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Abstract

The mean-variance principle of Markowitz (1952) for portfolio selection gives
disappointing results once the mean and variance are replaced by their sample
counterparts. The problem is ampli�ed when the number of assets is large and
the sample covariance is singular or nearly singular. In this paper, we investigate
four regularization techniques to stabilize the inverse of the covariance matrix: the
ridge, spectral cut-o¤, Landweber-Fridman and LARS Lasso. These four methods
involve a tuning parameter that needs to be selected. The main contribution is
to derive a data-driven method for selecting the tuning parameter in an optimal
way, i.e. in order to minimize a quadratic loss function measuring the distance
between the estimated allocation and the optimal one. The cross-validation type
criterion takes a similar form for the four regularization methods. Preliminary
simulations show that regularizing yields a higher out-of-sample performance than
the sample based Markowitz portfolio and often outperforms the 1 over N equal
weights portfolio.

�We thank Raymond Kan, Bruce Hansen, and Marc Henry for their helpful comments.



1 Introduction

In his seminal paper of 1952, Markowitz stated that the optimal portfolio selection
strategy should be an optimal trade-o¤ between return and risk instead of an expected
return maximization only. In his theoretical framework, Markowitz made the important
assumption that the belief about the future performance of asset returns are known.
However in practice these beliefs have to be estimated. The damaged caused by the so-
called parameter uncertainty has been pointed out by many authors, see for instance Kan
and Zhou (2007). Solving the mean variance problem leads to estimate the covariance
matrix of returns and take its inverse. This results in estimation error, ampli�ed by two
facts. First, the number of securities is typically very high and second, these security
returns may be highly correlated. This results in a ill-posed problem in the sense that
a slight change in portfolio return target implies a huge change in the optimal portfolio
weights. To tackle these issues, various solutions have been proposed. Some authors have
taken a bayesian approach, see Frost and Savarino (1986). Some have used shrinkage,
more precisely Ledoit and Wolf (2003, 2004a,b) propose to replace the covariance matrix
by a weighted average of the sample covariance and some structured matrix. Tu and
Zhou (2009) take a combination of the naive 1/N portfolio with the Markowitz portfolio.
Alternatively, Brodie, Daubechies, De Mol, Giannone and Loris (2008) and Fan, Zhang,
and Yu (2009) use a method called Lasso which consists in imposing a constraint on the
sum of the absolute values (l1 norm) of the portfolio weights. This constraint has for
consequence to generate a sparse portfolio which degree of sparsity depends on a tuning
parameter.
In this paper, we investigate various regularization (or stabilization) techniques bor-

rowed from the literature on inverse problems. Indeed, inverting a covariance matrix
can be regarded as solving an inverse problem. Inverse problems are encountered in
many �elds and have been extensively studied. Here, we will apply the three regular-
ization techniques that are the most used: the ridge which consists in adding a diagonal
matrix to the covariance matrix, the spectral cut-o¤ which consists in discarding the
eigenvectors associated with the smallest eigenvalues, and Landweber Fridman iterative
method. For completeness, we also consider a form of Lasso where we penalize the l1
norm of the optimal portfolio weights. These various regularization techniques have
been used and compared in the context of forecasting macroeconomic time series using
a large number of predictors by i.e. Stock and Watson (2002), Bai and Ng (2008), and
De Mol, Giannone, and Reichlin (2008). The four methods under consideration involve
a regularization (or tuning) parameter that needs to be selected. Little has been said so
far on how to choose the tuning parameter to perform optimal portfolio selection. For
example using the Lasso, Brodie et al. (2008), Fan et al. (2009) show that by tuning
the penalty term one could construct portfolio with desirable sparsity but do not give
a systematic rule on how to select it in practice. Ledoit and Wolf (2004) choose the
tuning parameter in order to minimize the mean-square error of the shrinkage covariance
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matrix, however this approach may not be optimal for portfolio selection.
The main objective of this paper is to derive a data-driven method for selecting the

regularization parameter in an optimal way. As the portfolio performance is usually
assessed by the Sharpe ratio, we believe that most investors would like to select the
tuning parameter in order to minimize the mean square error of the estimated optimal
allocation. This would insure that the optimal allocation is evaluated as accurately as
possible. The mean square error can not be derived analytically. Our contribution is
to provide an estimate of the MSE that uses only the observations. This estimate is a
type of generalized cross-validation criterion. The advantage of our criterion is that it
applies to all the methods mentioned above and gives a basis to compare the di¤erent
methods.
The rest of the paper is organized as follows. Section 2 reviews the mean-variance

principle. Section 3 describes three regularization techniques of the inverse of the covari-
ance matrix. Section 4 discusses stabilization techniques that take the form of penalized
least-squares. Section 5 derives the optimal selection of the tuning parameter. Section
6 presents simulations results and Section 7 empirical results. Section 8 concludes.

2 Markowitz paradigm

Markowitz (1952) proposes the mean-variance rule, which can be viewed as a trade-o¤
between expected return and the variance of the returns. For a survey, see Brandt
(2009). Consider N risky assets with random return vector Rt+1 and a riskfree asset
with known return Rft . De�ne the excess returns rt+1 = Rt+1 � Rft and denote their
conditional means and covariance matrix by � and �, respectively. The investor allocates
a fraction x of wealth to risky assets and the remainder to (1� 10Nx) to the risk-free
asset, where 1N denotes aN�vector of ones. The portfolio return is therefore x0rt+1+Rft :
The mean-variance problem consists in choosing the vector x to minimize the variance
of the resulting portfolio rp;t+1 = x0rt+1 for a pre-determined target expected return of
the portfolio �p:

minx
1
2
V ar [rp;t+1] = x0�x

st E [rp;t+1] = x0� = �p
(1)

The optimal portfolio is given by

x� =
�p

�0��1�
��1�: (2)

The combination that maximizes the Sharpe ratio of the overall portfolio de�ned as
E [rp;t+1] =std [rp;t+1] is obtained for the so-called tangency portfolio and corresponds to
�p = �0��1�=10N�

�1�: Note that for this portfolio, x� satis�es

x� =
��1�

10N�
�1�

2



and the Sharpe ratio takes the simple form
p
�0��1�. We mainly focus on the tangency

portfolio in the sequel.
In order to solve the mean variance problem (1), the expected return and the covari-

ance matrix of the vector of security return, which are unknown, need to be estimated
from available data set. In particular, an estimate of the inverse of the covariance ma-
trix is needed. The sample covariance often used in practice may be the worst choice
because it is typically nearly singular, and sometimes not even invertible. The issue
of ill-conditioned covariance matrix must be addressed because inverting such matrix
increases dramatically the estimation error and then makes the mean variance solu-
tion unreliable. Many regularization techniques can stabilize the inverse. They can be
divided into two classes: regularization directly applied to the covariance matrix and
regularization expressed as a penalized least-squares.

