their unconditional

Sharpe and Sortino ratios, and their coe¢ cients of asymmetry and kurtosis. The �rst two types

of CE returns keep a constant target for the conditional variance or mean. We denote them CE1

and CE2 returns, respectively. The second two types of CE returns yield the maximum residual

and unconditional Sharpe ratios. We denote them CE3 and CE4 returns, respectively. The �nal

CE returns that we study, denoted CE5, maximize the unconditional Sortino ratio among CE

returns.

We provide formulas that decompose the performance measures into interpretable compo-

nents, and show that the maximum conditional Sharpe ratio drives these measures. We �nd

strong di¤erences between the �ve types of strategies across several combinations of mean and

variance predictability, even though there is a single risky asset in our examples. We also com-

pare the CE returns to �xed weight (FW) strategies.

CE1 returns yield higher performance ratios than FW returns, but obviously lower than

CE3, CE4 or CE5 returns. The asymmetry of CE1 returns is similar to FW returns, but they

remove the kurtosis that is derived from time variation in the conditional variance of the risky

asset return. In fact, they are usually the CE return with the lowest kurtosis. Interestingly, the

performance ratios of CE2 returns may be much worse than FW returns, or may not even exist.

By de�nition, CE3 and CE4 returns are optimal with respect to the residual and Sharpe

ratios, respectively. In our examples CE3 and CE4 returns are not too di¤erent in terms of

these ratios, but they are more di¤erent in terms of the Sortino ratio, which is higher for CE3

returns. Moreover, they can be very di¤erent in terms of asymmetry and kurtosis, with CE3
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returns having higher coe¢ cients. However, CE5 returns have the most extreme behavior. They

yield the highest Sortino ratio among CE returns by de�nition, but sometimes jointly with very

high coe¢ cients of asymmetry and kurtosis, and very low residual and Sharpe ratios.

There are interesting avenues of future research that we plan to study. The maximum

drawdown (see, e.g., Grossman and Zhou, 1993) is an important risk measure for investment

managers and it would be interesting to study CE returns from that perspective. Our analysis

has implicitly assumed that the investor observes the true conditional means and variances of

returns, and a more realistic analysis would consider the possibility of noisy signals. For in-

stance, along the lines of the real-time Bayesian frameworks of Avramov and Chordia (2006)

and Johannes, Korteweg, and Polson (2014). Of course, we could also consider leverage con-

straints and transaction costs to make the analysis more realistic. At the empirical level, our

examples where developed for monthly stock returns, and it would be interesting to study other

return frequencies and asset classes with di¤erent predictability properties.
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Appendices

A Proofs

A.1 Proof of Proposition 1

1) This is the optimal choice because, for any wt such that w0t�twt = �
2
1,

(!1t't �wt)0�t (!1t't �wt) = �21 + �21 � 2
�1
St
w0t�t

= 2
�1
St
�
!1t'

0
t�t �w0t�t

�
� 0;

which is strictly positive for any realization of the information at t unless wt = !1t't.

2) The decomposition of their unconditional Share ratio is

S21 =
E2
�
!1tS2t

�
E
�
!21tS2t

� = E2 (�1St)
�21

= E2 (St) ;

R21 =
V ar

�
!1tS2t

�
E
�
!21tS2t

�
+ V ar

�
!1tS2t

� = V ar (�1St)
�21 + V ar (�eSt)

=
V ar (St)

1 + V ar (St)
:

3) Their unconditional Sortino ratio follows from S21 above and

C1 =
Cov

�
!21tS2t ;Gt

�
E
�
!21tS2t Gt

� =
Cov

�
�21;Gt

�
E
�
�21Gt

� = 0;

which completes the proof. �

A.2 Proof of Proposition 2

1) This is the optimal choice because, for any wt such that w0t�t = �2,

(!2t't �wt)0�t (!2t't �wt) =
�22
S2t
+w0t�twt � 2

�22
S2t

= w0t�twt � (!2t't)
0�t (!2t't) � 0;

which is strictly positive for any realization of the information at t unless wt = !2t't.

