
Political motivations and electoral competition:

Equilibrium analysis and experimental evidence∗

Michalis Drouvelis† Alejandro Saporiti‡ Nicolaas J. Vriend§

August 26, 2011

Abstract

We study both theoretically and experimentally the complete set of Nash equi-

libria of a classical one-dimensional, majority rule election game with two candi-

dates, who might be interested in power as well as in ideology, but not necessarily

in the same way. Apart from obtaining the well known median voter result and

the two-sided policy differentiation outcome, the paper uncovers the existence of

two new equilibrium configurations, called ‘one-sided’ and ‘probabilistic’ policy dif-

ferentiation, respectively. Our analysis shows how these equilibrium configurations

depend on the relative interests in power (resp., ideology) and the uncertainty about

voters’ preferences. The theoretical predictions are supported by the data collected

from a series of laboratory experiments, as we observe convergence to the Nash

equilibrium values at the aggregate as well as the individual levels in all treat-

ments, and the comparative statics effects across treatments are as predicted by

the theory.
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1 Introduction

The spatial theory of electoral competition begins with the seminal contributions of

Hotelling (1929) and Downs (1957). The basic model considers a majority rule election

where two political candidates compete for office by simultaneously and independently

proposing a platform (e.g., an income tax rate) from a unidimensional policy space. The

predictions of this model with respect to the policy platforms that could emerge in equi-

librium depend crucially on candidates’ motivations for running for office.

In this respect, the existing literature has almost always focused on a simple scenario

where candidates possess identical electoral motivations. Moreover, it has frequently

assumed as well that candidates are single-minded, in the sense that they are solely

concerned about either winning the election and being in power or, alternatively, about

the ideological position of the winning policy. We argue in this paper that, as a result of

these simplifications, the theory has overlooked other interesting equilibrium predictions

of the model, which we also show can be empirically supported with experimental data.

To be clear, the traditional assumptions about candidates’ motivations do indeed

provide significant insights on the possible outcomes of the electoral processes. Starting

with the famous median voter result, the theory shows that if both candidates are purely

opportunistic, in the sense that they choose their platforms with the sole purpose of

maximizing the probability of winning the election, then so long as they share a common

prior about the location of the median voter’s preferred policy, the equilibrium platforms

always converge to the center of the policy space; specifically, they coincide with the

estimated median ideal point (Hotelling 1929; Downs 1957; Calvert 1985).1

By contrast, in the opposite case where both candidates are purely ideological and

they select their platforms to minimize the utility loss generated by the distance between

the location of the winning policy and their respective preferred positions or ideologies,

the equilibrium platforms converge to the median ideal point only if the median voter’s

location is known with certainty (Calvert 1985; Roemer 1994). Otherwise, the election

still has an equilibrium in pure strategies, but the corresponding platforms lie down on

opposite sides of the estimated median position. (Roemer 1997).2

In this paper, we reconsider the equilibrium analysis of electoral competition by re-

laxing the previous hypotheses on candidates’ motivations. To be more precise, we study

a basic election game in which candidates are allowed to be concerned not only about

1When candidates receive private signals about voters’ preferences before choosing their platforms, as
happens for example in the presence of private polling, the equilibrium is different, but policy platforms
are still centrally located. See Bernhardt, Duggan and Squintani (2007, 2009a) for further details.

2Morton (1993) illustrates this type of two-sided policy differentiation equilibrium offering experimen-
tal evidence that suggests that uncertainty over voters’ preferences is a major determinant of platform
divergence when candidates are ideological.
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winning the election, but also about the policy implemented afterwards, and not neces-

sarily in the same way. This assumption, sometimes called mixed or hybrid motivations,

was first suggested by Calvert (1985), and it has been recently used in a number of pa-

pers, such as Ball (1999), Groseclose (2001), Aragones and Palfrey (2005), Duggan and

Fey (2005), Saporiti (2008), Callander (2008), and Bernhardt, Duggan and Squintani

(2009b). To the best of our knowledge, however, a full characterization of the set of Nash

equilibria in the basic model is missing in the literature. The main goal here is precisely

to fill that gap, and to test the theoretical predictions experimentally.

The main results obtained in this paper can be summarized as follows. When the

value of being in office is the same for the two candidates, we find that both players

announce either (i) a platform located on the estimated median ideal point (policy con-

vergence) if the electoral uncertainty is low compared with the interest in office, or (ii)

a platform located on their own ideological side (two-sided policy differentiation) if the

uncertainty is high.3 When, instead, candidates have asymmetric motivations, we still

get that equilibrium platforms converge to the estimated median voter’s ideal point for

low levels of uncertainty. However, when the uncertainty increases (as the length of the

interval over which the median is distributed increases), an equilibrium in pure strategies

fails to exist. In this region, both candidates randomize optimally on one side of the

median to avoid being copied and undercut by their rival (probabilistic differentiation).

As the electoral uncertainty continues to increase, a pure strategy equilibrium is eventu-

ally reestablished and the two candidates assign all of the probability mass to a different

platform. These are located initially on the same ideological side (one-sided policy differ-

entiation), and then, as uncertainty further increases, on each candidate’s own political

ground (two-sided differentiation).

These theoretical results are supported by the experimental data we collect from a

series of laboratory treatments. Firstly, we find in all treatments that the median behav-

ior of the left- and the right-wing subjects converge to the Nash equilibrium values. This

happens even in the probabilistic differentiation treatment, with a unique mixed strat-

egy equilibrium (MSE). In that treatment, we observe that not only subjects’ choices

approximate the bounds and the median of the MSE support, but also that the empir-

ical cumulative distributions are close to the theoretical ones, with the the cumulative

distribution of the left-wing players first-order stochastically dominating the distribution

of the right-wing players.

Secondly, in the symmetric motivations treatments, we note that the 95% confidence

intervals we construct around the medians shrink over time as well, indicating behavior

3In this paper, candidates’ preferred policies are assumed to be distributed on either side of the
median ideal point, so that the ideology of one candidate lies on the left and the other on the right.
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that is consistent with the Nash equilibrium not only at the aggregate level but also at

the individual level. In the asymmetric treatments, with one-sided policy differentiation

in either pure or mixed strategies, some noise in the individual choices persists even after

sixty rounds (elections) of play. However, this is consistently skewed to the center of the

policy space, and it diminishes over time.

Thirdly, we find that subjects’ learning takes place mainly within the first ten periods

(elections), and that most of that learning does not vanish as subjects interchange their

roles between candidates of different ideologies. Finally, in line with the theory, the

comparative statics analysis across treatments confirm the theoretical predictions that

(i) an increase in the electoral uncertainty leads to an increase in policy divergence; (ii)

policy convergence is reestablished as both candidates become more office-motivated;

(iii) the extent of the empirical policy differentiation on either side of the median is

independent of candidates’ ideologies; and (iv) an asymmetric increase in candidates’

interests in power leads to policy differentiation on one side of the median.

To conclude this section, we briefly discuss the main motivations for carrying out this

research. First, from a conceptual point of view, the mixed motivations hypothesis is

unquestionably more realistic than the alternative hypotheses mentioned before. In a

modern democracy, it probably emerges naturally from the fact that candidates are usu-

ally representatives of complex political organizations. To elaborate, in real world politics

to actually reach the stage of being in competition for public office, citizens must first

be nominated candidates within the political parties; and for that to happen they need

the support of regular party members, who are arguably much more concerned about

the policies implemented after the election than about the actual winner of the contest.

Thus, although politicians as other professionals might be more interested in their ca-

reers and, therefore, in winning the elections, it seems reasonable to expect that policy

considerations will also enter into the candidate’s payoff function with some weight.4

Obviously, these weights need not be the same for all candidates. They could depend,

for instance, on the specific features of the political organization that the candidate

represents, such as the number of regular members, the level of activism within the

organization, the internal process to nominate candidates, etc. The value of winning

the election might also vary depending on whether the party of the candidate is the

incumbent in office or a challenger. In any case, the point to stress is that, as some

casual evidence seems to point out, asymmetric electoral motivations might appear in

reality quite frequently as well.5

4Morton (1993), for instance, reports that experimental subjects place in the laboratory a weight of
approximately 32 per cent on winning the election, and 68 per cent on the expected utility derived from
the position of the implemented platform.

5An interesting case in that regard is the Radical and the Peronist Parties in Argentina, which have
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Second, from a theoretical point of view, the mixed motivations hypothesis has been

shown to have important implications for the predictive power of the theory of electoral

competition. In effect, Ball (1999) finds out that, due to the discontinuities of the payoff

functions created by the mixed motivations, the electoral contest with hybrid motives

does not always possess a Nash equilibrium in pure strategies. This problem is further

examined in Saporiti (2008), which shows that the blame for the instability can be en-

tirely attributed to candidates’ asymmetric motives.6 Obviously, all this stands in sharp

contrast with what happens in the extreme cases, where a pure strategy equilibrium

always exists. Thus, it shows that the mixed motivations assumption is not vacuous.

Apart from offering a more realistic description of electoral competition, the hybrid case

provides a deeper understanding of it, uncovering features of the electoral process that

cannot be appreciated in the extreme scenarios.

Finally, from an empirical point of view, this paper adds to the experimental literature

on electoral competition, which has traditionally focused on testing platform convergence

in the classical Downsian model with office-motivated candidates, ignoring the testable

implications of other configurations of equilibrium platforms that emerge under the al-

ternative hypotheses of candidates’ motivations.7 To the best of our knowledge, the

only attempt in the literature to assess experimentally the implications of the ideological

motivations was carried out by Morton (1993). But even in that article the analysis is

confined to the symmetric and single-minded scenario. Our paper in this sense is the first

one to fully examine in the lab the whole set of Nash equilibria, studying in a rich set

of treatments not only convergence of subjects’ behavior to the theoretical predictions,

but also learning and a number of comparative statics effects resulting from changing the

relative interests in power (resp., ideology) and the information about voters’ preferences.

The rest of the paper is organized as follows. After briefly reviewing in Section 2 a

number of papers closely related to our work, Section 3 presents the theoretical model.

In Section 4 we derive the theoretical results, which are proved in Appendix A. Section

5 describes the experimental design. Section 6 displays the experimental evidence and

discusses the empirical findings, which are classified in equilibrium convergence (Section

6.1), learning (Section 6.2), and comparison between treatments (Section 6.3). Additional

data is provided in Appendix B. The paper ends in Section 7 with some final remarks.

been a major inspiration for this paper. These two parties are the main political actors of the country.
The Radical Party has been ever since its creation a strongly ideological party, whereas the Peronism has
been a “movement,” as Perón used to call it, basically motivated by being in power. Another example
seems to be the Labour and the Conservative Parties in the UK during the years of Tony Blair.

6To be precise, the paper shows that in the mixed but symmetric motivation case, an equilibrium in
pure strategies not only exists, but it is also unique.

7See McKelvey and Ordeshook (1990) for an overview of the early findings, and Schram (2002) and
Palfrey (2005) for a more recent update.
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2 Related literature

The literature on electoral competition is vast. We focus here only on those papers that

are most relevant for our work. For a more comprehensive review, the suggested references

are Osborne (1995), Roemer (2001) and Austen-Smith and Banks (2005).

On the theoretical front, this paper relates to two segments of the existing literature

that deal with, respectively, elections with mixed motivations, and elections with advan-

taged candidates. In the first segment, we said already that the first reference is Calvert

(1985), though he does not go beyond offering a continuity result according to which

small departures from office motivation and certainty lead to only small departures from

policy convergence. Ball (1999), Saporiti (2008), and Bernhardt et al. (2009b) further

examine the implication of the assumption. The first two papers focus on equilibrium

existence rather than the nature of the equilibrium policies, whereas the latter analyzes

mainly the implication of symmetric mixed motivations on voters’ welfare.