3 Regularization as approximation to an inverse prob-
lem

3.1 Inverse problem

Let rt, t = 1; � � � ; T be the observations of asset returns and R be the T � N ma-
trix with tth row given by r0t. We can replace the unknown expectation � by the
sample average �̂ = 1

T

PT
t=1 rt and the covariance � by the sample covariance �̂ =

(R� 1T �̂0)0 (R� 1T �̂0) =T � ~R0 ~R: Jobson and Korkie (1983) and later on Britten-Jones
(1999) showed that the optimal allocation x� = �̂�1�̂=10N �̂

�1�̂ for the tangency portfolio
can be rewritten as bx� = �̂=10N �̂

where �̂ is the OLS estimate of � in the regression

1 = �0rt+1 + ut+1

or equivalently
1T = R� + u (3)

where R is the T � N matrix with rows composed of r0t. In other words, it is not
necessary to center rt in the calculation of x�. Finding � can be thought as �nding the
minimum least-squares solution to the equation:

R� = 1T : (4)

It is a typical inverse problem.
The stability of the previous problem depends on the characteristics of the matrix


̂ = R0R. Two di¢ culties may occur: the assets could be highly correlated (i.e. the
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population covariance matrix � is nearly singular) or the number of assets could be too
large relative to the sample size (i.e. the sample covariance is (nearly) singular even
though the population covariance is not). In such cases, 
̂ typically has some singular
values close to zero resulting in an ill posed problem, such that the optimization of
the portfolio becomes a challenge. These di¢ culties are summarized by the condition
number which is the ratio of the maximal and minimal eigenvalue of 
̂. A large condition
number leads to unreliable estimate of the vector of portfolio weights x.
The inverse problem literature, that usually deals with in�nite dimensional problems,

has proposed various regularization techniques to stabilize the solution to (4). For
an overview on inverse problems, we refer the readers to Kress (1999) and Carrasco,
Florens, and Renault (2007). We will consider here the three most popular regularization
techniques: ridge, spectral cut-o¤, and Landweber Fridman. Each method will give a
di¤erent estimate of �, denoted �̂� and estimate of x

�, denoted bx�� = �̂�=1
0
N �̂� :

Let
�
�j; �j; vj

�
; j = 1; 2; :::; N be the singular system of R, i.e.

�
�2j ; �j

�
denote

the eigenvalues and eigenvectors of R0R and
�
�2j ; vj

�
are the nonzero eigenvalues and

eigenvectors of RR0: Let � > 0 be a regularization parameter.

3.2 Ridge regularization

It consists in adding a diagonal matrix to 
̂.

�̂� = (R0R + �I)
�1
R01T ; (5)

�̂� =
NX
j=1

�j

�2j + �
(10Tvj)�j:

This regularization has a baysesian interpretation, see i.e. De Mol et al (2008).

3.3 Spectral cut-o¤ regularization

This method discards the eigenvectors associated with the smallest eigenvalues.

�̂� =
X
�j>�

1

�j
(10Tvj)�j:

Interestingly, vj are the principal components of 
̂, so that if rt follows a factor model,
v1, v2,... estimate the factors.

3.4 Landweber-Fridman regularization

The solution to (4) can be computed iteratively as

 k = (I � cR0R) k�1 + cR01T
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with 0 < c < 1= kRk2. Alternatively, we can write

�̂� =
X 1

�j

n
1�

�
1� c�2j

�1=�o
(10Tvj)�j:

Here, the regularization parameter � is such that 1=� represents the number of iterations.
The three methods involve a regularization parameter � which needs to converge to

zero with T at a certain rate for the solution to converge.

3.5 Shrinkage

In this subsection, we compare our methods with a popular alternative called shrinkage.
Shrinkage can also be regarded as a form of regularization. Ledoit and Wolf (2004a)
propose to estimate the returns covariance matrix by a weighted average of the sample
covariance matrix �̂ and an estimator with a lot of structure F; based on a model.
The �rst one is easy to compute and has the advantage to be unbiased. The second
one contains relatively little estimation error but tends to be misspeci�ed and can be
severely biased. The shrinkage estimator takes the form of a convex linear combination :
�F+(1��)�̂, where � is a number between 0 and 1. This method is called shrinkage since
the sample covariance matrix is shrunk toward the structured estimator. � is referred to
as the shrinkage constant. With the appropriate shrinkage constant, we can obtain an
estimator that performs better than either extreme (invertible and well-conditioned).
Many potential covariance matrices F could be used. Ledoit and Wolf (2004a)

suggested the single factor model of Sharpe (1963) which is based on the assumption
that stock returns follow the model (Market model):

rit = �i + �ir0t + "it

where residuals �it are uncorrelated to market returns r0t and to one another, with a
constant variance V ar(�it) = �ii. The resulting covariance matrix is

� = �20��
0 +�

Where �20 is the variance of market returns and � = diag(�ii). �20 is consistently
estimated by the sample variance of market returns, � by OLS, and �ii by the residual
variance estimate. A consistent estimate of � is then

F = s20bb
0 +D

Instead of F derived for a factor model, the constant correlation model1 (Ledoit and
Wolf (2004a)), and identity matrix F = I (Ledoit and Wolf (2004b)) can as well be

1All the pairwise covariances are identical.
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used. They give comparable results but are easier to compute.
In the particular case where the shrinkage target is the identity matrix, the shrinkage
method is equivalent to Ridge regularization since the convex linear combination �I +
(1� �)�̂ can be rewritten :

�Shrink = c
�
�̂+�I

�
;

and
��1Shrink = c

�
�̂+�I

��1
;

where c is a constant.
Once the shrinkage target is determined one has to choose the Optimal Shrinkage

intensity ��. Ledoit and Wolf (2004b) propose to select �� so that it minimizes the
expected L2 distance between the resulting shrinkage estimator �Shrink = �̂

�
F+(1��̂�)�̂

and the true covariance matrix �. The limitation of this criterion is that it only focuses
on the statistical properties of �, and in general could fail to be optimal for the portfolio
selection.