2) The decomposition of their unconditional Share ratio is

S22 =
E2
�
!2tS2t

�
E
�
!22tS2t

� = �22
E
�
�22S�2t

� = 1

E
�
S�2t

� ;
R21 =

V ar
�
!2tS2t

�
E
�
!22tS2t

�
+ V ar

�
!2tS2t

� = 0

E
�
�22S�2t

�
+ 0

= 0:

3) Their unconditional Sortino ratio follows from S22 above and

C2 =
Cov

�
!22tS2t ;Gt

�
E
�
!22tS2t Gt

� =
Cov

�
�22S�2t ;Gt

�
E
�
�22S�2t Gt

� =
Cov

�
S�2t ;Gt

�
E
�
S�2t Gt

� ;

which completes the proof. �
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A.3 Proof of Proposition 3

1) Let us de�ne the criterion

Ut (wt) = w
0
t�t �

1

2�3
w0t�twt;

which evaluated at CE3 returns becomes

Ut (!3t't) =
�3S2t
2
:

For any wt,

Ut (!3t't)� Ut (wt) =
1

2�3
(!3t't �wt)0�t (!3t't �wt) � 0;

which is strictly positive for any realization of the information at t unless wt = !3t't.

Moreover, if we take the expectation of the previous inequality, then we have

E [Ut (!3t't)� Ut (wt)] � 0:

By de�nition of Ut (wt), this expectation is equal to

E [Ut (!3t't)� Ut (wt)] = E
�
(!3t't)

0 �t �
1

2�3
(!3t't)

0�t (!3t't)

�
�E

�
w0t�t �

1

2�3
w0t�twt

�
:

If we apply this expression to a wt with the same mean as !3t't, then we �nd

E
�
w0t�twt

�
� E

�
(!3t't)

0�t (!3t't)
�
:

Therefore, !3t't has a higher residual Sharpe ratio than wt. The maximization of the residual

Sharpe ratio was proved in Peñaranda (2016) with projection methods.

2) The decomposition of their unconditional Sharpe ratio is

S23 =
E2
�
!3tS2t

�
E
�
!23tS2t

� = E2
�
�3S2t

�
E
�
�23S2t

� = E �S2t � ;
R23 =

V ar
�
!3tS2t

�
E
�
!23tS2t

�
+ V ar

�
!3tS2t

� = V ar
�
�3S2t

�
E
�
�23S2t

�
+ V ar

�
�3S2t

� = V ar
�
S2t
�

E
�
S2t
�
+ V ar

�
S2t
� :

3) Their unconditional Sortino ratio follows from S23 above and

C3 =
Cov

�
!23tS2t ;Gt

�
E
�
!23tS2t Gt

� =
Cov

�
�23S2t ;Gt

�
E
�
�23S2t Gt

� =
Cov

�
S2t ;Gt

�
E
�
S2t Gt

� ;

which completes the proof. �
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A.4 Proof of Proposition 4

1) Let us de�ne the criterion

Vt (wt) = w
0
t�t �

1

2�4
w0t�twt;

and note that the portfolio weights in (22) can be written as

!4t't = �4�
�1
t �t

because

��1t �t =
�
�t + �t�

0
t

��1
�t =

�
��1t � 1

1 + �0t�
�1
t �t

��1t �t�
0
t�

�1
t

�
�t = 't � Ut't:

The criterion evaluated at these weights becomes

Vt (!4t't) =
�4�

0
t�
�1
t �t
2

=
�4Ut
2
:

For any wt,

Vt (!4t't)� Vt (wt) =
1

2�4
(!4t't �wt)0 �t (!4t't �wt) � 0;

which is strictly positive for any realization of the information at t unless wt = !4t't.

To prove that CE2 returns maximize S2, let us take the expectation of the previous inequality

E [Vt (!4t't)� Vt (wt)] � 0:

By de�nition of Vt (wt), this expectation is equal to

E [Vt (!4t't)� Vt (wt)] = E
�
(!4t't)

0 �t �
1

2�4
(!4t't)

0 �t (!4t't)

�
� E

�
w0t�t �

1

2�4
w0t�twt

�
:

If we apply this expression to a wt with the same mean as (!4t't)
0, then we �nd

E
�
w0t�twt

�
� E

�
(!4t't)

0 �t (!4t't)
�
:

The portfolio !4t't has a lower unconditional uncentred second moment. As both returns have

the same unconditional mean, then !4t't has a lower unconditional variance, and a higher

unconditional Sharpe ratio. The maximization of the unconditional Sharpe ratio was proved in

Peñaranda (2016) with projection methods.