In addition to these articles, there is a large number of papers that adopt the mixed

motivations assumption and simultaneously add other features to the basic framework. To

mention a few, Aragones and Palfrey (2005) study a general incomplete information model

of candidate quality allowing for heterogeneity in valence, ideology, and motivations. Cal-

lender (2008) considers a model with either policy or office motivated candidates, private

information about candidates’ types, and partial commitment at the electoral stage. In

a more significant departure, Roemer (1999) analyzes a model where parties represent

different constituencies, or economic classes, with well defined policy preferences. Parties

are also integrated by opportunistic individuals who desire only to win office. Roemer

assumes that each party must reach inner-party unanimity to formulate a proposal, and

he proves the existence of a so called party unanimity Nash equilibrium. Finally, Snyder

and Ting (2002) model political parties as informative brands to voters, in a setup where

candidates are driven by achieving office and, if elected, policy, and they need parties to

credibly signal their true policy preferences.

Insofar as a relatively more office-motivated candidate has in equilibrium a higher

probability of winning the election, this paper is also connected with the literature on

elections with advantaged candidates. As Peress (2010) reckons, the theoretical literature

on two candidate electoral competition is dominated by symmetric contests. However,

starting with Ansolabehere and Snyder (2000), Groseclose (2001), and Aragones and

Palfrey (2002), there is now a sizeable literature that analyzes candidates’ behavior in

the presence of valence advantage. This includes the previous four articles plus several

recent papers, such as Kartik and McAfee (2007), Ashworth and Bueno de Mesquita

(2009), Iaryczower and Mattozzi (2009), and Hummel (2010), among others. An inter-
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esting feature in some of these works is that, as happens in our case, equilibria in mixed

strategies emerge because the advantaged candidate is willing to copy the position of the

disadvantaged one, forcing the latter to randomize in order to not be predictable.

On the empirical front, our paper relates to the experimental literature in political

economy that analyzes elections and candidate competition. First, there is a number of

early laboratory tests, surveyed by McKelvey and Ordeshook (1990), that analyze the

hypothesis of policy convergence to the median ideal point in the Downsian framework

with purely office-motivated candidates. The stylized fact emerging from these studies

is that convergence to the median voter occurs irrespective of the level of information

(complete or incomplete) on ideal points and payoffs.

This early research has been later complemented by Morton (1993), who conducts a

laboratory experiment to assess the hypothesis that platforms diverge when candidates

are purely ideological and there is uncertainty about voters’ preferences. She finds signif-

icant divergence in candidate positions, but less than the theory predicts, suggesting that

subjects might enjoy non-monetary benefits from winning the election. More recently,

Aragones and Palfrey (2004) report experimental results about the effects of valence

asymmetries on the location of the equilibrium policies. In line with the theory, the

experimental evidence demonstrate that (i) candidates diverge from the center, with the

weaker candidate diverging more than the stronger candidate; and (ii) as the distribution

of voters becomes more spread out, both candidates go back to the the center.

Finally, to the extent that some of the equilibria in the asymmetric motivation case

are in mixed strategies, this paper also adds to the experimental economics literature

that looks at how individuals behave in games with mixed strategy equilibria. Camerer

(2003, ch. 3) provides an overview of the most relevant papers, with the main message

being that although aggregate behavior is usually close to the equilibrium predictions,

there are still significant deviations from them.

3 The Model

Two political candidates, indexed by i = L,R, compete in a winner-take-all election by

simultaneously and independently announcing a platform xi ∈ X = [0, 1]. The electorate

is made up of a continuum of voters. Each voter is endowed with a preferred policy or

ideal point θ ∈ X, and with a preference relation over X represented by the utility (loss)

function uθ(x) = −|x− θ|, where | · | denotes the absolute value on R.
Due to the nature of voters’ preferences (single-peaked and symmetric around θ), for

every pair of proposals (xL, xR) ∈ X2 each voter votes sincerely for the platform closer

to its ideal point, voting for the alternatives with equal probabilities when indifferent.
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Given that there are only two candidates in this model and that each candidate enacts its

proposed policy once elected, the assumption of sincere voting doesn’t entail a significant

loss of generality, because voting for the candidate whose position turns out to be the

most preferred one is a weakly dominant strategy for each voter.

As is usual in the literature, candidate i wins the election if its platform xi gets more

than half of the votes, with ties broken by a fair coin toss. Apart from this uncertainty

due to the possibility of a tie, candidates also have uncertainty about voters’ preferences.

We assume that the median voter’s ideal point, denoted by θm, is uniformly distributed

over [1/2 − β, 1/2 + β], with β > 0. This may be due to the fact that either (i) vot-

ers’ preferences are fixed, but candidates perceive the fraction of types supporting their

respective platforms with some noise, as happens for example in Roemer (2001, p. 45);

or because (ii) voters’ preferences actually change after candidates have announced their

platforms, as is the case in Bernhardt, Duggan, and Squintani (2009b).

Regardless of the interpretation given to the model of electoral uncertainty, it tran-

spires from our assumptions that the probability that candidate L attaches to win-

ning the election is given by p(xL, xR) = Prob
(
θm ∈

[
0, xL+xR

2

])
if xL ≤ xR, and by

p(xL, xR) = Prob
(
θm ∈

[
xL+xR

2
, 1
])

if xL > xR. Candidate R’s probability of winning is

obviously 1− p(xL, xR). Fig. 1 displays the domain of p(·) and the different expressions

of this function depending on the region of the strategy space X2 under consideration.
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Figure 1: Probability of winning function for candidate L.

Lemma 1 For any two platforms xL < xR (resp., xL > xR), p(xL, xR) is non-decreasing

(resp., non-increasing) in xi, for all i = L,R.
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Lemma 1, whose proof follows immediately from the definition of p(·) and is therefore

omitted, reflects the spatial nature of electoral competition. Roughly speaking, it ensures

that if one candidate moves its platform toward that of its opponent, then it does not

decrease (and may increase) the probability with which it wins the election. Likewise,

if it moves its platform away from its opponent’s, then it does not increase (and may

decrease) its probability of winning. Similarly, if a candidate’s opponent moves toward

(away from) the candidate’s own platform, then the probability of winning does not

increase (decrease).We invoke this result several times in the proofs.

As we said in the Introduction, candidates possess mixed or hybrid motives for running

for office. That means that they are office-motivated, in the sense that they intrinsically

value winning the election, and at the same time they are policy-motivated too, because

they care about what policy is enacted after the election. Formally, the payoffs for candi-

date L and candidate R associated to any pair (xL, xR) ∈ X2 are given by, respectively,

ΠL(xL, xR) = p(xL, xR) · (uθL(xL) + χL) + [1− p(xL, xR)] · uθL(xR), (1)

and

ΠR(xL, xR) = [1− p(xL, xR)] · (uθR(xR) + χR) + p(xL, xR) · uθR(xL), (2)

where θi stands for candidate i’s ideological (preferred) position on X, and χi > 0 denotes

candidate i’s payoff for being in power (office rents).8 Note that Hotelling (1929)-Downs’

(1957) office motivation hypothesis, according to which candidates maximize the proba-

bility of winning the election, is obtained from the previous specification of the payoffs

by letting χi be arbitrarily large for all i. Likewise, Wittman’s (1983) entirely ideological

candidates follow from the same particular by setting out the rents χi of both candidates

equal to zero.

In this paper, we assume that candidates’ ideological positions are distributed on

either side of the (expected) median voter’s ideal policy, i.e., θL < 1/2 < θR; and we

identify the half-open interval [0, 1/2) (resp., (1/2, 1]) with the left-wing (resp., right-

wing) candidate’s ideological side. In addition, to rule out uninteresting equilibria with

large electoral uncertainty and no trade-off between power and ideology, the essence of

this investigation, we assume that β < β̄ ≡ min{1/2 − θL + χL/2, θR − 1/2 + χR/2}.
If that were not the case, then in an equilibrium with differentiated policies at least one

candidate would maximize its payoff at its preferred location θi, independently of the

position chosen by the other.

8Using the specification of the mixed motivations found in Calvert (1985, p. 83) and Aragones and
Palfrey (2005, p. 98), Saporiti (2008, p. 834) shows that the relative value of winning the election can be
defined as χi =

λi

1−λi
, where λi ∈ (0, 1) is candidate i’s weight on the probability of winning the election,

and 1− λi represents its weight on the expected utility for the pair of policies (xL, xR).
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Let ∆ be the space of probability measures on the Borel subsets of X. A mixed

strategy for i is a probability measure µi ∈ ∆, with support supp(µi) ≡ {x ∈ X :

∀ϵ > 0, µi((x − ϵ, x + ϵ) ∩ X) > 0}. We extend each Πi to ∆2 by Ui(µL, µR) =∫
X2 Πi(xL, xR) d(µL(xL) × µR(xR)). Note that Ui is well defined because the set of dis-

continuities of Πi, namely {(xL, xR) ∈ X2 : xL = xR ̸= 1/2}, has measure zero.

Let G = (X,Πi)i=L,R denote a mixed motivation election game , and let G =

(∆, Ui)i=L,R be the mixed extension of G. A Nash equilibrium of G is a pair of probability

measures (µ∗
L, µ

∗
R) ∈ ∆2 such that for all (xL, xR) ∈ X2, UL(µ

∗
L, µ

∗
R) ≥ UL(xL, µ

∗
R) and

UR(µ
∗
L, µ

∗
R) ≥ UR(µ

∗
L, xR). We say that a Nash equilibrium (µ∗

L, µ
∗
R) ∈ ∆2 is a mixed

strategy equilibrium (MSE) of G if at least one candidate randomizes over two or more

policies. Otherwise, if for all i = L,R, supp(µ∗
i ) = {x∗

i } for some x∗
i ∈ X, then the profile

(x∗
L, x

∗
R) represents a pure strategy equilibrium (PSE) of G.9

4 Equilibrium Analysis

We begin the equilibrium analysis noting that G possesses neither a PSE where the left-

wing candidate chooses a platform further to the right than the right-wing candidate’s

proposal, nor a PSE where one of the candidates wins the election for sure.

Lemma 2 If the strategy profile (x∗
L, x

∗
R) ∈ X2 is a pure strategy equilibrium for the

election game G = (X,Πi)i=L,R, then θL < x∗
L ≤ x∗

R < θR and p(x∗
L, x

∗
R) ∈ (0, 1).

The previous lemma, whose proof (as well as all other proofs of this section) is given

in Appendix A, allows to focus the equilibrium analysis on the white and the red regions

of the domain of p(·) displayed in Fig. 1. In particular, it is used below to characterize

each candidate’s platform in a PSE with policy differentiation, and to provide a necessary

condition for such an equilibrium to exist.

Lemma 3 The election game G = (X,Πi)i=L,R has a pure strategy equilibrium with x∗
L <

x∗
R only if χL + χR < 4β, x∗

L = 1/2− β + χL/2, and x∗
R = 1/2 + β − χR/2.

The platforms characterized in Lemma 3 are a function of the electoral uncertainty β

and the office rents χi, and with the expected sign. All the rest equal, as the candidates

become less certain about how moderate the median voter is (higher β), they also become

more polarized in their platform choice. On the contrary, a reduction of the uncertainty

(resp., an increase in the office rents) moves both platforms towards the center of the

political space.

9When µ ∈ ∆ assigns probability 1 to a single policy x ∈ X, we simply write x instead of µ.
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These platforms are obtained from the first-order conditions. That is, they are the

stationary points of the conditional payoff functions. Unfortunately, Lemma 3 does not

guarantee that these functions are quasi-concave. A case in point takes place when

χR = 0.2, χL = 0.6, β = 0.25, θL = 0.2, and θR = 0.9. For these values of the

parameters, the conditional payoffs associated to the policy profile of Lemma 3, namely,

(x∗
L, x

∗
R) = (0.55, 0.65), are illustrated in Figs. 2 and 3. Clearly, this profile is not a PSE,

since x∗
R = 0.65 does not maximize ΠR(0.55, xR) over xR ∈ [0, 1]. A bit of extra work

shows that any other profile of pure strategies fails to be an equilibrium too.