4 Regularization scheme as penalized least-square

The traditional optimal Markowitz portfolio x� is the solution to (1) that can be refor-
mulated by exploiting the relation � = E(rtr

0
t)� ��0 as

x� = argmin
x
E
h���p � x0rt

��2i
st x0� = �p

If one replaces the expectation by sample average �̂; the problem becomes:

x� = argminx
1
T



�p1T �Rx


2
2

st x0�̂ = �p
(6)

As mentioned before, the solution of this problem may be very unreliable if R0R is
nearly singular. To avoid having explosive solutions, we can penalize the large values by
introducing a penalty term applied to a norm of x. Depending on the norm we choose,
we end up with di¤erent regularization techniques.

4.1 Bridge method

For 
 > 0 the Bridge estimate is given by

bx�� = argmin
x



�p1T�Rx

22 + �
NP
i=1

jxij


st x0�̂ = �p
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where � is the penalty term.
The Bridge method includes two special cases. For 
 = 1 we have the Lasso regu-

larization, while 
 = 2 leads to the Ridge method. The term
NP
i=1

jxij
 can be interpreted
as a transaction cost. It is linear for Lasso, but quadratic for the ridge.

4.2 Least Absolute Shrinkage and Selection Operator (LASSO)

The Lasso regularization technique introduced by Tibshirani (1996) is the l1-penalized
version of the problem (6). The Lasso regularized solution is obtained by solving:

bx�� = argmin
x



�p1T �Rx


2
2
+ � kxk1

st x0�̂ = �p

The main feature of this regularization scheme is that it induces sparsity. It has
been studied by Brodie, Daubechies, De Mol, Giannone and Loris (2008) to compute
portfolio involving only a small number of securities. For two di¤erent penalty constants
� 1 and � 2 the optimal regularized portfolio satis�es: (� 1 � � 2)

�

x[�2]


1
�


x[�1]



1

�
� 0

then the higher the l1-penalty constant (�), the sparser the optimal weights. So that a
portfolio with non negative entries corresponds to the largest values of � and thus to
the sparsest solution. In particular the same solution can be obtained for all � greater
than some value � 0.
Brodie et al. consider models without a riskfree asset. Using the fact that all the

wealth is invested (x01N = 1), they use the equivalent formulation for the objective
function as:

k�P1T �Rxk22 + 2�
X

i with xi<0

jxij+ �

which is equivalent to a penalty on the short positions. The Lasso regression then
regulate the amount of shorting in the portfolio designed by the optimization process,
so that the problem stabilizes.
The general form of the l1-penalized regression with linear constraints is:

bx�� = argmin
x2H

kb� Axk22 + � kxk1

H is an a¢ ne subspace de�ned by linear constraints. The regularized optimal portfolio
can be found using an adaptation of the homotopy / LARS algorithm as described in
Brodie et al (2008). In appendix A, we provide a detailed description of this algorithm.

4.3 Ridge method

The Ridge regression has been introduced by Hoerl and Kennard (1970) as a more stable
alternative to the standard least-squares estimator with potential lower risk. It repre-
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sents a di¤erent way to penalize the problem using the l2 norm. The Ridge regression
is then given by :

bx�� = argmin
x



�p1T �Rx


2
2
+ � kxk22

st x0�̂ = �p:
(7)

Contrary to the Lasso regularization, the Ridge does not deliver a sparse portfolio,
but selects all the securities with possibly short-selling.

Proposition 1 The solutions in presence of a risk free asset are:8<: x�� = �p

̂�1� �̂

�̂0
̂�1� �̂
for a given�p

x�� =

̂�1� �̂

10N 
̂
�1
� �̂

for the tangency portfolio

where 
̂� = (R0R + �I).

We see that the solution for the tangency portfolio corresponds to �̂�=1
0
N �̂� where �̂�

is computed using the ridge regularization (5). The equivalence between the two forms
of ridge regularizations has been established a long time ago for the unconstrained case
and is shown to hold here in a constrained setting.
Proof of Proposition 1. Solving the problem (7) is equivalent to minimizing the

Lagrangian:

min
fx;�g

L(x; �) =
1

2

�
ky �Rxk22 + � kxk22

�
+ �(�p � x0�̂)

where y = �p1T . The solutions are given by the system of equations:�

̂�x�R0y � ��̂ = 0
x0�̂ = �p

:

We then have:
x = 
̂�1� R0y + �
̂�1� �̂

and using the fact that x0� = �p we obtain that:

� =
�p � �̂0
̂�1� R0y

�̂0
̂�1� �̂
:

Then for a given expected excess return on the risky portfolio, the optimal investment
strategy on the risky asset is:

x = 
̂�1� R0y +
�p � �̂0
̂�1� R0y

�̂0
̂�1� �̂

�1� �̂ =

�p
̂
�1
� �̂

�̂0
̂�1� �̂
:
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If instead the investor is interested in the tangency portfolio, from the relation x01N =

1 we have that � = 1�10N 
̂
�1
� R0y

10N 
̂
�1
� �̂

which leads to the investment rule:

x = 
̂�1� R0y +
1� 10N 
̂�1� R0y

10N 
̂
�1
� �̂


̂�1� �̂ =

̂�1� �̂

10N 
̂
�1
� �̂

:

The implied portfolio return is then given by �p = x0�.