2) The decomposition of their unconditional Share ratio is

S24 =
E2
�
!4tS2t

�
E
�
!24tS2t

� = E2 (�4Ut)
E
�
�24Ut (1� Ut)

� = E2 (Ut)
E (Ut (1� Ut))

;

R24 =
V ar

�
!4tS2t

�
E
�
!24tS2t

�
+ V ar

�
!4tS2t

� = V ar (�4Ut)
E
�
�24Ut (1� Ut)

�
+ V ar (�4Ut)

=
V ar (Ut)

E (Ut) (1� E (Ut))
;

3) Their unconditional Sortino ratio follows from S24 above and

C4 =
Cov

�
!24tS2t ;Gt

�
E
�
!24tS2t Gt

� =
Cov

�
�24Ut (1� Ut) ;Gt

�
E
�
�24Ut (1� Ut)Gt

� =
Cov (Ut (1� Ut) ;Gt)
E (Ut (1� Ut)Gt)

;

which completes the proof. �
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A.5 Proof of Proposition 5

1) Let us de�ne the criterion

Wt (!t) = !tS2t �
1

2�5
!2tS2t Gt;

which evaluated at CE5 returns becomes

Wt (!5t) =
�5S2t
2Gt

:

For any !t

Wt (!5t)�Wt (!t) =
1

2�5
S2t Gt (!5t � !t)

2 � 0;

which is strictly positive for any realization of the information at t unless !t = !5t.

Moreover, if we take the expectation of the previous inequality, then we have

E [Wt (!5t)�Wt (!t)] � 0:

By de�nition of Wt (!t), this expectation is equal to

E [Wt (!5t)�Wt (!t)] = E

�
!5tS2t �

1

2�5
!25tS2t Gt

�
� E

�
!tS2t �

1

2�5
!2tS2t Gt

�
:

If we apply this expression to an !t with the same mean as !5t, then we �nd

E
�
!2tS2t Gt

�
� E

�
!25tS2t Gt

�
:

The choice !5t has a lower unconditional semivariance, and a higher unconditional Sortino ratio.

2) The decomposition of their unconditional Sharpe ratio is

S25 =
E2
�
!5tS2t

�
E
�
!25tS2t

� = E2
�
�5
S2t
Gt

�
E
�
�25
S2t
G2t

� =
E2 (Vt)
E (Vt=Gt)

;

R25 =
V ar

�
!5tS2t

�
E
�
!25tS2t

�
+ V ar

�
!5tS2t

� = V ar
�
�5
S2t
Gt

�
E
�
�25
S2t
G2t

�
+ V ar

�
�5
S2t
Gt

� = V ar (Vt)
E (Vt=Gt) + V ar (Vt)

:

3) Their unconditional Sortino ratio follows from S25 above and

C5 =
Cov

�
!25tS2t ;Gt

�
E
�
!25tS2t Gt

� =
Cov

�
�25
S2t
G2t
;Gt
�

E
�
�25
S2t
G2t
Gt
� =

Cov (Vt=Gt;Gt)
E (Vt)

;

which completes the proof. �
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Table 1: Properties of �ve types of CE returns

CE1 CE2 CE3 CE4 CE5

!it
�1
St

�2
S2t

�3
�4

1+S2t
�5
Gt

Et
�
!itr

�
t+1

�
�1St �2 �3S2t �4Ut �5Vt

V art
�
!itr

�
t+1

�
�21

�22
S2t

�23S2t �24Ut (1� Ut) �25
Vt
Gt

S2i E2 (St) 1
E(S�2t )

E
�
S2t
� E2(Ut)

E(Ut(1�Ut))
E2(Vt)
E(Vt=Gt)

S2i
E2(St)

1+V ar(St)
1

E(S�2t )
E2(S2t )

E(S2t )+V ar(S2t )
E(Ut)
1�E(Ut)

E2(Vt)
E(Vt=Gt)+V ar(Vt)

S2i
E2(St)
E(Gt)