PLH × , xR
* L

xL
*0.2 0.4 0.6 0.8 1.0

-0.4

-0.3

-0.2

-0.1

Figure 2: Left-wing candidate’s condi-
tional payoff function given x∗

R = 0.65.

PR HxL
* , × L

xR
*

0.2 0.4 0.6 0.8 1.0

-0.35

-0.30

-0.25

Figure 3: Right-wing candidate’s condi-
tional payoff function given x∗

L = 0.55.

Therefore, a sensible question to ask is what conditions prevent this from happening.

The next three propositions are meant to shed some light into this inquiry. The first one

offers necessary and sufficient conditions for policy convergence (i.e., equilibrium with

identical platforms), which is the classical result of electoral competition.

Proposition 1 (convergence) The election game G = (X,Πi)i=L,R has a pure strategy

equilibrium with x∗
L = x∗

R ≡ x∗ if and only if x∗ = 1/2 and χi ≥ 2β for all i = L,R.

The statement of Proposition 1 bears some similarity with Calvert’s (1985) assertion

that small departures from “office motivation and certainty” lead to only small departures

from convergence. In line with that prediction, Proposition 1 asserts that both candidates

will choose in equilibrium a platform located on the expected median ideal point if and

only if the relative value of holding office χi/2β is high enough for all i.

One way of interpreting this condition is as follows. In this paper the winner enjoys

an extra payoff for being elected equal to χi. From the candidates’ viewpoint, however,

hitting the median ideal point with a particular policy platform and actually winning

the election has a chance of (2β)−1 (the inverse of the length of the support of θm).

Therefore, the term χi/2β can be viewed as the expected benefit for moving the platform

one additional unit to the center. The cost of doing that is of course the additional unit of

disutility created by the displacement towards the center and away from the candidate’s
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ideology. Thus, when χi is large enough for all i (resp., β is small enough), in the sense

that χi/2β ≥ 1, the benefits of any such deviation to the center outweigh the costs and,

consequently, candidates converge to the median voter’s preferred policy.

An immediate implication of Proposition 1 and Lemma 3 is the following corollary.

Corollary 1 (uniqueness) If the election game G = (X,Πi)i=L,R possesses a pure strat-

egy equilibrium, then the equilibrium is unique.

The uniqueness result expressed in Corollary 1 is to some extent more general than the

related results found in Saporiti (2008) and Bernhardt et al. (2009b), because the latter

only refer to the homogeneous motivation case (χL = χR), whereas the former also applies

to cases where χL is not necessarily equal to χR. It is worth reminding, however, that the

three models are different and, therefore, that the results are not directly comparable.

Our next proposition provides a necessary and sufficient condition for another well

known configuration of equilibrium platforms (suggested first by Wittman (1983), and

proved later by Roemer (1997)), where each candidates chooses a policy on its own

ideological side.

Proposition 2 (two-sided differentiation) The election game G = (X,Πi)i=L,R has

a pure strategy equilibrium with x∗
L < 1/2 < x∗

R if and only if χi < 2β for all i = L,R.

Thus, combining Propositions 1 and 2, the first conclusion that can be drawn here is

that, when candidates possess identical motivations, these two results offer a full descrip-

tion of the equilibrium outcomes of the mixed motivation election game. To illustrate

this, Fig. 4 displays the equilibrium platforms as a function of the electoral uncertainty

β, and for a particular level of office rents χ ≡ χL = χR.

As Proposition 1 points out, both policies are located at the estimated median voter’s

ideal point for any level of uncertainty lower than or equal to χ/2. Above that threshold,

Lemma 3 and Proposition 2 indicate that the equilibrium platforms lie down on each

candidate’s ideological ground, in accordance with the expressions x∗
L = 1/2− β + χL/2

and x∗
R = 1/2 + β − χR/2. That gives rise to a region of two-sided policy differentiation

as is shown in the graph. The symmetric location of the policies about the median also

implies that, in the identical motivation case, the probability of winning is the same for

the two candidates.

Interestingly, when candidates hold asymmetric interests, Propositions 1 and 2 do

not cover the whole spectrum of possibilities of the two-candidate electoral competition

model. The main contribution of this paper is precisely to analyze what could happen

in that case. To help the reader gain more insight about the equilibrium configurations

that could arise in the asymmetric scenario, assume that χL = 0.6 and χR = 0.05, and

12
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Figure 4: Symmetric case: χL = χR ≡ χ.

suppose that β = 0.25, θL = 0.2, and θR = 0.9. For these values of the parameters,

Lemma 3 says that x∗
L = 0.55 and x∗

R = 0.725. Figs. 5 and 6 confirm that these policies

form in fact a pure strategy equilibrium.

Fig. 5 displays the left-wing candidate’s conditional payoffs given x∗
R = 0.725. Like-

wise, Fig. 6 exhibits the right-wing candidate’s payoffs given that the other candidate’s

chosen policy is x∗
L = 0.55. A simple inspection of the graphs shows that these platforms

are best responses to each other, proving that (x∗
L, x

∗
R) = (0.55, 0.725) is a PSE. This

equilibrium is such that candidates locate on a different platform, but these platforms

are on the same side of the median voter’s ideal point (i.e., 1/2 < x∗
L < x∗

R). In particular,

being candidate L the most opportunistic of the two candidates, L’s proposal lies down

on the other candidate’s ideological ground. We refer to this kind of equilibria as pure

strategy equilibria with one-sided policy differentiation.

The next proposition provides necessary and sufficient conditions for that equilibrium

to occur. In words, when the right-wing candidate turns out to be the relatively more

policy-concerned candidate, the conditions we state below require basically that level of

uncertainty be (i) sufficiently low to ensure that L’s stationary point is still above 1/2;

and (ii) high enough to discourage both players undercutting their equilibrium strategies,

ensuring that lim supxR→x∗
L
ΠR(x

∗
L, xR) ≤ ΠR(x

∗
L, x

∗
R), and ruling out cases like the exam-

ple exhibited in Fig. 3. The interpretation of the conditions when the left-wing candidate

13
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Figure 5: Left-wing candidate’s condi-
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Figure 6: Right-wing candidate’s condi-
tional payoff function given x∗

L = 0.55.

is relatively more ideological is similar.

Proposition 3 (one-sided differentiation) The election game G = (X,Πi)i=L,R has

a pure strategy equilibrium with 1/2 < x∗
L < x∗

R (resp., x∗
L < x∗

R < 1/2) if and only if

(χL − χR)/2 + (χR · χL)
1/2 ≤ 2β < χL (resp., (χR − χL)/2 + (χR · χL)

1/2 ≤ 2β < χR).

Apart from the equilibrium with one-sided policy differentiation stated in the previous

proposition, the asymmetric motivation model of electoral competition also admits mixed

strategy equilibria. To analyze the properties of these equilibria, the following piece of

notation is going to be helpful. First, denote the critical values of β stated in Proposition

3 by βC
1 ≡ χL−χR

4
+

√
χLχR

2
and βC

2 ≡ χR−χL

4
+

√
χLχR

2
.

Second, consider the region of the strategy space where p(xL, xR) ∈ (0, 1), as is shown

in Fig.1. Within that region, for any x′
L < 1/2 + β − χR/2 = x∗

R we have that10

ΠR(x
′
L, x

∗
R) =

1

4β

(
1

2
+ β − x′

L +
χR

2

)2

+ (x′
L − θR),

and

lim sup
xR→−x′

L

ΠR(x
′
L, xR) =

(
1

2
− 1− 2x′

L

4β

)
χR + (x′

L − θR).

Denote by x̃L(β, χR) the solution to ΠR(x
′
L, x

∗
R) − lim supxR→−x′

L
ΠR(x

′
L, xR) = 0.11

The support of the mixed strategy equilibrium when the right-wing candidate is the

relatively more ideological politician is characterized in the next proposition.

Proposition 4 (probabilistic differentiation) If χR/2 < β < βC
1 , the election game

G = (X,Πi)i=L,R has a mixed strategy equilibrium (µ∗
L, µ

∗
R) ∈ ∆2 with the property that,

10As usual, “x →− y” (resp., “x →+ y”) indicates that x approaches y from the left (resp., right).
11Using the software Mathematica to solve this equation, it turns out that x̃L(β, χR) = 1/2 + β +

3/2χR ±
√
2
√

2βχR + χ2
R.
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(a) If β ≤ χL+χR

4
, then supp(µ∗

i ) = [x, x] for all i = L,R, with x = x̃L(β, χR) and

x = 1
2
+ β − χR

2
= x∗

R; and

(b) If β > χL+χR

4
, then supp(µ∗

L) = [x, x] and supp(µ∗
R) = [x, x] ∪ {x∗

R}, with x =

x̃L(β, χR) and x = 1
2
− β + χL

2
= x∗

L.

Obviously, an analogous characterization can be given for the case where the left-wing

candidate is the relatively more ideological candidate. To do that, define x̃R(β, χL) as

the solution to ΠL(x
∗
L, x

′
R)− lim supxL→+x′

R
ΠL(xL, x

′
R) = 0. Then:

Proposition 5 (probabilistic differentiation) If χL/2 < β < βC
2 , the election game

G = (X,Πi)i=L,R has a mixed strategy equilibrium (µ∗
L, µ

∗
R) ∈ ∆2 with the property that,

(a) If β ≤ χL+χR

4
, then supp(µ∗

i ) = [x, x] for all i = L,R, with x = 1
2
− β + χL

2
= x∗

L

and x = x̃R(β, χL); and

(b) If β > χL+χR

4
, then supp(µ∗

R) = [x, x] and supp(µ∗
L) = [x, x] ∪ {x∗

L}, with x =
1
2
+ β − χR

2
= x∗

R and x = x̃R(β, χL).

As a matter of illustration, Tables 1 and 2 show the equilibrium distributions and the

supports of the two types of MSE of a discrete version of the mixed motivation election

game where both candidates choose their platforms from a grid of 101 locations, numbered

from 0.00 to 1.00, and the parameters of the model adopt the following numerical values:

θL = 0.1, θR = 0.9, χL = 0.9, χR = 0.1 and β = 0.15 (resp., β = 0.30).12

Support Left-wing candidate Right-wing candidate
density c.d.f. density c.d.f.

0.52 0.5529 0.5529 0.0919 0.0919
0.53 0.1048 0.6577 0.0117 0.1036
0.54 0.2295 0.8872 0.0409 0.1445
0.55 0.0000 0.8872 0.0000 0.1445
0.56 0.0887 0.9759 0.0225 0.1670
0.57 0.0000 0.9759 0.0000 0.1670
0.58 0.0229 0.9988 0.0117 0.1788
0.59 0.0012 1.0000 0.0000 0.1788
0.60 0.0000 1.0000 0.8212 1.0000

Table 1: χL = 0.9, χR = 0.1 and β = 0.15.

Support Left-wing candidate Right-wing candidate
density c.d.f. density c.d.f.

0.59 0.2683 0.2683 0.0038 0.0038
0.60 0.1258 0.3941 0.0024 0.0062
0.61 0.1882 0.5823 0.0019 0.0081
0.62 0.0549 0.6372 0.0010 0.0091
0.63 0.1431 0.7803 0.0008 0.0098
0.64 0.2197 1.0000 0.0000 0.0098
0.65 0.0000 1.0000 0.0000 0.0098
0.75 0.0000 1.0000 0.9902 1.0000

Table 2: χL = 0.9, χR = 0.1 and β = 0.30.

To conclude this section, we plot in Fig. 7 the equilibrium platforms as a function of

the electoral uncertainty for the case where candidates exhibit asymmetric motivations.