5 Optimal selection of the regularization parameter

5.1 Loss function of estimated allocation

An investor will want to choose � so that the selected optimal portfolio bx�� is as close as
possible to the optimal allocation x� obtained if � and � were known. To achieve this
goal, we select � in order to minimize a quadratic loss function de�ned by

E
�
(bx�� � x�)0R0R (bx�� � x�)

�
= E

�
kR (bx�� � x�)k2

�
: (8)

The di¤erence between x̂�� and x
� is weighted by the square matrix R0R as it gives a

natural interpretation to the criterion. This criterion is close to the following

E
h
kRbx�� � (�0x�) 1Tk2i = kE (Rbx�� )� (�0x�) 1Tk2 + V ar (Rbx�� )

where the �rst term on the rhs is the squared bias of the return of the estimated optimal
portfolio and the second term is its squared risk.
Our goal is to give a convenient expression for the criterion (8). Consider bx�� =

�̂�=1
0
N �̂� where �̂� is given by b�� = b
�1� R01T (9)

where b
�1� is a regularized inverse of 
̂ = R0R.
Using the notation � = E (R0R)�1E (R01T ) ; the optimal allocation x� can be rewrit-

ten as �=10N�: Indeed, we have seen earlier that x
� = ��1�=10N�

�1�: Let 
 = E (R0R)
and 
T = 
=T:

��1� = (
T � ��0)
�1
�

=

�

�1T +


�1T ��0
�1T
1� �0
�1T �

�
�

=

�1T �

1� �0
�1T �

where the second equality follows from the updating formula for an inverse matrix (see
Greene, 1993, p.25). Hence

x� =

�1�

10N

�1�

=
�

10N�
:
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The criterion (8) can be rewitten as

E

24




R
 b��
10N
b�� � �

10N�

!





2
35 (10)

Minimizing (8) is equivalent to minimizing E
�


R� b����10N�

�


2� which itself is equivalent
to minimizing

E

�


R�b�� � �
�


2� : (11)

Term (11) depends on the unknown � and hence needs to be approximated. Interestingly,
(11) is equal to the prediction error of model (3) plus a constant and has been extensively
studied. To approximate (11), we use results on cross-validation from Craven andWahba
(1979), Li (1986, 1987), and Andrews (1991) among others.
We can write

Rb�� =MT (�) 1T

with MT (�) = Rb��1� R0: The rescaled MSE

1

T
E

�


R�b�� � �
�


2�

can be approximated by generalized cross validation criterion:

GCV (�) =
1

T

k(IT �MT (�)) 1Tk2

(1� tr (MT (�)) =T )
2 :

To obtain the optimal value of � , it su¢ ces to minimize GCV (�) with respect to � .

5.2 Explicit expression of the cross validation criterion

When b��1� is a regularized inverse of �, MT (�) can be expressed as a function of the
orthonormal eigenvectors vj and eigenvalues �

2
j , j = 1; :::; T of the matrix RR0. If

N < T , it is easier to compute v�j and �
2
j , j = 1; :::; N the orthonormal eigenvectors and

eigenvalues of the matrix R0R and deduce the spectrum of RR0: Indeed, the eigenvectors
of RR0 are vj = Rv�j=�j associated with the same nonzero eigenvalues �

2
j . We have

MT (�)w =

TX
j=1

q (� ; �j) (w
0vj) vj

for any T� vectors w. Moreover, trMT (�) =
PT

j=1 q (� ; �j). The function q takes a dif-
ferent form depending on the type of regularization. For Ridge, q (� ; �j) = �2j=

�
�2j + �

�
:
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For Spectral cut-o¤, q (� ; �j) = I
�
�2j � �

�
. For Landweber Fridman, q (� ; �j) = 1 ��

1� c�2j
�1=�

.
The Lasso estimator does not take the simple form (9). However, Tibshirani (1996)

shows that it can be approximated by a ridge type estimator and suggests using this
approximation for cross-validation. Let ~� (�) be the Lasso estimator for a value � . By
writing the penalty

P���j�� as P �2j=
���j��, we see that ~� (�) can be approximated by

�� =
�
R0R + � (c)W� (�)

��1
R01T

where c is the upper bound
P���j�� in the constrained problem equivalent to the penal-

ized Lasso and W (�) is the diagonal matrix with diagonal elements
���~�j (�)��� ; W� is the

generalized inverse of W and � (c) is chosen so that
P

j

����j �� = c: Since � (c) representes
the Lagrangian multiplier on the constraint

P
j

����j �� � c, we always have this constraint
binding when � (c) 6= 0 (ill-posed cases). Let

p (�) = tr
n
R
�
R0R + � (c)W� (�)

��1
R0
o
:

The generalized cross-validation criterion for Lasso is

GCV (�) =
1

T




1T �Re� (�)


2
(1� p (�) =T )2

:

Tibshirani (1996) shows in simulations that the above formula gives good results.

6 Simulations

We use simulated data to assess the performance of each of the investment strategies
x�(� �) we proposed. Precisely we �nd that most of the times, the strategies obtained
through regularization outperform the very tough benchmark of the equally weighted
portfolio. As it is done in the literature, one way to compare di¤erent strategies is
to look at their out-of-sample performances. An alternative way is to investigate the
in-sample performance as Fan and Yu (2009).

6.1 A three-factor model

In this section, we use a three factor (K = 3) model to assess the in-sample performance
of our strategies through a Monte Carlo study. Precisely, we suppose that the N excess
returns of assets are generated by the model:

rit = bi1f1t + bi2f2t + � � �+ biKfKt + "it for i = 1; � � � ; N (12)

11



or in a contracted form:
R = BF + "

where bij are the factors loading of the ith asset on the factor fj, "i is the idiosyncratic
noise independent of the three factors and independent of each other.
We assume further a trivariate normal distribution for the factor loading coe¢ cients

and for the factors: bi � N (�b;�b) and ft � N
�
�f ;�f

�
. The "i are supposed to be

normally distributed with level �i drawn from a uniform distribution, so their covariance
matrix is �" = diag(�21; � � � ; �2p). As a consequence the covariance matrix of returns is
given by:

� = B�fB
0 + �"

The parameters �f ,�f , �b and �b used in the model (12) are calibrated to market data
from July 1980 to June 2008. The data sets used consist of 20 years monthly returns
of Fama-French three factors and of 30 industry portfolio from French data library. As
pointed out in Fan et al (2008) a natural idea for estimating � is to use the least-squares
estimators of B, �f and �� and obtain a substitution estimator:

�̂ = B̂�̂f B̂
0 + �̂"

where B̂ = RF 0(FF 0)�1 is the matrix of estimated regression coe¢ cients, �f is the
covariance matrix of the three Fama-French factors. Namely the excess return of the
proxy of the market portfolio over the one-month treasury bill, the di¤erence of return
between large and small capitalization, that capture the size e¤ect, and the di¤erence of
returns between high and low book-to-market ratios, that capture the valuation e¤ect.
We then select the level of the idiosyncratic noise so that the generated asset returns
exhibit three principal components. This means in practice that the covariance matrix
of the generated returns have three dominant eigenvalues. We choose idiosyncratic
noise to be normally distributed with level �i uniformly distributed between 0:01 and
0:05. Once generated, the factors and the factor loadings are kept �xed throughout
replications. Table 1 summarizes the calibrated mean and covariance matrix for the
factors and the factors loadings.