1
E(S�2t Gt)

E2(S2t )
E(S2t Gt)

E2(Ut)
E(Ut(1�Ut)Gt) E (Vt)

Note: This table displays the scale associated to each type of conditionally e¢ cient (CE) return

studied in Propositions 1-5, and their conditional mean and variance. The table also displays their

residual, Sharpe, and Sortino ratios.
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Table 2: Performance for a normal mean and constant variance
FW CE1 CE3 CE4 CE5

Sp 0.148 0.220 0.273 0.271 0.265

R2p 0.050 0.025 0.119 0.092 0.182

Sp 0.144 0.217 0.256 0.258 0.240

Cp 0.000 0.000 -0.307 -0.246 -0.453

Sp 0.226 0.336 0.476 0.462 0.489

E
�
e3
�
=�3 -0.427 -0.444 -0.594 -0.551 -0.756

E
�
d3
�
=�3 0.000 0.004 0.105 0.048 0.349

3E
�
e2d
�
=�3 0.000 0.000 1.232 0.852 2.458

Ap -0.427 -0.440 0.743 0.349 2.051

E
�
e4
�
=�4 4.476 4.710 10.855 8.539 22.548

E
�
d4
�
=�4 0.007 0.002 0.175 0.053 1.252

6E
�
e3d
�
=�4 0.000 0.000 -2.442 -1.390 -7.919

4E
�
e2d2

�
=�4 0.189 0.099 1.866 0.856 8.143

Kp 1.672 1.811 7.454 5.058 21.024

Note: This table displays several properties of �xed weight (FW) returns, and the types of condi-

tionally e¢ cient (CE) returns studied in Propositions 1, 3, 4, and 5, when there is a singly risky asset

with a normal mean and constant variance. The autocorrelation of the mean is 0:8, and the coe¢ cient of

determination of the corresponding forecasting regression is 0:05. First, the table displays the residual,

Sharpe, and Sortino ratios of these returns, with the bold ratios reporting the maximum values. The table

also displays the coe¢ cient of determination in the decomposition of Sharpe ratios (5) and the covariance

term in the decomposition of Sortino ratios (6). These two decompositions are applied to CE returns in

the commented propositions. Second, the table displays the coe¢ cients of skewness and kurtosis of these

returns, decomposed in several terms following (34) and (35), respectively. These two decompositions are

applied to CE returns in Corollaries 1-2.
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Table 3: Performance for a log-normal mean and constant variance

FW&CE1 CE2 CE3 CE4

Sp 0.147 0.039 0.227 0.211

R2p 0.030 0.000 0.548 0.176

Sp 0.144 0.039 0.152 0.191

Cp 0.000 0.132 -0.797 -0.357

Sp 0.213 0.053 0.442 0.357

E
�
e3
�
=�3 -0.415 -1.532 -0.468 -0.580

E
�
d3
�
=�3 0.024 0.000 13.340 0.357

3E
�
e2d
�
=�3 0.000 0.000 4.875 1.597

Ap -0.392 -1.532 17.747 1.373

E
�
e4
�
=�4 4.328 113.936 23.090 11.809

E
�
d4
�
=�4 0.043 0.000 646.724 1.036

6E
�
e3d
�
=�4 0.000 0.000 -31.995 -3.337

4E
�
e2d2

�
=�4 0.113 0.000 159.113 3.754

Kp 1.484 110.936 793.931 10.260

Note: This table displays several properties of �xed weight (FW) returns, and the types of condition-

ally e¢ cient (CE) returns studied in Propositions 1-4, when there is a singly risky asset with a log-normal

mean and constant variance. The autocorrelation of the mean is 0:8, and the coe¢ cient of determination

of the corresponding forecasting regression is 0:03. In this design, CE1 and FW returns coincide. First,

the table displays the residual, Sharpe, and Sortino ratios of these returns, with the bold ratios reporting

the maximum values of the �rst two ratios. The table also displays the coe¢ cient of determination in the

decomposition of Sharpe ratios (5) and the covariance term in the decomposition of Sortino ratios (6).