As the graphs show, apart from a range of low and high levels of uncertainty, when

12The computations are carried out with the software GAMBIT (McKelvey, McLennan and Turocy
2010). Obviously, there are some differences between the (discrete) numerical results of Tables 1 and 2
and the (continuous) theoretical predictions of Proposition 4. However, these differences tend to vanish
as the grid becomes finer.
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candidates possess heterogeneous interests it is also possible to distinguish a range of

moderate or intermediate levels that provides distinct equilibrium predictions. The three

levels of electoral uncertainty are determined by the following ranges of values of β:

1. low uncertainty : 0 ≤ β ≤ min
{

χL

2
, χR

2

}
;

2. moderate uncertainty : min
{

χL

2
, χR

2

}
< β < max

{
χL

2
, χR

2

}
; and

3. high uncertainty : max
{

χL

2
, χR

2

}
≤ β ≤ β̄.

As in the symmetric case, for low levels of uncertainty our model predicts that candi-

dates converge to the estimated median voter’s ideal point. However, as the length of the

interval over which the median is distributed increases, there exists a range of intermedi-

ate levels of electoral uncertainty (namely, the values in Fig. 7a between χR/2 and βC
1 ,

and the values in Fig. 7b between χL/2 and βC
2 ) for which the mixed motivation election

game fails to possess an equilibrium in pure strategies. Within that region, labeled in the

graphs probabilistic differentiation, the game admits, as is shown in Saporiti (2008), an

equilibrium in mixed strategies. Moreover, Prop. 4 states that the MSE support of both

candidates is located on the same side of the median ideal point, as is illustrated by the

grey areas in Figs. 7a and 7b.
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Figure 7: Asymmetric case.

As the electoral uncertainty continues increasing, it eventually surpasses either the

critical threshold βC
1 if χL > χR, or the threshold βC

2 if χR > χL, and the existence of a

pure strategy equilibrium is reestablished. For values of the uncertainty parameter above

these thresholds and within the range of intermediate levels, Prop. 3 shows that a PSE not
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only exists, but also that the corresponding equilibrium policies are placed on the same

ideological ground, given rise to a region of one-sided policy differentiation. Afterwards,

for high electoral uncertainty, the conditions of Prop. 2 hold, and each candidate chooses

a policy on its own ideological side, mimicking the symmetric case.13

Finally, so long as PSE policies differ, the asymmetric motivation case predicts that

the ideological (relatively more policy-concerned) candidate possess a lower probability

of winning the election; or, to put it differently, that the opportunist (relatively more

office-motivated) candidate enjoy an electoral advantage.

5 Experimental Design

In this section, we present a laboratory experiment designed to assess the theoretical

predictions of the mixed motivation election game studied in Section 4. The experiment

consisted of seven treatments, which were determined by varying the uncertainty param-

eter β, the ideologies θi and the office rents χi. For the convenience of the experimental

subjects we considered only integer locations, numbered from 0 to 100, which required

multiplying the relevant parameter values for β, θ, and χ by 100. The values employed

in each treatment, together with the corresponding equilibrium, are displayed in Table 3.

The reader is referred to Table 1 for details of the MSE corresponding to Treatment 6.

Treatment Uncertainty Ideology Rents NE Policy

β θL θR χL χR x∗L x∗R
1 2.5 10 90 10 10 50 50

2 15 10 90 10 10 40 60

3 15 10 90 40 40 50 50

4 15 34 66 10 10 40 60

5 35 10 90 10 10 20 80

6 15 10 90 90 10 MSE

7 35 10 90 90 10 60 80

Table 3: Experimental treatments.

Subjects were told in the instructions a brief story of a town holding a two-candidate,

majority rule election to select the location of a new post office on the high street.

The subjects’ task was to propose simultaneously and independently an integer number

between 0 and 100 to locate the post office. They knew that voters were distributed

uniformly across the 101 locations, and they were told that although each voter would

vote for the proposal closer to its own location, for each profile of proposed locations

13As a matter of comparison, note that when χL = χR, all of the critical values of β indicated in Figs.
7a and 7b coincide, i.e. βC

1 = βC
2 = χR/2 = χL/2. That explains why Fig. 4 exhibits neither a region

with a mixed strategy equilibrium, nor one with one-sided policy differentiation.
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the percentage of votes received by each candidate was not known with certainty due to

the existence of some uncertainty about voters’ preferences. More precisely, denoting by

P the expected percentage of votes for a candidate, subjects were told that the actual

percentage for that candidate will be somewhere between P − β and P + β, with each

value within that range being equally likely.

They were informed about the preferred location on the high street for each of the

two candidates. In order to get convenient payoff values in the game we applied a linear

transformation of the payoffs by adding, first, a positive constant of 90 to the loss function,

and by multiplying then all payoffs by 10. Thus, subjects were told that they would

receive a location payoff corresponding to 900 minus 10 times the distance between their

ideal location (θ) for the post office and the location actually realized. In addition, the

subjects were told that winning the election would provide to the winning candidate an

extra payoff of χ · 10.
The locations were chosen by typing in a number on the decision screen. A screenshot

of the interface is provided in Fig. 8. Before making their actual proposals, subjects

were provided with the opportunity to use an expected payoff calculator (top half of the

screen) in which they could enter several hypothetical locations for themselves and for

their opponent and calculate the associated own payoff. This calculator offered subjects

a convenient device for looking at the 101 × 101 payoff matrix, but it makes no recom-

mendation as how to play the game. There was no time limit for the subjects’ decisions.

Figure 8: Decision interface.
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After all participants made their actual choices, in each round subjects found a feed-

back screen with their chosen location, the location chosen by the other candidate, and the

resulting own payoff, denominated in points. Subjects were recommended to transcribe

the results of each round from the feedback window on a provided logsheet.

In each treatment there were 2 or 3 sessions, each comprising 60 rounds (elections).

At the beginning of each session, subjects were randomly and anonymously matched into

pairs. Within each pair, one subject was assigned the role of candidate A, whereas the

other played the role of candidate B. Subjects were informed that they would not know

who of the other people in the room they were paired with, and that matched pairs would

remain fixed for the entire session. They were also aware that their initial roles would be

swapped after round 30. This swapping allowed us to study some aspects of the learning

by the subjects, particularly the transfer of insights from one role to the other. It also

removed possible concerns about payoff asymmetries present in some of the treatments.

The experiment was carried out in the Spring of 2010 in the Centre for Experimental

Economics of the University of York. Subjects were recruited from a university-wide

pool of undergraduate and postgraduate students using Greiner’s (2004) Online Recruit-

ment System for Economic Experiments (ORSEE). The experiment was programmed and

conducted with the software Z-Tree (Fischbacher 2007).

Upon arrival, subjects were assigned to a computer terminal and they were given

a set of written instructions.14 After reading the instructions, they were allowed to ask

questions by raising their hands and speaking with the experimenter in private. To ensure

that subjects understood the decision situation and the mechanics of payoff calculations,

all participants answered several computerized test questions. The experiment did not

proceed until every subject had answered these questions correctly. Subjects were not

allowed to communicate directly with one another, and they only interacted indirectly

via the decisions they entered in the computer terminals.

Subjects were informed that the points accumulated throughout the 60 rounds would

determine, together with a given exchange rate, their monetary payoffs. A typical session

lasted approximately 2 hours. The average payment of each treatment, the exchange

rate, and the number of sessions, participants, and pairs are all summarized in Table 4.

6 Experimental Evidence

In this section we focus on the positions of the left-wing (henceforth Left) and right-

wing (henceforth Right) players as well as the average absolute distance between these

positions and the equilibrium predictions. Appendix B at the end of the paper presents

14A copy of the instructions is available from the authors upon request.
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Treatment Sessions Subjects Pairs Exchange rate Average payment
(GBP per 1000 points) (GBP)

1 3 26 13 0.60 19.80

2 2 20 10 0.60 19.80

3 2 20 10 0.50 21.00

4 2 20 10 0.45 21.30

5 2 20 10 0.60 19.81

6 2 20 10 0.40 24.56

7 3 30 15 0.40 24.85

Table 4: Overview of the experiment.

two sets of detailed tables. The first set (Tables 10a-10g) gives information for these

variables for all single periods as well as subintervals of the 60 period experiment. The

second set (Tables 11a-11g) shows details for each matching pair for selected intervals.

6.1 Equilibrium convergence

First, we look at the location choices of the Left and the Right players in the various

treatments described in Table 3, comparing them with the values predicted by the Nash

equilibrium.

Figure 9 shows for each treatment for which a PSE exists the per period median

location of the Left and the Right players, as well as the 95% confidence intervals. These

confidence intervals are determined as follows. Depending on the treatment, for each

period there are between ten and fifteen independent observations (pairs). Using these

observations as the unit of analysis, for every possible value m between 0 and 100, we

test the null hypothesis (two-sided binomial test) that m is the median, i.e., that the

probability to observe a location choice below m equals the probability to observe one

above m. The alternative hypothesis is that the median has either a lower or a higher

value than m, i.e., that these probabilities are not equal. For any given value m, the null

hypothesis is rejected if there are too few or too many observations on one side of m.

Two main conclusions emerge from the graphs. On one hand, in Treatments 1 to 5

(Figs. 9a-9e) not only the median locations converge to the equilibrium values predicted

by the theory, but also the 95% confidence intervals shrink over time. On the other

hand, in Treatment 7 (Fig. 9f) with one-sided policy differentiation, although the median

locations of the Left and the Right players converge to the equilibrium, the 95% confidence

intervals of both players tend to be skewed towards the center of the policy space. This

suggests that although most of the players behaved in the lab as the theory predicts,

some Left as well as some Right players deviated and they tended to stay towards the

left of the theoretical predictions and closer to the center even after 60 periods of play.
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(a) Treatment 1: x∗
L = x∗

R = 50.

(b) Treatment 2: x∗
L = 40 & x∗

R = 60.

(c) Treatment 3: x∗
L = x∗

R = 50.

Figure 9: Median locations and 95% confidence intervals.
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(d) Treatment 4: x∗
L = 40 & x∗

R = 60.

(e) Treatment 5: x∗
L = 20 & x∗

R = 80.

(f) Treatment 7: x∗
L = 60 & x∗

R = 80.

Figure 9: Median locations and 95% confidence intervals (continued).
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As to Treatment 6, notice that this case is different because the unique Nash equi-

librium of the game is in mixed strategies. Therefore, besides the median locations of

the Left and the Right players in each period, in Figs. 10a and 10b we also display the

minimum and the maximum values of their locations, and we compare these values with

the theoretical lower and upper bounds of the MSE support.

(a) Median, minimum and maximum locations of the Left players.

(b) Median, minimum and maximum locations of the Right players.

Figure 10: Treatment 6.

We find that the median of the Left (resp. Right) players converges to 55 (resp. 60),

which is close to (resp. coincides with) the median location of the MSE (52 and 60, for

Left and Right players respectively). Moreover, the pictures show that the minimum and

the maximum locations chosen in the lab approximate the bounds of the MSE support,

which ranges from 52 to 59 for the Left player, and from 52 to 60 for the Right player.

Since the median and support measure just some aspects of the distributions, to

further assess the differences between the empirical and the theoretical distributions,
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we apply the Kolmogorov-Smirnov test, considering for each period ten independent

observations for the Left players and ten observations for the Right players. The test

statistic, denoted by D, represents the maximum deviation between the empirical and

the theoretical cumulative distributions. The null hypothesis is that these distributions

are identical. The alternative hypothesis is that they are not the same. The critical

values to reject the null hypothesis at 5% and 10% significance levels are, respectively,

0.410 and 0.368 (see Siegel 1988), with values of D above the critical values leading to

the rejection of the null hypothesis.