Parameters for factor loadings Parameters for factor returns
�b �b �f �f

0.9919 0.0344 0.0309 0.0005 0.0060 0.0019 0.0003 -0.0005
0.0965 0.0309 0.0769 0.0042 0.0014 0.0003 0.0009 -0.0003
0.1749 0.0005 0.0042 0.0516 0.0021 -0.0005 -0.0003 0.0012

Table 1: Calibrated parameters used in simulations
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6.2 Estimation methods and tuning parameters

We start by a serie of simulations to assess the performance of the di¤erent strategies
proposed. This is done relative to the benchmark naive 1 over N strategy and the
sample based Markowitz portfolio that is well known to perform poorly. The portfolios
considered are the naive evenly weighted portfolio (1oN), the sample-based mean vari-
ance portfolio (M), the Lasso portfolio (L), the ridge-regularized portfolio (Rdg), the
spectral cut-o¤ regularized portfolio (SC) and the Landweber-Fridman portfolio (LF)
as summarized in Table 2.

# Model Abbreviations
1 Naive evenly weighted portfolio 1oN
2 Sample-based mean variance portfolio M
3 Lasso Portfolio L
4 Optimal Ridge portfolio Rdg
5 Optimal Spectral cut-o¤ Portfolio SC
6 Optimal Landweber-Fridman Portfolio LF

Table 2: List of investment rules

The three regularization techniques introduced to improve the optimality of the
sample-based Markowitz portfolio involve a regularization parameter which have each
a particular value that corresponds to the sample-based Markowitz portfolio. So our
approach can be considered as a generalization that aims to stabilize while improving the
performance of the sample-based mean-variance portfolio. Here we give some insights
about the e¤ect from tuning di¤erent regularization parameters.
The ridge, the spectral cut-o¤ and the Landweber-Fridman schemes have a common

feature that they transform the eigenvalues from the singular decomposition of returns
covariance matrix so that the resulting estimate has a more stable inverse. This transfor-
mation is done with a damping function q(� ; �) speci�c to each approach as introduced
previously.
The Ridge is the easiest regularization to implement and recovers the sample-based

mean-variance minimizer for � = 0.
For SC, minimizing GCV with respect to � is equivalent to minimizing with respect

to p, the number of eigenvalues ranked in decreasing order. The higher the number of
eigenvectors kept, the closer we are to the sample based Markowitz portfolio. For values
of � lower than the smallest eigenvalue, the SC portfolio is identical to the classical
sample-based portfolio.
The Landweber-Fridman regularization technique can be implemented in two equiv-

alent ways. Either we perform a certain number l of iterations or we transform the
eigenvalues using the function q(1

l
; �). Consequently, a larger number of iterations cor-
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responds to smaller value the penalty term � that belong to interval ]0; 1[. Besides, for
a large number of iterations (� � 0) the regularized portfolio x̂� obtained becomes very
close to the sample-based optimal portfolio x̂. In the Landweber-Fridman case we seek
the optimal number of iterations so that x̂� is the closest to the theoretically optimal
rule x�. In the ill-posed case we typically have a very few number of iterations which
corresponds to a value of � close to one. That is, x̂� is far from the Markowitz allocation
x̂ known to perform very poorly.
The e¤ect of tuning the penalty � in the l1-penalized regression have been extensively

studied Brodie et al (2009). Our approach is di¤erent in the fact that the portfolio we are
interested in is the tangency portfolio which can be derived up to a normalization using
an unconstrained regression. We solve this problem using the unconstrained version of
the Homotopy/Lars Algorithm (see Appendix for a detailed description). For a given
value of the penalty term, the algorithm determine the number of assets (from 1 to N)
to be included in the portfolio as well the weights associated up to a normalization.
For illustration, Figure 1 plots the portfolio weights constructed using the 10 industry
portfolios from Fama and French data library, against the penalty term. The data set
used is the French 10 industry Portfolios from January 1990 to September 2009. We seek
to determine the portfolio weights associated with each of the 10 industry portfolios. The
case � = 0 corresponds to the sample-based tangency portfolio. The higher the penalty
the smaller the number of industries included in the optimal portfolio. Furthermore,
there exists a threshold (here � � 3:3) beyond which all the industry portfolios are ruled
out. By order of entrance in the optimal portfolio, the industry considered are: HiTec,
Enrgy, Hlth, NoDur, Other, Durbl, Shops, Telcm and Utils.

Figure 1: Evolution of the tangency portfolio weights with the penalty term � values.
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Figure 2 gives an idea of the shape of the GCV for a single series with N = 100
and T = 120. In our computations, the GCV for the Rdg the SC and the LF portfolios
are minimized respectively with respect to � , the number p of eigenvectors kept in the
spectral decomposition of returns covariance matrix, and the number of iterations l.

Figure 2: GCV as function of regularization parameters for the Ridge, the SC and the LF
schemes. In this �gure we consider a model with N=100 assets and T=120 observations
of asset returns. The minima are obtained for � = 0:04; p = 3; l = 5.

6.3 In-sample performance

We perform 1000 replications. In each of the replications, model (12) is used along with
the parameters in Table 1 to generate T = 120 monthly observations of N = 100 asset
excess returns. This setting corresponds to an ill-posed case with a large number of assets
and a number observations relatively small. We compare three di¤erent versions of the
Sharpe ratio. The theoretically optimal Sharpe ratio SR (x�) =

p
�0��1� � SR� using

the theoretically optimal weights x�, the actual Sharpe ratio that results from using
regularized strategies SR (x̂� ) =

x̂0��p
x̂��x̂�

and the empirical Sharpe ratio SRT (x̂� ) =
x̂0� �̂p
x̂0� �̂x̂�

obtained using regularized portfolio and sample-based moments. We report

descriptive statistics on the Sharpe ratios across replications in Tables 3 and 4.
Tables 3 and 4 display descriptive statistic on empirical and actual Sharpe ratios