These two decompositions are applied to CE returns in the commented propositions. Second, the table

displays the coe¢ cients of skewness and kurtosis of these returns, decomposed in several terms following

(34) and (35), respectively. These two decompositions are applied to CE returns in Corollaries 1-2.
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Table 4: Performance for constant mean and a log-normal variance

FW&CE2 CE1 CE3 CE4 CE5

Sp 0.144 0.186 0.203 0.202 0.197

R2p 0.000 0.006 0.038 0.030 0.090

Sp 0.144 0.186 0.199 0.199 0.188

Cp 0.078 0.000 -0.117 -0.097 -0.221

Sp 0.209 0.281 0.324 0.320 0.329

E
�
e3
�
=�3 -0.500 -0.380 -0.466 -0.442 -0.799

E
�
d3
�
=�3 0.000 0.001 0.029 0.014 0.924

3E
�
e2d
�
=�3 0.000 0.000 0.553 0.394 3.227

Ap -0.500 -0.380 0.116 -0.034 3.353

E
�
e4
�
=�4 5.025 2.470 4.545 3.805 58.169

E
�
d4
�
=�4 0.000 0.000 0.057 0.013 41.098

6E
�
e3d
�
=�4 0.000 0.000 -0.975 -0.577 -56.599

4E
�
e2d2

�
=�4 0.000 0.025 0.709 0.329 113.431

Kp 2.025 -0.504 1.336 0.570 153.099

Note: This table displays several properties of �xed weight (FW) returns, and the types of condition-

ally e¢ cient (CE) returns studied in Propositions 1-5, when there is a singly risky asset with constant

mean and a log-normal variance. The autocorrelation of the log-variance is 0:9, and the coe¢ cient of

determination of the variance is 1. In this design, CE2 and FW returns coincide. First, the table displays

the residual, Sharpe, and Sortino ratios of these returns, with the bold ratios reporting the maximum

values. The table also displays the coe¢ cient of determination in the decomposition of Sharpe ratios (5)

and the covariance term in the decomposition of Sortino ratios (6). These two decompositions are applied

to CE returns in the commented propositions. Second, the table displays the coe¢ cients of skewness and

kurtosis of these returns, decomposed in several terms following (34) and (35), respectively. These two

decompositions are applied to CE returns in Corollaries 1-2.
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Table 5: Performance for a normal mean and a log-normal variance

Panel A: � = �0:1 Panel B: � = 0:1

FW CE1 CE3 CE4 CE5 FW CE1 CE3 CE4 CE5

Sp 0.145 0.183 0.231 0.229 0.206 0.145 0.179 0.218 0.217 0.205

R2p 0.010 0.019 0.121 0.083 0.355 0.010 0.015 0.092 0.068 0.219

Sp 0.144 0.183 0.217 0.219 0.166 0.144 0.177 0.208 0.209 0.181

Cp 0.060 0.000 -0.333 -0.252 -0.883 0.046 0.000 -0.269 -0.214 -0.542

Sp 0.213 0.280 0.404 0.388 0.428 0.213 0.268 0.369 0.359 0.383

E
�
e3
�
=�3 -0.466 -0.381 -0.541 -0.491 -1.701 -0.503 -0.413 -0.581 -0.532 -1.188

E
�
d3
�
=�3 0.000 0.004 0.217 0.065 10.725 0.000 0.002 0.125 0.046 2.660

3E
�
e2d
�
=�3 -0.018 0.000 1.475 0.888 15.925 0.019 0.000 1.210 0.789 6.832

Ap -0.484 -0.378 1.151 0.462 24.949 -0.484 -0.411 0.755 0.303 8.304

E
�
e4
�
=�4 4.949 2.958 8.497 5.929 376.952 5.016 3.011 8.030 5.952 107.025

E
�
d4
�
=�4 0.000 0.002 0.835 0.094 756.671 0.000 0.001 0.371 0.061 92.419

6E
�
e3d
�
=�4 0.026 0.000 -3.267 -1.376 -443.284 -0.028 0.000 -2.700 -1.316 -104.261