(c) Maximum deviation from the cumulative equilibrium distributions in each period.

Figure 10: Treatment 6 (continued).

Focusing on each of the 60 periods separately, Fig. 10c shows that we cannot reject

the null hypothesis in most of the periods for the Right players. Specifically, using the

5% critical value, the MSE distribution cannot be rejected in 27 of the first 30 periods,

and 28 of the last 30 periods. For the Left players, however, the picture is somewhat

different. Still at 5% significance, the MSE distribution cannot be rejected in 11 periods

in the first half of the experiment and 15 periods in the second half.

In Figures 10d and 10e we continue the analysis of Treatment 6, presenting the em-

pirical cumulative distributions for the 60 period interval as a whole and for a number of

different subintervals. In conformity with the theory, the graphs show that the cumulative

distribution of the Left players first-order stochastically dominates the distribution of the

Right players. But when the Kolmogorov-Smirnov test is applied to these subintervals of

the 60 periods (see Fig. 10f), we see that the null hypothesis of the empirical distributions

being indistinguishable from the MSE distributions must be rejected in every single case.

This means that the empirical distributions of the Left and the Right players are indeed

statistically different from the theoretical ones.

The question, then, is how substantial these differences are. To answer that question,
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(d) Cumulative relative frequencies.

(e) Cumulative relative frequencies in different subintervals.

Figure 10: Treatment 6 (continued).

in every period we take the empirical distribution of the ten Left (Right) players, and we

compute for each of these players how many locations they would need to move to reach

the MSE distribution (allowing for fractions of players). To do this, we only stretch,

squash and shift the empirical distribution, thus preserving the order of the location

choices. That is, if player i had chosen a location smaller (greater) than player j, then

after all moves have been made to reach the MSE distribution, player i still has a location

smaller (greater) than or equal to player j. Once the number of locations each player

would need to move to reach the equilibrium distribution has been found, in any given

period we take the average number of moves of the Left and the Right player in each

matching pair as the distance between the empirical and the theoretical distributions.

This provides for each period ten independent observations for this distance. Figure 10g

shows that the median distance as well as the 95% confidence interval diminish over time,
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(f) Kolmogorov-Smirnov test.

(g) Median average absolute distance from the MSE distribution (with 95% confidence interval).

Figure 10: Treatment 6 (continued).

and that in the last subinterval, i.e., in periods 51-60, on average the median distance to

be moved is only 2.0 locations. This means that although the empirical distributions of

the Left and the Right players are statistically different from the theoretical ones, these

differences are relatively small.

To conclude Section 6.1, we compare the positions of the Left players with the locations

of the Right players. For each treatment and each matching pair, we compute the average

position of the Left and of the Right players in different intervals. Thus, depending on

the treatment, for each interval we have ten to fifteen independent observations, each of

them being a matched pair. We use the Wilcoxon signed-ranks test to assess whether

we can reject the null hypothesis that the position of the Left players is equal to that of

the Right players. The results (one- or two-tailed tests as indicated by H1) are shown in

Table 5.

As we see, in each treatment where the Left players would be expected to be on the

left of the Right players (i.e. in Treatments 2, 4, 5, 6, and 7) this was indeed what

26



Table 5: Players’ median locations (significance levels for rejection of H0).

happened. Note that in Treatment 6 according to the MSE predictions it can happen

that a Left player chooses a location to the right of the Right player as the supports of

the equilibrium distributions overlap. Nevertheless, for each of the intervals considered

the expected mean location for the Left player is to the left of that of the Right player.

In Treatments 1 and 3 the Left and the Right players were supposed to converge to

the same location. Nevertheless, the table shows that the position of the Left players

was often significantly to the left of that of the Right players in these two treatments.

Note that although statistically significant, these deviations were not widespread, as was

shown above in Figure 9 by the convergence of the medians to the Nash equilibrium. In as

far as there were deviations from the PSE in these treatments, they tended to be towards

the left for Left players and towards the right for Right players. This may be explained

by a bias induced by the subjects’ ideology, or by the out-of-equilibrium incentives.15

6.2 Learning

The main message of Section 6.1 is clear: convergence to the Nash equilibrium is almost

perfect in most of the treatments.16 We now take a closer look at this result. More

precisely, we want to know when this convergence takes place. For each treatment, we

distinguish the 30 periods before the swapping of the roles and the 30 periods after

the swap. We also split these intervals into smaller subintervals of ten periods. For

every matching pair, we compute for each subinterval the average absolute distance from

15If the opponent chooses the PSE location, then deviating from the PSE towards a subject’s own
ideology leads to a less steep decline in payoffs than a deviation in the opposite direction.

16We also considered Quantal Response Equilibria (QRE). For each treatment we estimated the QRE
choice intensity parameter by minimizing the error of the QRE strategy profiles with the empirical
distribution observed in periods 41-60. Using this free parameter we obtain errors for the QRE that
are only marginally below those for the Nash equilibrium predictions, and this slightly better fit is
achieved by using widely different choice intensity parameter values across treatments. Further details
are available from the authors upon request.
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the Nash equilibrium, and we test whether these distances are different in two specified

intervals.

To do this, we use the one-tailed Wilcoxon signed-ranks test, distinguishing 1% and

5% significance levels. This is a non-parametric statistical test to assess whether there

is a difference in the median of two related samples. The only assumption made about

the underlying distribution is that these differences are independent observations from a

symmetric distribution. The null hypothesis is that the median difference between the

pairs of observations is zero. The alternative hypothesis in Table 6 is that the median

of the interval that comes later is lower than that of the earlier interval, reflecting the

learning and adaptive behavior of the experimental subjects.

The results are reported in Table 6. In each box, we compare the average absolute

distance in the intervals indicated on the left-hand side to those indicated at the top of

the box. Thus, if we consider for instance Treatment 1 (first box), we see that the average

absolute distance from the PSE is smaller in periods 11-20 (first column at the top) than

in periods 1-10 (first row on left-hand side) at the 1% significance level. For Treatment 6

we present two boxes: the first box (treat6a) shows the distance from the MSE support,

whereas the second (treat6b) shows the distance from the entire distribution.

First, we ask whether there has been a significant amount of learning over the entire

experiment. As the tables show, learning did happen since in every treatment the average

absolute distance from the Nash equilibrium is statistically significantly smaller in the

last ten periods, i.e., in periods 51-60, than in the first ten periods.

Second, we ask in which periods the average absolute distance actually decreases.

Looking at the main diagonal of the tables, it turns out that except in Treatment 7,

where it seems that learning happened between periods 11 and 20, in the rest of the

treatments learning took place mainly in the first ten periods (elections), which was also

the most active interval in terms of subjects’ use of the expected payoff calculator.17

Third, we ask whether players after swapping their roles between periods 30 and

31 succeed in transferring some of their findings from before the swapping to after the

swapping. The answer is largely affirmative as the distance from the Nash equilibrium is

smaller in periods 31-40 than in periods 1-10 for all treatments except Treatment 1.

Finally, fourth, we test whether the swapping as such led to an increase in the distance

from the NE right after the swapping. As we see in Table 7, in some treatments there

17Both findings are confirmed by the OLS regressions displayed in Table 9 of Appendix B, which
regress the position of the Left players, the Right players, and the average absolute distance from the
equilibrium as dependent variables, against the inverse of time 1/t as the only independent variable. The
table show all the coefficients and the t-statistics obtained in these regressions. As we see, almost all
coefficient are significant, and in particular the slope coefficients for the distance from the equilibrium
are significant with the expected sign for all treatments in periods 1-30 as well as in periods 31-60.
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Table 6: Decrease in the average absolute distance from the Nash equilibrium.

is an increase in the distance from the equilibrium if the intervals considered are 1 or 5

periods before the swap, but not considering such a ten period interval.
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Table 7: Increase in the average absolute distance from the Nash equilibrium.

6.3 Comparisons between treatments

Apart from testing whether the observed choices converge to the Nash equilibrium, the

data set obtained from the lab is also used to perform several ‘comparative statics’ tests

across treatments. For expositional convenience, all the pair-wise comparisons are illus-

trated in Fig. 11, where a double arrow relating any two treatments is used to indicate

a direct statistical comparison between them.

Figure 11: Overview of the comparisons between Treatments.

The comparative statics tests carried out in this subsection focus on three variables,

namely, the position of the Left players, the position of the Right players, and the average

absolute distance from the Nash equilibrium. In each treatment, we compute the average

value of these variables for different subintervals and for the whole session. We have,
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depending on the treatment, between ten and fifteen independent observations, and we

use the robust rank-order test to compare the samples between two treatments, distin-

guishing 1%, 5% and 10% significance levels.18 The results found are reported in Table

8. Table 8a concerns the positions of the Left players, Table 8b the location of the Right

players, and Table 8c shows the average absolute distance from the Nash equilibrium.

(a) Left players’ positions across treatments.

(b) Right players’ positions across treatments.

(c) Average absolute distance from the Nash equilibrium across treatments.

Table 8: Differences between treatments.

First, to assess the impact on policy divergence of an increase in the electoral uncer-

tainty, Treatment 1 is compared with Treatments 2 and 5, respectively, and Treatment 2

is compared with Treatment 5. In each of these treatments, the ideologies and the office

18This test statistic has the advantage that it compares the median of two unrelated samples without
making any assumptions about the higher moments of the distribution of the two samples. The critical
values are taken from Feltovich (2003).
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rents remain constant, whereas the electoral uncertainty gradually increases, leading to

increasing policy divergence in theory. The results are shown in the second, third and

fourth columns of Tables 8a-8c. In conformity with the theory, in all cases and in every

interval the null hypothesis that there is no difference between the positions of the Left

(resp. Right) players across the treatments is rejected at 1% or 5% significance levels,

with the alternative hypothesis being in the direction predicted by the theory.

As to the average absolute distance from the Nash equilibrium, the tests indicate no

significant differences in most of the intervals. However, looking at the whole session,

Treatment 5 appears to show less convergence to the Nash equilibrium than Treatment

2, albeit only at 10% significance level, although both treatments deal with the same type

of equilibrium, namely, two-sided differentiation. We conjecture that the reason could be

that the equilibrium associated with the parameter values of Treatment 5 (i.e., x∗
L = 20

and x∗
R = 80) is somewhat more extreme than the one corresponding to Treatment 2 (i.e.,

x∗
L = 40 and x∗

R = 60), and that some of the subjects may have been concerned about

choosing such extreme policies.19

Second, by varying the ideologies, the comparison of Treatments 2 and 4 offers the

chance to see whether the two-sided differentiation effect present in Treatment 2 is inde-

pendent (in the linear, risk-neutral case) of the degree of ideological polarization θR− θL.

In conformity with the theory, in every interval the null hypothesis that there is no dif-

ference between the positions of the Left (resp. Right) players and between the average

absolute distances cannot be rejected at 1% and 5% significance levels.

Third, the issue of whether policy convergence is re-established as candidates become

more office-motivated is investigated by comparing Treatments 2 and 3. The results show

that in every interval the positions of the Left (resp. Right) players in Treatment 2 are

statistically different at 1% significance level from the positions of the Left (resp. Right)

players in Treatment 3, which is again consistent with the theory. Moreover, there are

no statistically significant differences in these two treatments with respect to the average

absolute distances from the Nash equilibrium.

Fourth, to assess the change in policy differentiation that results from raising the office

rents of one of the candidates while keeping the other constant, Treatment 5 is contrasted

with Treatment 7. The theory predicts no changes in the location of the Right candidate,

and a move of the Left candidate from the left-hand side to the right-hand side of the

median voter. The experimental results are mixed. On the one hand, in every interval the

positions of the Left players in Treatment 7 are statistically different at 1% significance

level from the positions of the Left players in Treatment 5. On the other hand, however,

19Recall that the analysis assumes risk neutrality, which might not have been the case in the lab for
at least some of the subjects.
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contrary to the theoretical prediction, we find significant differences in the Right players’

positions in several intervals, including the last 30 periods (at %1) and the whole session

(at 5%). The data shows the locations of these players in Treatment 5 tend to be more

extreme. Consistent with our previous results, convergence to the NE is also worse in

Treatment 7 than in Treatment 5. In the whole session as well as in several subintervals,

there are significant differences (at 5 and 10%) in the average absolute distances from the

NE, with the distance in Treatment 5 tending to be smaller.