obtained through replications. It appears that the Markowitz sample-based strategy
does not provide the best actual Sharpe ratio as stressed in the literature. Clearly when
no regularization is used there is a huge discrepancy between the empirical Sharpe ratio
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and the actual Sharpe ratio. Precisely using the mean-variance strategy, we obtain an
empirical version of the Sharpe ratio which is overly optimistic. This is consistent with
the observation made by Fan et al (2009) concerning empirical risk: the empirical risk
is under evaluated when no constraint on portfolio weights is imposed implying an over
evaluation of the Sharpe ratio. Consequently, using the empirical Sharpe ratio may lead
to wrong conclusions. On the other hand, using the Rdg, SC or LF optimal strategies
we propose, the discrepancy between the empirical and the actual Sharpe ratio is greatly
reduced and the resulting investment rules become very close to the theoretically optimal
portfolio. For instance, the true Sharpe ratio is SR = 0:1847 and the actual Sharpe
ratio for the Rdg, SC and the LF are on average respectively 0:15775, 0:16891 and
0:15316. So on average we get Sharpe ratio higher than the Sharpe ratio provided by
the 1 over N rule except for the LF which remains of a comparable order. Concerning
the Lasso, the regularized portfolio obtained performs better than the sample-based
Markowitz portfolio but is still far from what is theoretically optimal. Patently, the
adaptation of GCV criterion proposed by Tibshirani (1996) does not provide a good
approximation to the Lasso penalty term that minimizes the MSE of allocations in
presence of a large number of assets relative to the sample size. An alternative way
to proceed is to consider a two-stage procedure. That is apply the Rdg, the SC or
the LF scheme to subsets of assets selected by the Lasso and then select the portfolio
that maximizes the Sharpe ratio over subsets of assets. Simulations show that using
the Lasso �rst and then applying Rdg, SC or LF regularization techniques reduce the
number of assets and provides better results than the case where the regularization is
directly applied to the whole set of assets.

6.4 Monte Carlo assessment of GCV

A question that we seek to answer through simulations is whether the generalized cross
validation (GCV) criterion minimizer is a good approximation of the theoretically op-
timal � that minimizes the MSE of allocations. To address this issue, we use the 1000
samples generated in the previous section (N = 100 and T = 120). For each of the
samples, we compute the GCV as a function of � and determine its minimizer �̂ . We
provide some statistics for �̂ in Table 5.
To compute the MSE of �̂ , we need to derive the true optimal regularization para-

meter � 0. To do so, we use our 1000 samples to approximate � 0 as the minimizer �̂ 0 of
the sample counterpart of the MSE of allocations:

Ê
�
kR (bx (�)� x�)k2

�
where Ê is an average over the 1000 replications and x� is the true optimal allocation.
This �rst step provides us with an estimation of the true parameter which is a function
of the number of assets N and the sample size T under consideration.
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Simulations reported in Table 5 show that the minimizer of the GCV function is
indeed a good approximation to the minimizer of the theoretical mean squared error of
allocations. For each regularization scheme the true optimal parameter is approximated
by the value that minimizes the sample counterpart of the MSE of allocation. In general,
regularization parameters have a relatively small variability across replications and they
are accurate in the sense that they are close to the estimations of their theoretical value.
Indeed, the Rdg optimal penalty term has a standard deviation of order 10�3 and a
mean squared error of order 10�5. In the SC case, the GCV criterion selects often p = 3
which is the minimizer of the theoretical MSE, namely the number of factors used.
Concerning the Landweber-Fridman approach, the optimal allocations are obtained on
average after l = 6 iterations which is consistent with the average number of iterations
6:20 that minimizes the GCV. However the facts that more 25% of samples have required
more than 7 iterations and that the MSE of l is equal 10 indicate the presence of outliers.
This is most likely due to the small sample size.

6.5 Out-of-sample performance

From now on, we adopt the rolling sample approach in Mackinlay and Pastor (2000)
and DeMiguel et al (2007). Given a dataset of size T and a window size M , we obtain
a set of T �M out-of-sample returns, each generated recursively at time t+1 using the
M previous returns. The time series of out-of-sample returns obtained can then be used
to compute out-of-sample performance for each strategy. As pointed out by Brodie et al
(2009), this approach can be seen as an investment exercise to evaluate the e¤ectiveness
of an investor who bases his strategy on the M last periods returns and a given optimal
strategy.
First we generate a single sample with 40 asset returns and T = 1000monthly returns

to which we apply the rolling window strategy described above. We compare the naive
evenly weighted portfolio, the Markowitz sample-based portfolio, the optimal Ridge
portfolio and we represent the mean variance frontier from the true moments, from the
estimated moments (in sample using 1000 time periods) and estimated moments out-of-
sample using 120 time periods in Figure 3. The Ridge uses the true value of � obtained
via 10000 replications of samples with N = 40 and T = 120: The objective of this �rst
experiment is to have more insights about the e¤ect of regularization by comparing with
theoretically optimal portfolios obtained using the known true moments of asset returns.
Figure 3 shows how dramatic estimation errors can a¤ect the optimality of the mean

variance optimizer. Even by using all the 1000 months available there is still huge
discrepancy between the theoretically optimal mean-variance frontier and the estimated
ones. The e¤ect are even worse when estimation is done using a rolling windows of size
M=120. In this case, we can see that the sample based optimal Markowitz portfolio
can be very far from the tangency portfolio. The main message from Figure 3 is that
regularization reduces the distance between the sample based tangency portfolio and
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the theoretical tangency portfolio.
In the �nal set of simulations we use the generalized cross validation criterion to

determine the optimal tuning parameter for the Ridge, the spectral cut-o¤ and the
Landweber-Fridman. The resulting investment rules are then compared with respect
to their out-of-sample Sharpe ratios. We use a sample size of T = 1000 and rolling
windows length M = f60; 120g months which correspond respectively to �ve and ten
years.
Table 6 reports the out-of-sample Sharpe ratio of strategies listed in table 2 for

sub-periods extending over 5 years each. Optimal value for regularization parameter
are obtained by minimizing the GCV. These Sharpe ratios re�ect the performance an
investor would have if he were trading on assets generated by model (12). It appears
that whith respect to the sharpe ratio they generate, the three rules Rdg, SC and LF
tremendously improve the Markowitz portfolio and even outperform most of the time
the naive investment rule. The lasso strategy using the approximated GCV do not
provide considerable improvement to the Markowitz portfolio as noticed in the in-sample
simulation excercise. Table 7 displays the outcome of simulated investment exercise that
use a larger estimation window M = 120. The same conclusions as in the case M = 60
hold.