4E
�
e2d2

�
=�4 0.040 0.074 3.947 1.083 1182.622 0.040 0.061 2.526 0.869 208.830

Kp 2.015 0.034 7.012 2.729 1869.961 2.028 0.073 5.226 2.565 301.013

Note: This table displays several properties of �xed weight (FW) returns, and the types of condition-

ally e¢ cient (CE) returns studied in Propositions 1, 3, 4, and 5, when there is a singly risky asset with

a normal mean and a log-normal variance. The mean has an autocorrelation of 0:8, and the coe¢ cient

of determination is 0:01. The log-variance has an autocorrelation of 0:9, and the coe¢ cient of variation

of the variance is 0:8. Panel A reports the results for a correlation � = �0:1 between mean and log-

variance shocks, while Panel B reports the results for a correlation � = 0:1. First, the table displays the

residual, Sharpe, and Sortino ratios of these returns, with the bold ratios reporting the maximum values.

The table also displays the coe¢ cient of determination in the decomposition of Sharpe ratios (5) and

the covariance term in the decomposition of Sortino ratios (6). These two decompositions are applied to

CE returns in the commented propositions. Second, the table displays the coe¢ cients of skewness and

kurtosis of these returns, decomposed in several terms following (34) and (35), respectively. These two

decompositions are applied to CE returns in Corollaries 1-2.
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Table 6: Performance for a log-normal mean and a log-normal variance

Panel A: � = �0:1 Panel B: � = 0:1

FW CE1 CE2 CE3 CE4 FW CE1 CE2 CE3 CE4

Sp 0.145 0.177 0.078 0.233 0.226 0.145 0.170 0.084 0.215 0.211

R2p 0.010 0.022 0.000 0.290 0.122 0.010 0.017 0.000 0.197 0.097

Sp 0.144 0.175 0.078 0.197 0.212 0.144 0.169 0.084 0.193 0.201

Cp 0.057 0.000 0.145 -0.517 -0.293 0.043 0.000 0.129 -0.386 -0.245

Sp 0.212 0.267 0.108 0.432 0.386 0.211 0.254 0.117 0.378 0.351

E
�
e3
�
=�3 -0.461 -0.375 -0.869 -0.524 -0.485 -0.497 -0.407 -0.835 -0.603 -0.532

E
�
d3
�
=�3 0.002 0.010 0.000 2.912 0.168 0.002 0.006 0.000 1.228 0.121

3E
�
e2d
�
=�3 -0.017 0.000 0.000 3.142 1.140 0.018 0.000 0.000 2.457 1.026

Ap -0.475 -0.365 -0.869 5.530 0.823 -0.476 -0.401 -0.835 3.082 0.615

E
�
e4
�
=�4 4.967 2.946 25.322 13.219 6.415 4.986 2.983 19.064 12.520 6.525

E
�
d4
�
=�4 0.001 0.012 0.000 67.837 0.369 0.001 0.001 0.000 18.062 0.251

6E
�
e3d
�
=�4 0.023 0.000 0.000 -13.057 -1.922 -0.027 0.000 0.000 -9.513 -1.895

4E
�
e2d2

�
=�4 0.036 0.088 0.000 42.898 2.040 0.043 0.067 0.000 21.084 1.702

Kp 2.028 0.045 22.322 107.897 3.902 2.003 0.055 16.064 39.153 3.583

Note: This table displays several properties of �xed weight (FW) returns, and the types of condition-

ally e¢ cient (CE) returns studied in Propositions 1-4, when there is a singly risky asset with a log-normal

mean and a log-normal variance. The mean has an autocorrelation of 0:8, and the coe¢ cient of deter-

mination is 0:01. The log-variance has an autocorrelation of 0:9, and the coe¢ cient of variation of the

variance is 0:8. Panel A reports the results for a correlation � = �0:1 between log-mean and log-variance

shocks, while Panel B reports the results for a correlation � = 0:1. First, the table displays the residual,

Sharpe, and Sortino ratios of these returns, with the bold ratios reporting the maximum values of the

�rst two ratios. The table also displays the coe¢ cient of determination in the decomposition of Sharpe

ratios (5) and the covariance term in the decomposition of Sortino ratios (6). These two decompositions

are applied to CE returns in the commented propositions. Second, the table displays the coe¢ cients of

skewness and kurtosis of these returns, decomposed in several terms following (34) and (35), respectively.

These two decompositions are applied to CE returns in Corollaries 1-2.
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