Fifth, we compare Treatment 6, in which there is no PSE, with Treatments 2 and 7, to

detect any significant variations in subjects’ behavior in the absence of a PSE. For a start,

one should expect less convergence in Treatment 6.20 Nevertheless, we see that in the first

twenty periods the distance from equilibrium is smaller in Treatment 6 than in Treatment

7. More interesting are the location choices of the Left and Right players. Comparing

Treatment 6 with Treatment 2, we observe that the Left players in the latter, in which

office rents are lower, choose locations to the left of those in Treatment 6. For Right

players we do not see a difference between these two treatments, which seems related to

the fact that the expected median in Treatment 6 is 59 whereas it is 60 in Treatment

2. Comparing Treatment 6 with Treatment 7, in which uncertainty has increased, we

see that there are no significant differences in the Left players’ behavior between these

treatments (recall the expected median in the former is 53 and in the latter 60), whereas

the Right players, as predicted, choose locations more to the right in Treatment 7.

7 Final remarks

This paper constitutes the first attempt to study both theoretically and experimentally

the complete set of Nash equilibria of a classical one-dimensional, majority rule election

game with two candidates, who might be interested in power as well as in ideology, but

not necessarily in the same way. We provided a full characterization of the set of Nash

equilibria, showing how the different equilibrium configurations depend on the relative

interests in power (resp., ideology) and the uncertainty about voters’ preferences; and

we examined the empirical relevance of these theoretical predictions through a series of

laboratory experiments. The experimental data show convergence to the Nash equilib-

rium values at the aggregate as well as the individual levels in all treatments, and the

comparative statics effects across treatments are as predicted by the theory.

Despite these positive results, and despite the fact that the model considered here

seems rich enough to pick up several interesting features of electoral competition that

20With a small number (ten) of per period observations one cannot expect to hit the equilibrium
distribution exactly.
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had been overlooked in the literature, there are a number of issues that may require more

attention in future work. First, the assumption of risk neutrality (with respect to the

distance |x − θi|), embedded into the assumption of Euclidean preferences of Section 3,

entails a loss of generality in the analysis. This is because in spite of being ideologically

different, risk averse candidates tend to move closer to each other and toward to the

center. Indeed, given the position of one candidate, the rival chooses a less differentiated

platform when it is risk averse than when it is risk neutral because it must compensate

a higher utility loss due to the risk aversion with a rise in the probability of winning the

contest.

Second, we noted in the experimental evidence that convergence to the Nash equilib-

rium is not equally precise across treatments. In particular in the asymmetric treatments,

where the candidates have different motives, we saw more noise at the individual level

than in the symmetric ones. It may be interesting to investigate the causes of this differ-

ence in the degree of convergence across treatments, and to find out, for example, whether

this observation that there is less convergence in the asymmetric treatments is due to the

fact that the theoretical predictions implied one-sided policy differentiation or just to the

fact that these equilibria are not symmetric around the center. Further experiments may

shine some light on this matter.

Third, an important element of our design is the expected payoff calculator. The

calculator provided information about the available payoffs. This information is usually

presented in the form of a payoff matrix in experimental settings. We had not made

the entire 101× 101 payoff matrix available for practical reasons. Instead, the calculator

allowed the subjects to observe snapshots of the underlying payoff matrix. However, it

did not create any bias, in the sense that it did not induce the subjects to examine any

particular areas of the strategy space. Subjects had to enter explicitly the location choices

for themselves and for their opponents, and the calculator only provided factual informa-

tion about the corresponding payoffs, without suggesting any kind of recommendation.

Having said that, we acknowledge that it may be interesting to consider alternative exper-

imental designs in this type of electoral games, in particular designs in which information

about the strategic environment is conveyed in a less convenient way to the subjects.

Finally, our experimental design treats voters as artificial actors, as seems conventional

in the literature. It would seem interesting, however, to organize an experiment in which

the voters are experimental subjects as well. This has been done in some of the early

papers about the median voter outcome, and it should be easier to implement nowadays

thanks to the communication tools (such as iPhones, iPads, etc.) currently available.

This may be interesting from a methodological viewpoint, as well as to assess related

issues such as private polling and voter turnout (especially in cases of similar platforms).
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A Appendix: Proofs

To simplify the notation, and given that the term uθi(xj), i ̸= j, of candidate i’s payoff

function Πi defined in (1) and (2) does not affect i’s optimal choices, in the rest of this

appendix we work with the linear transformations πi(xi, xj) ≡ Πi(xi, xj)− uθi(xj).

Proof of Lemma 2. Let (x∗
L, x

∗
R) be a PSE for G. To see that p(x∗

L, x
∗
R) ∈ (0, 1), assume

without loss of generality that p(x∗
L, x

∗
R) = 1. Then, candidate R’s equilibrium payoff is

πR(x
∗
L, x

∗
R) = 0; and it would be possible for R to increase its payoff by deviating to x∗

L

(which would result in a payoff equal to χR/2 > 0), a contradiction.
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Next, suppose that x∗
L < θL. If x∗

R ≥ θL, it would be possible for L to increase

its payoff by choosing θL, because πL(x
∗
L, x

∗
R) = p(x∗

L, x
∗
R) · [x∗

L + x∗
R − 2θL + χL] <

p(θL, x
∗
R) · [x∗

R − θL + χL] = πL(θL, x
∗
R) (recall that, by Lemma 1, p(θL, x

∗
R) ≥ p(x∗

L, x
∗
R)).

Alternatively, if x∗
R < θL, then: (i) L would profitably deviate to x∗

R if x∗
L < x∗

R, because

πL(x
∗
L, x

∗
R) = p(x∗

L, x
∗
R)·[x∗

L−x∗
R+χL] < χL/2; (ii) R would find it beneficial to move to x∗

L

if x∗
R < x∗

L, because πR(x
∗
L, x

∗
R) = [1−p(x∗

L, x
∗
R)] · [x∗

R−x∗
L+χR] < χR/2; and (iii) L would

do better by playing θL if x∗
R = x∗

L, because χL/2 < p(θL, x
∗
R)·[θL−x∗

R+χL] = πL(θL, x
∗
R).

Therefore, x∗
L ≥ θL.

Assume, by way of contradiction, that x∗
L = θL. Then: (i) if x

∗
R = θL, candidate R can

benefit by moving its proposal to xR = θL + δ, with δ > 0 small, because πR(x
∗
L, xR) =

[1− p(x∗
L, xR)] · (χR+ δ) > χR/2 = πR(x

∗
L, x

∗
R); (ii) if x

∗
R > θL, candidate L would be able

to increase its payoff by selecting xL = θL + ϵ, which would result, given the assumption

on β and for ϵ > 0 small enough, in a positive payoff change [p(xL, x
∗
R)−p(θL, x

∗
R)] · [x∗

R−
θL + χL]− ϵ · p(xL, x

∗
R);

21 finally (iii) if x∗
R < θL, R would find it profitable to deviate to

θL because πR(x
∗
L, x

∗
R) = [1 − p(x∗

L, x
∗
R)] · (x∗

R − x∗
L + χR) < χR/2. Hence, from (i)-(iii),

we conclude that x∗
L > θL. A similar argument establishes that x∗

R < θR.

To complete the proof, it remains to be shown that x∗
L ≤ x∗

R. Assume, by way of

contradiction, that x∗
L > x∗

R. There are three cases to consider.

Case 1. If x∗
R ∈ [0, θL), candidate L can deviate to θL (recall that x∗

L > θL), which

results in a payoff change equal to πL(θL, x
∗
R)−πL(x

∗
L, x

∗
R) = [p(θL, x

∗
R)−p(x∗

L, x
∗
R)] · [θL−

x∗
R +χL] + p(x∗

L, x
∗
R) · (x∗

L − θL) > 0, contradicting that x∗
L is candidate L’s best response

to x∗
R (again p(θL, x

∗
R)− p(x∗

L, x
∗
R) > 0 because of Lemma 1).

Case 2. If x∗
R ∈ [θL, 1/2), then L can deviate to xL = x∗

R + ϵ, ϵ > 0, which results

in a payoff change equal to πL(xL, x
∗
R) − πL(x

∗
L, x

∗
R) = p(xL, x

∗
R) · (χL − ϵ) − p(x∗

L, x
∗
R) ·

[χL − (x∗
L − x∗

R)]. By Lemma 1, p(xL, x
∗
R) ≥ p(x∗

L, x
∗
R). Thus, for ϵ small enough,

πL(xL, x
∗
R) > πL(x

∗
L, x

∗
R), implying that L’s deviation is profitable and, consequently,

that (x∗
L, x

∗
R) is not a PSE; a contradiction.

Case 3. Finally, if x∗
R ∈ [1/2, θR), then p(x∗

L, x
∗
R) < 1/2; and L can achieve a payoff

greater than πL(x
∗
L, x

∗
R) = p(x∗

L, x
∗
R) · [χL − (x∗

L − x∗
R)] by choosing x∗

R (which actually

offers a payoff of χL/2), contradicting the initial hypothesis that (x∗
L, x

∗
R) is a PSE.

Therefore, from Cases 1-3, we conclude that x∗
L ≤ x∗

R, as required.

Proof of Lemma 3. Let the profile (x∗
L, x

∗
R) ∈ X2, with x∗

L < x∗
R, be a PSE for

G. By Lemma 2, θL < x∗
L < x∗

R < θR and p(x∗
L, x

∗
R) ∈ (0, 1). Since the prob-

ability function p(·) is continuous at (x∗
L, x

∗
R), there must exist ϵ > 0 sufficiently

21Note that p(θL, x
∗
R) ∈ (0, 1) because by hypothesis x∗

L = θL. Hence, by Lemma 1, p(xL, x
∗
R) −

p(θL, x
∗
R) > 0.
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small such that, for all (xL, xR) ∈ Rϵ(x
∗
L) × Rϵ(x

∗
R), θL < xL < xR < θR and

p(xL, xR) ∈ (0, 1), where Rϵ(x
∗
i ) ≡ (x∗

i − ϵ, x∗
i + ϵ), with i = L,R. Thus, for any profile

(xL, xR) ∈ Rϵ(x
∗
L) × Rϵ(x

∗
R), the left-wing candidate’s payoff function can be written as

πL(xL, xR) = p(xL, xR) · (xR − xL + χL), where p(xL, xR) = 1/2 + (xL + xR − 1)/4β.

Fix x∗
R ∈ Rϵ(x

∗
R) and consider candidate L’s best response to x∗

R over Rϵ(x
∗
L), which

is obtained by solving the problem maxxL∈Rϵ(x∗
L)

πL(xL, x
∗
R). The first-order condition for

this problem provides a stationary point 1/2 − β + χL/2. Note that this point actually

maximizes πL(·, x∗
R) over Rϵ(x

∗
L) because by hypothesis, for all xL ∈ Rϵ(x

∗
L), πL(x

∗
L, x

∗
R) ≥

πL(xL, x
∗
R); i.e., πL(·, x∗

R) has an interior maximum on Rϵ(x
∗
L). Moreover, since πL(·, x∗

R)

is strictly concave on Rϵ(x
∗
L), with ∂2πL(xL, x

∗
R)/∂x

2
L = −1/2β < 0, we have that x∗

L =

1/2− β + χL/2, as required. A similar argument shows that x∗
R = 1/2 + β − χR/2.