7 Empirical Application

In this section we apply the methodology we propose to historical monthly returns on
48 industry sector portfolio (abbreviated to FF48 ) compiled by Fama and French .
This dataset ranges from July 1969 to June 2009. As previously, the optimal portfolios
listed in Table 2 are constructed at the end of June every year from 1974 to 2009 for a
rolling window of size M = 60 months and from 1979 to 2009 for a rolling window of
size M = 120. The risk free rate is taken to be the one month T-bill rate. We use an
appropriate range for � to carry out our optimizations depending on the regularization
scheme. For the Ridge we use a grid on [0; 2], for the SC the parameter p ranges from 1
to pmax = N�1 while for LF we use a maximal number of iterations equal to lmax = 20.
For instance for M = 60 our �rst portfolios are constructed in June 1974. From the
T �N matrix of excess returns R, empirical mean �̂, and regularized inverse matrix of
excess returns �(�) are computed using historical returns from July 1969 to June 1974.
We then deduce the tangency portfolio for each of the optimal rules. The portfolio
obtained is kept from July 1974 to June 1975 and its returns recorded. We repeat the
same process using data from July 1970 to June 1975 to predict portfolio return from
July 1975 to June 1976. The simulated investment exercise is done recursively until the
last set of portfolio constructed at the end of June 2009.
From Tables 8 to 10, we see that using a regularized portfolio is a more stable

alternative to the Markowitz sample-based portfolio. In this empirical study the LF
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Figure 3: E¤ect of regularization using the the sample counterpart of the minimizer of
the MSE of allocations.
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turns out to perform the best. However the performance of these regularized portfolio
are not as good as in case where we suppose that excess return follow the market model.
This may be explained by the fact many characteristics of returns are not taken into
account while solving the mean-variance optimization problem.

8 Conclusion

In this paper, we address the issue of error estimation in the framework of the mean-
variance analysis. We propose to regularize the portfolio choice problem using regu-
larization techniques from inverse problem literature. These regularization techniques
namely the ridge, the spectral cut-o¤, and Landweber-Fridman involve a regularization
parameter or penalty term whose optimal value is selected to minimize the mean squared
error of allocations. We show that this is equivalent to select the penalty term as the
minimizer of a generalized cross validation criterion.
Our simulations and empirical study show that in ill-posed cases a regularization to

covariance matrix drastically improve the performance of mean-variance problem and
in many cases outperforms the naive portfolio and Lasso portfolios. The methodology
we propose can be used as well for any investment rule that requires an estimate of
the covariance matrix and given a performance criterion. The appeal of the investment
rules we propose is that they are easy to implement and provide comparable and very
often better results than the existing asset allocation strategies.
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Table 3: Descriptive statistics of the empirical Sharpe ratio derived from 1000 replica-
tions and using a three-factor model (SR� = 0:1847)

Empirical Sharpe ratio for Optimal strategies
Statistics 1oN M Lasso Rdg SC LF

Mean 0.13519 0.39758 0.48643 0.53786 0.28921 0.18064
Std 0.00831 2.36727 0.90460 0.18107 0.04421 0.01918
mse 0.00252 5.64370 0.90853 0.15748 0.01288 0.00038
q1 0.12972 -2.16625 0.28526 0.35823 0.26490 0.16927

median 0.13526 1.91352 0.86901 0.51813 0.29331 0.17705
q3 0.14047 2.43239 1.08892 0.71851 0.31593 0.18790

Table 4: Descriptive statistics of the actual Sharpe ratio derived from 1000 replications
and using a three-factor model (SR� = 0:1847)

Actual Sharpe ratio for Optimal strategies
Statistics 1oN M Lasso Rdg SC LF
Mean 0.15503 0.00565 0.04094 0.15775 0.16891 0.15316
Std 0.00000 0.02215 0.05389 0.00605 0.01111 0.00149
mse 0.00088 0.03255 0.02357 0.00076 0.00037 0.00100
q1 0.15503 -0.01063 0.02514 0.15328 0.15896 0.15218

median 0.15503 0.00734 0.05274 0.15885 0.17385 0.15307
q3 0.15503 0.02304 0.07129 0.16258 0.17855 0.15414
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Table 5: Descriptive statistics of optimal regularization parameters obtained from the
1000 samples usind a three factor model

Regularization �̂ 0 Mean Std mse mode q1 median q3
Rdg (�) 0.03 0.0344 0.0329 0.0011 0.01 0.01 0.02 0.05
SC (p) 3 3.661 3.0851 9.945 3 2 3 4
LF (l) 6 6.207 3.2503 10.597 5 4.5 5 7

Period 1oN M L Rdg Sc LF
t=61-120 -3.3 4.1 -2.0 5.3 0.7 4.8
t=121-180 22.8 -3.3 4.8 22.8 21.8 23.9
t=181-240 -1.0 7.3 -15.4 -2.3 -1.0 -6.1
t=241-300 7.7 4.4 -9.2 2.5 7.3 5.5
t=301-361 26.2 17.4 21.0 26.4 26.0 26.5
t=361-420 17.8 15.3 -22.0 22.2 15.8 16.9
t=421-480 10.6 10.5 -7.1 9.2 4.9 10.3
t= 481-540 4.3 -4.8 -23.7 -3.6 3.4 -1.5
t= 541-600 51.3 19.0 5.5 34.8 39.3 32.9
t= 601-660 9.1 5.4 5.2 8.2 8.7 8.6
t= 661-720 15.3 8.3 -17.9 14.0 15.2 10.1
t= 721-780 19.1 -8.9 -7.6 19.6 16.7 19.8
t= 781-840 0.8 -2.2 6.8 7.1 6.1 1.2
t= 841-900 11.7 7.2 -6.3 9.1 22.7 6.7
t= 901-960 5.8 -6.8 -1.3 6.6 5.6 0.6

Table 6: Out-of-sample Sharpe-ratio in percent from simulated data using a rolling
window of size 60 months .
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Period 1oN M L Rdg Sc LF
t=121-240 11.0 -7.5 -5.9 12.1 9.9 11.3
t=240-360 16.1 -8.2 0.0 16.6 15.8 16.6
t=361-480 14.4 -2.9 2.6 12.3 10.0 10.6
t=481-600 23.9 -5.2 22.9 25.2 18.8 20.4
t=601-720 11.9 -0.4 0.4 11.9 13.1 12.5
t=721-840 11.1 11.9 0.1 9.5 12.8 15.6
t=841-960 8.4 2.9 -3.1 9.9 13.1 8.2