Finally, the condition x∗
L > θL (resp., x∗

R < θR) is obtained from the early assumption

about β, (namely, 0 < β < min{1/2−θL+χL/2, θR−1/2+χR/2}), whereas the condition
χL + χR < 4β follows from the initial hypothesis, according to which x∗

L < x∗
R. Routine

calculations also show that χL + χR < 4β implies that (x∗
L + x∗

R)/2 ∈ (1/2− β, 1/2 + β),

so that p(x∗
L, x

∗
R) ∈ (0, 1) as needed.

Proof of Proposition 1. To show sufficiency, fix the strategy profile (x∗
L, x

∗
R) =

(1/2, 1/2), where both candidates propose the median voter’s ideal point and receive

a payoff of πi(x
∗
L, x

∗
R) = χi/2. Consider first a deviation for the left-wing candidate to

any platform x′
L ∈ (θL, 1/2). For convenience, let’s write x′

L = 1/2 − δ, with δ > 0.

Routine calculations show that πL(x
′
L, x

∗
R) ≡

χL

2
− δ2

4β
+

(
1
2
− χL

4β

)
δ > χL/2 if and only

if δ < 2β − χL. However, the last inequality requires δ < 0 because by hypothesis

χL ≥ 2β. Hence, πL(x
′
L, x

∗
R) ≤ πL(x

∗
L, x

∗
R). A similar argument proves that for any

x′
R ∈ (1/2, θR), πR(x

∗
L, x

′
R) ≤ πR(x

∗
L, x

∗
R). The careful reader should also check at this

point that any deviation above 1/2 or below θL (resp., below 1/2 or above θR) cannot

raise candidate L’s (resp., R’s) conditional payoff any further, proving in that way that

the profile (x∗
L, x

∗
R) = (1/2, 1/2) is a PSE for G.

To show necessity, fix a PSE for G with the property that x∗
L = x∗

R ≡ x∗ for some

x∗ ∈ X. If x∗ > 1/2, then candidate L can profitably deviate to 1/2, because p(1/2, x∗) ∈
(1/2, 1] and therefore πL(1/2, x

∗) = p(1/2, x∗) · [x∗ − 1/2 + χL] > 1/2 · χL = πL(x
∗, x∗).

A similar reasoning shows that candidate R can profitably deviate to 1/2 if x∗ < 1/2.

Therefore, x∗ = 1/2.

Next, suppose that χL < 2β, which in turn implies that 1/2 + χL/2− β < 1/2. Since

p(·) is continuous at (1/2, 1/2) and strictly positive, there must exist δ > 0 such that for

all xL ∈ (1/2− δ, 1/2], p(xL, 1/2) > 0 and πL(xL, 1/2) =
(

1
2
+ xL−1/2

4β

)
· (1/2− xL + χL).

Simple calculations show that πL(·, 1/2) achieves a unique maximum over (1/2− δ, 1/2]
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at x̂L = 1/2 + χL/2 − β, implying in particular that πL(x̂L, 1/2) > πL(1/2, 1/2), a

contradiction. Hence, χL ≥ 2β. A similar argument proves that χR ≥ 2β.

Proof of Proposition 2. To prove necessity, suppose G has a PSE with the property

that x∗
L < 1/2 < x∗

R. By Lemma 3, x∗
L = 1

2
− β + χL

2
and x∗

R = 1
2
+ β − χR

2
. Therefore,

using the initial hypothesis, it follows that χi < 2β for all i = L,R.

To show sufficiency, fix the equilibrium candidate (x∗
L, x

∗
R) = (1

2
−β+ χL

2
, 1
2
+β− χR

2
).

By the initial hypothesis, i.e., χi < 2β for all i = L,R, it follows that x∗
L < 1/2 <

x∗
R, χL + χR < 4β, and p(x∗

L, x
∗
R) ∈ (0, 1). By the assumption on β, θL < x∗

L and

x∗
R < θR. Applying the reasoning of the proof to Lemma 3, for some ϵ > 0 such that

Rϵ(x
∗
L) ≡ (x∗

L − ϵ, x∗
L + ϵ) ⊂ (θL, x

∗
R), we have that x∗

L = argmaxxL∈Rϵ(x∗
L)

πL(xL, x
∗
R),

with πL(x
∗
L, x

∗
R) =

χL

2
+ (β − χR

2
) + (χL−χR)2

16β
. Thus, πL(x

∗
L, x

∗
R) > χL/2 = πL(x

∗
R, x

∗
R).

Consider a deviation for the left-wing candidate to any platform x′
L ∈ [0, 1] different

from x∗
L and x∗

R. On one hand, if p(x′
L, x

∗
R) = 0, then πL(x

′
L, x

∗
R) = 0 < πL(x

∗
L, x

∗
R),

implying that the alternative policy does not raise L’s payoff. On the other hand, if

p(x′
L, x

∗
R) ∈ (0, 1], two cases are in order:

Case 1. Assume x′
L ∈ (x∗

R, 1]. Then: (i) if p(x′
L, x

∗
R) = 1, it must be the case that

1− (x′
L + x∗

R)/2 ≥ 1/2 + β, which leads to the contradiction (x′
L − 1/2) + (β − χR/2) ≤

−2β, since the left-hand side of the previous inequality is strictly positive and the right-

hand side is smaller than zero; alternatively (ii) if p(x′
L, x

∗
R) ∈ (0, 1), then πL(x

′
L, x

∗
R) =(

1
2
+

1−x′
L−x∗

R

4β

)
· (x∗

R − x′
L + χL). Recall that 1− x′

L − x∗
R < 0 and x∗

R − x′
L < 0, because

x′
L > x∗

R > 1/2. Therefore, πL(x
′
L, x

∗
R) < 1/2 ·χL < πL(x

∗
L, x

∗
R), implying once again that

candidate L’s deviation to x′
L is not beneficial.

Case 2. Suppose x′
L ∈ [0, x∗

R). Then: (i) if p(x′
L, x

∗
R) = 1, it must be that (x′

L +

x∗
R)/2 ≥ 1/2 + β and, consequently, that x′

L ≥ 1/2 + β + χR/2 > x∗
R, which supplies the

desired contradiction (because by hypothesis x′
L < x∗

R); alternatively (ii) if p(x′
L, x

∗
R) ∈

(0, 1), then: (ii.a) if θL ≤ x′
L < x∗

R, candidate L’s deviation payoff is πL(x
′
L, x

∗
R) =(

1
2
+

x′
L+x∗

R−1

4β

)
· (x∗

R − x′
L + χL); and, given that the function f(xL) =

(
1
2
+

xL+x∗
R−1

4β

)
·

(x∗
R−xL+χL) is strictly concave on xL ∈ [θL, x

∗
R) and has a maximum at 1/2−β+χL/2,

we conclude that πL(x
′
L, x

∗
R) < πL(x

∗
L, x

∗
R); finally (ii.b) if 0 ≤ x′

L < θL, it is easy to show

that πL(x
′
L, x

∗
R) < πL(θL, x

∗
R) < πL(x

∗
L, x

∗
R), where the last inequality follows from the

argument in (ii.a).

Summing up, Case 1 and Case 2 above, together with the fact that πL(x
∗
L, x

∗
R) >

πL(x
∗
R, x

∗
R), prove that x∗

L = argmaxxL∈[0,1] πL(xL, x
∗
R). A similar reasoning also shows

that x∗
R = argmaxxR∈[0,1] πR(x

∗
L, xR). Therefore, the profile (x∗

L, x
∗
R) is a PSE for G.
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Proof of Proposition 3. We prove the proposition for 1/2 < x∗
L < x∗

R. The argument

for x∗
L < x∗

R < 1/2 is similar. First, assume the election game G has a PSE with the

property that 1/2 < x∗
L < x∗

R. By Lemma 3, x∗
L = 1/2 − β + χL/2 and χL + χR < 4β.

That implies that χL

2
> β > χL+χR

4
and, therefore, that χR < χL. Using simple algebraic

manipulation, it also follows that

χL + χR

4
<

χL − χR

4
+

√
χR · χL

2
<

χL

2
. (3)

Suppose, by way of contradiction, that 2β < (χL − χR)/2 + (χR · χL)
1/2. By def-

inition, πR(x
∗
L, x

∗
R) = β − (χL − χR)/2 + (χL − χR)

2/16β. Fix any xR ∈ [1/2, x∗
L).

Candidate R’s payoff at (x∗
L, xR) is πR(x

∗
L, xR) =

(
1
2
+

x∗
L+xR−1

4β

)
(xR − x∗

L + χR). There-

fore, limxR→−x∗
L
πR(x

∗
L, xR) = χLχR

4β
. Notice that the difference between πR(x

∗
L, x

∗
R) and

limxR→−x∗
L
πR(x

∗
L, xR) gives rise to a second-order polynomial equation in β, namely,

4β2 − 2β(χL − χR) + (χL − χR)
2/4 − χL · χR, which has the following two roots:

χL−χR

4
±

√
χR·χL

2
. Therefore, for any β ∈

(
χL+χR

4
, χL−χR

4
+

√
χR·χL

2

)
, we have that

πR(x
∗
L, x

∗
R) < limxR→−x∗

L
πR(x

∗
L, xR), contradicting that the strategy profile (x∗

L, x
∗
R) is

by hypothesis a PSE of G. Hence, 2β ≥ (χL − χR)/2 + (χR · χL)
1/2.

To carry out the second part of the proof, suppose (χL − χR)/2 + (χR · χL)
1/2 ≤

2β < χL, and consider the equilibrium candidate (x∗
L, x

∗
R) = (1

2
− β + χL

2
, 1
2
+ β − χR

2
).

By the initial hypothesis and (3), we have that χL + χR < 4β. Therefore, since by

assumption 2β < χL, it follows that χR < 2β and, consequently, that 1/2 < x∗
L < x∗

R

and p(x∗
L, x

∗
R) ∈ (0, 1). Moreover, using the argument of the proof to Proposition 2,

x∗
L = argmaxxL∈[0,1] πL(xL, x

∗
R). To show that x∗

R = argmaxxR∈[0,1] πR(x
∗
L, xR) we proceed

as follows. Firstly notice that, by applying the reasoning of the proof to Lemma 3, it

can be shown that for some ϵ > 0 with the property that Rϵ(x
∗
R) ≡ (x∗

R − ϵ, x∗
R +

ϵ) ⊂ (x∗
L, θR),

1
2
+ β − χR

2
= argmaxxR∈Rϵ(x∗

R) πR(x
∗
L, xR), with πR(x

∗
L, x

∗
R) =

χR

2
+ (β −

χL

2
) + (χR−χL)

2

16β
. Secondly, to prove that πR(x

∗
L, x

∗
R) > χR

2
, observe that χR

2
< χLχR

4β

because χL/2β > 1. Moreover, since limxR→−x∗
L
πR(x

∗
L, xR) =

χLχR

4β
, it also follows that

limxR→−x∗
L
πR(x

∗
L, xR) >

χR

2
. Thus, the desired result, i.e., πR(x

∗
L, x

∗
R) >

χR

2
is obtained

using the fact that, by hypothesis, limxR→−x∗
L
πR(x

∗
L, xR) ≤ πR(x

∗
L, x

∗
R). The rest of the

proof follows the argument of the proof to Prop. 2 and is left to the readers.22

Proof of Proposition 4.23 Under the hypothesis of Prop. 4, i.e., χR/2 < β < βC
1 ,

the existence of a MSE for the election game G = (X,Πi) follows from the following

argument. First, by Prop. 1, G does not possess a PSE with xL = xR because χR < 2β.

Second, notice that β < βC
1 implies χL/2 > β (because βC

1 < χL/2). Thus, by Props.