Table 7: Optimal portfolio out-of-sample Sharpe ratios using a rolling windows of size
10 years

Period 1oN M Ns Rdg Sc LF
07/36 - 06/46 16.3 -3.8 15.8 15.3 -12.0 15.7
07/46 - 06/56 28.9 14.6 31.8 29.5 29.5 29.3
07/56 - 06/66 23.8 4.4 23.6 22.2 17.1 21.5
07/66 - 06/76 3.1 -9.1 3.6 4.8 1.8 4.8
07/76 - 06/86 16.8 -4.4 19.1 17.9 8.1 17.9
07/86 - 06/96 17.2 6.1 12.2 15.8 10.8 16.5
07/96 - 06/06 14.2 3.0 19.6 11.7 11.8 12.1

Table 8: Performances in term of Sharpe ratio(%) for FF10 using a rolling window
length of 10 years

Period 1oN M Ns Rdg Sc LF
07/69 - 06/74 13.3 8.0 3.9 13.2 -26.1 28.0
07/74 - 06/79 10.7 -28.8 13.0 8.8 5.0 12.3
07/79 - 06/84 18.2 13.0 2.8 29.5 27.4 20.7
07/84 - 06/89 10.8 3.3 -3.9 4.9 -20.4 11.0
07/89 - 06/94 29.1 4.3 18.6 34.2 29.7 32.8
07/99 - 06/04 7.7 3.8 -11.7 7.4 17.3 8.7
07/04 - 06/09 -1.2 -24.9 3.4 -1.9 -9.1 2.2

Table 9: Performances in term of Sharpe ratio(expressed in %) for FF48 using a rolling
window length of 5 years
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Period 1oN M Ns Rdg Sc LF
07/69 - 06/79 14.7 -1.8 14.4 13.3 14.9 13.2
07/79 - 06/89 20.0 -5.7 26.3 24.3 16.9 21.9
07/89 - 06/09 2.7 -4.9 -0.4 -5.6 -9.8 -0.6

Table 10: Performances in term of Sharpe ratio(%) for FF48 using a rolling window
length of 10 years
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Appendix A: Homotopy - LARS Algorithms for penalized least-squares
Homotopy (Continuation) is a general approach for solving a system of equation by

tracking the solution of nearby system of parametrized equation. In the penalized Lasso
case the Homotopy variable is the penalty term. We give below a detailed description
of the Homotopy/LARS algorithm which provides the solution path to the l1-penalized
least-squares objective function:

~x(�) = argmin
x
ky �Rxk22 + � kxk1 :

The solution to this minimization problem ~x(�) is provided as a continuous piecewise
function of the penalty � satisfying the variational equations given by:�

(R0(y �Rx))i =
�
2
sgn(xi) xi 6= 0

j(R0(y �Rx))ij � �
2

xi = 0

Meaning that the residual correlations bi = (R0(y �Rx))i corresponding to non
zero weights are equal to �=2 in absolute value, while the absolute residual correla-
tion corresponding the zero weights must by bounded by �=2. Throughout the al-
gorithm, it is critical to identify the set of active elements, that is the components
with non zeros weights. At a given iteration k of the algorithm this set is denoted by
Jk =

n
i for which jbij = �k

2

o
, and also corresponds to the set of maximal residual cor-

relations components.

The algorithm starts with an initial solution satisfying the variational equations,
for a penalty term suitably chosen. The obvious initial solution is obtained by setting
all the weights to zeros. The corresponding penalty term � 0, must then satisfy � 0 �
2maxi j(R0y)ij. Hence we have that ~x(�) = 0 for all � � � 0. This allow us to set
J1 = fi�g, where i� = argmaxi j(R0y)ij.
From one iteration k to the next the algorithm manages to update the active set

Jk, which represents the support of ~x(� k), so that the �rst-order conditions remains
satis�ed. Hence in each iteration k + 1, the vector b decreases at the same rate 
k+1 in
the active set to preserve the same level of correlation for active elements.

(bk+1)Jk+1 = (b
k)Jk+1 � 
k+1(sign(bk))Jk+1
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This result is obtained by updating the optimal weights while moving along a walking
direction uk+1:

x(� k+1) = x(� k) + 
k+1uk+1

Denote RJ the submatrix consisting of the columns J of R, the walking direction
un+1 is a solution to a linear system:

R0Jk+1RJk+1(u
k+1)Jk+1 = (sgn(b

k)Jk+1) =
�
sgn(bkj )j2Jk+1

�
= vk+1

The remaining components of uk+1 are set to zero that is:

uk+1i = 0 for i =2 Jk+1
The step 
k+1 to make in direction u

k+1 to �nd x(� k+1) is the minimum value such
that an inactive element becomes active or the reverse.
If an inactive element i becomes active, it means that its correlation reached the

maximal correlation in the descent procedure. And then is must be case that:��bki � 
k+1r0k+1i

�� = ��(bk)Jk+1 � 
k+1vJk+1
�� = � k+1 =

� k

2
� 
k+1

with ri is the ith column of R. This implies that:


k+1 =
�k

2
� bki

1� r0k+1i

or 
n+1 =
�k

2
+ bki

1 + r0k+1i

The optimal step is then given by :


k+1+ = min
i2Jc

+

(
�k

2
� bki

1� r0k+1i

;
�k

2
+ bki

1 + r0k+1i

)
On the other hand, if 
n+1 is such that an active element i reaches zero then (??)

implies that:


k+1� = � xki
uk+1i

The smallest step to make so that an element leaves the active set:


k+1� = min
i2Jk+1

+

�
� xki
uk+1i

�
Finally the next step is given by:


k+1 = min
�

k+1+ ; 
k+1�

	
At the end of each stage the corresponding penalty term is � k+1 = � k � 2
k+1 which

is smaller than � k. We stop when � k+1 becomes negative. After q + 1 iterations the
Algorithm provides q + 1 breakpoints � 0 > � 1 > � � � > � q and their corresponding
minimizers x(� i). From there, the optimal solution for any � can be deduced by linear
interpolation.
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