22A complete version of it is available from the authors upon request.
23The proof of Proposition 5 is similar.
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2 and 3, there exists no PSE with xL < xR either. But that means, by Lemma 2, that

G does not possess an equilibrium in pure strategies. Finally, remember that by Prop.

3 in Saporiti (2008), the mixed extension of G is better reply secure; thereby G must

admit a Nash equilibrium where at least one candidate randomizes over two or more pure

strategies.

Denote by (µ∗
L, µ

∗
R) ∈ ∆2 a MSE of G, and let xi (resp. xi) be the lower (resp.

upper) bound of supp(µ∗
i ). That is, let xi = inf(supp(µ∗

i )) and xi = sup(supp(µ∗
i )), with

i = L,R. The rest of the proof is organized in a series of claims.

Claim 1 supp(µ∗
R) ⊆ [1/2, θR].

Claim 1 is intuitive and follows from the fact that each location xR smaller than 1/2

(resp. greater than θR) is strictly dominated for candidate R and, therefore, it’s never

played with positive probability in a MSE. For the the sake of brevity, the details of the

proof are left for the reader, and they are available from the author upon request.

Claim 2 µ∗
L(xL) < 1.

Proof Suppose not. Two cases are possible. First, if xL ≤ x̃L(β, χR), then R’s best

response to xL is x∗
R = 1/2 + β − χR/2. However, the profile (xL, x

∗
R) can’t be an

equilibrium because under the hypothesis of Prop. 4, G has no equilibrium in pure

strategies. Second, if x̃L(β, χR) < xL ≤ θR,
24 then R’s best response is to undercut L’s

location by choosing a position just below xL, which is not well defined because the policy

space is a continuum.

Claim 3 xL ≤ xR = x∗
R.

Proof To start, recall that a strategy profile (µ∗
L, µ

∗
R) is a MSE of G if and only if

for each candidate i ̸= j, (1) Ui(x, µ
∗
j) = Ui(y, µ

∗
j) for all x, y ∈ supp(µ∗

i ), and (2)

Ui(x, µ
∗
j) ≥ Ui(y, µ

∗
j) for all x ∈ supp(µ∗

i ) and all y ̸∈ supp(µ∗
i ).

To prove the first part of Claim 3, note that if xL > xR, then candidate L can do

better by undercutting xR from above, since for any ϵ > 0 such that xR < xL − ϵ

UL(xL, µ
∗
R) =

∫
xR

(
1

2
+

1− xR − xL

4β

)
· (xR − xL + χL) · dµ∗

R <

<

∫
xR

(
1

2
+

1− xR − (xL − ϵ)

4β

)
· (xR − (xL − ϵ) + χL) · dµ∗

R = UL(xL − ϵ, µ∗
R).

To show the second part, i.e., that xR = x∗
R, consider two cases.

24Given that supp(µ∗
R) ⊆ [1/2, θR], it’s never optimal for L to play above θR.
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Case 1. Suppose xL < xR. On one hand, if xL ≥ x∗
R, then xR > x∗

R. Consider any ϵ > 0

small enough such that xL < xR − ϵ. Routine calculations show that

UR(µ
∗
L, xR − ϵ)− UR(µ

∗
L, xR) =

ϵ

4β
· (2xR + χR − 2β − (1 + ϵ)),

which is strictly greater than zero because xR > 1/2 + β − χR/2 = x∗
R, a contradiction.

On the other hand, if xL < x∗
R, then for any xL ∈ supp(µ∗

L), πR(xL, xR) ≤ πR(xL, x
∗
R),

with strict inequality if xR ̸= x∗
R (recall πR(xL, ·) has a unique maximum at x∗

R above

the diagonal). Integrating with respect to µ∗
L, we have that UR(µ

∗
L, xR) ≤ UR(µ

∗
L, x

∗
R),

with strict inequality if xR ̸= x∗
R. Hence, since xR ∈ supp(µ∗

R), it must be the case that

xR = x∗
R.

Case 2. Suppose xL = xR ≡ x. First, consider the case in which x < x∗
R. For any xL ∈

[xL, x), πR(xL, x) < πR(xL, x
∗
R). Integrating with respect to µ∗

L and adding µ∗
L(x) · χR/2

to both sides, we have∫
xL ̸=x

πR(xL, x) · dµ∗
L + µ∗

L(x) ·
χR

2︸ ︷︷ ︸
=UR(µ∗

L,x)

<

∫
xL ̸=x

πR(xL, x
∗
R) · dµ∗

L + µ∗
L(x) ·

χR

2
. (4)

Notice that πR(x, x
∗
R) =

1
β

(
x∗
R−x

2
+ χR

2

)2

> χR

2
. Therefore,

∫
xL ̸=x

πR(xL, x
∗
R) · dµ∗

L + µ∗
L(x) · πR(x, x

∗
R)︸ ︷︷ ︸

=UR(µ∗
L,x

∗
R)

≥
∫
xL ̸=x

πR(xL, x
∗
R) · dµ∗

L + µ∗
L(x) ·

χR

2
, (5)

with strict inequality if µ∗
L(x) ̸= 0. Thus, combining (4) and (5), we get that UR(µ

∗
L, x

∗
R) >

UR(µ
∗
L, x), contradicting that x ∈ supp(µ∗

R).

Second, consider the alternative case in which x > x∗
R. Since µ

∗
L has at most countably

many atoms and X is dense in the reals, assume without loss of generality that for some

ϵ > 0 small enough, µ∗
L(x− ϵ) = 0. Then,

UR(µ
∗
L, x− ϵ) =

∫ x−ϵ

xL

(
1

2
+

1− xL − (x− ϵ)

4β

)
· (x− ϵ− xL + χR) · dµ∗

L+

+

∫ x

x−ϵ

(
1

2
+

xL + (x− ϵ)− 1

4β

)
· (x− ϵ− xL + χR) · dµ∗

L+

+ µ∗
L(x) ·

(
1

2
+

2x− ϵ− 1

4β

)
· (χR − ϵ) ,

(6)
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and

UR(µ
∗
L, x) =

∫ x−ϵ

xL

(
1

2
+

1− xL − x

4β

)
· (x− xL + χR) · dµ∗

L+

+

∫ x

x−ϵ

(
1

2
+

1− xL − x

4β

)
· (x− xL + χR) · dµ∗

L + µ∗
L(x) ·

χR

2
.

(7)

Note that the difference between the first term in the right hand side (henceforth,

RHS) of the expression in (6) and the first term in the RHS of (7) is equal to

ϵ

4β
· (2x+ χR − 2β − (1 + ϵ)) ·

∫ x−ϵ

xL

dµ∗
L, (8)

which is strictly positive for ϵ < x− x∗
R because by hypothesis x > x∗

R.

Let’s now consider the second term in the RHS of (6) and the second term in the RHS

of (7). The difference between these two terms is equal to∫ x

x−ϵ

(
xL + x− 1

2β

)
︸ ︷︷ ︸

>0

· (x− xL + χR)︸ ︷︷ ︸
>χR

·dµ∗
L +

ϵ

4β
· (1 + ϵ− 2x− χR − 2β) ·

∫ x

x−ϵ

dµ∗
L. (9)

Similarly, the difference between the last terms in the RHS of (6) and (7) is

µ∗
L(x) ·


1

2
+

2x− ϵ− 1

4β︸ ︷︷ ︸
>0

 · (χR − ϵ)− χR

2

 . (10)

Note that (9) and (10) are both continuous in ϵ. Moreover, (9) is zero for ϵ = 0,

thereby it must be approximately zero for ϵ > 0 arbitrarily small. In addition, the

expression in (10) is strictly positive for ϵ = 0 if µ∗
L(x) ̸= 0 (otherwise, if µ∗

L(x) = 0, then

we can just ignore these terms); and by continuity it must be nonnegative for ϵ sufficiently

small. Hence, combining all this with (8), we conclude that for some ϵ > 0 small enough

UR(µ
∗
L, x− ϵ) > UR(µ

∗
L, x), contradicting that x ∈ supp(µ∗

R). Therefore, x = x∗
R.

Claim 4 xR = xL ≡ x ≥ 1/2.

Proof Assume, by way of contradiction, xR ̸= xL. On one hand, if xR < xL, then by

Claim 1, 1/2 < xL ≤ θR, and therefore for any ϵ > 0 such that xR+ϵ < xL, UR(µ
∗
L, xR) <

UR(µ
∗
L, xR + ϵ), because xR + ϵ raises R’s probability of winning the election and, at the

same time, it’s closer to θR. But that contradicts that by definition xR = inf supp(µ∗
R).
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On the other hand, if xR > xL, then we proceed as follows. Consider any ϵ > 0 such

that xL + ϵ < xR. Routine calculations show that

UL(xL + ϵ, µ∗
R)− UL(xL, µ

∗
R) =

ϵ

4β
· (1− ϵ− 2xL + χL − 2β); (11)

and, since by the definition of MSE we have that UL(xL + ϵ, µ∗
R) ≤ UL(xL, µ

∗
R), it follows

that xL ≥ (1 − ϵ)/2 − β + χL/2 and, therefore, that xR > 1/2 − β + χL/2, where the

latter is obtained using the previous hypothesis that xR > xL and an ϵ sufficiently small.

Fix any x̂R ∈ supp(µ∗
R). For each xL < x̂R, the conditional payoff function

πL(xL, x̂R) = [1/2 + (xL + x̂R − 1)/4β](x̂R − xL + χL) has a unique maximum at

x∗
L = 1/2 − β + χL/2. Therefore, πL(x

∗
L, x̂R) ≥ πL(xL, x̂R), with strict inequality if

xL ̸= x∗
L. Integrating with respect to µ∗

R, we have UL(x
∗
L, µ

∗
R) ≥ UL(xL, µ

∗
R), with strict

inequality if xL ̸= x∗
L. Hence, it must be that xL = x∗

L.

Recall that by hypothesis xR > xL; and that by Claim 2 (resp. Claim 3) xL > xL

(resp. x∗
R = xR ≥ xL). Moreover, it’s easy to show that xR ≤ xL.

25 Consider now an

ϵ > 0 such that xL < xR − ϵ. Then,

UL(xL,µ
∗
R) =

∫ xL

xR

(
1

2
+

1− xL − xR

4β

)
(xR − xL + χL) dµ

∗
R + µ∗

R(xL)
χL

2
+

+

∫ xR

xL

(
1

2
+

xL + xR − 1

4β

)
(xR − xL + χL) dµ

∗
R,

(12)

and

UL(xR − ϵ,µ∗
R) =

∫ xL

xR

(
1

2
+

xR − ϵ+ xR − 1

4β

)
(xR − (xR − ϵ) + χL) dµ

∗
R+

+ µ∗
R(xL)

[(
1

2
+

xR − ϵ+ xL − 1

4β

)
(xL − (xR − ϵ) + χL)

]
+

+

∫ xR

xL

(
1

2
+

xR − ϵ+ xR − 1

4β

)
(xR − (xR − ϵ) + χL) dµ

∗
R.

(13)

Notice that the difference between the first terms in the RHS of (12) and (13) is

negative, since for all xR ∈ [xR, xL) and all ϵ > 0 small enough, (i) 1
2
+ 1−xL−xR

4β
<

1
2
+

xR−ϵ+xR−1

4β
, and (ii) xR − xL + χL < xR − (xR − ϵ) + χL.

25Otherwise, for any x̂R ∈ supp(µ∗
R), πL(xL, x̂R) > πL(xL, x̂R), and integrating with respect to µ∗

R we
would find the desired contradiction, i.e. UL(xL, µ

∗
R) > UL(xL, µ

∗
R).

45



Similarly, the difference between the second terms is non-positive; that is,

µ∗
R(xL)

χL

2
−

1

2
+

xR − ϵ+ xL − 1

4β︸ ︷︷ ︸
>0

 (xL − (xR − ϵ)︸ ︷︷ ︸
>0

+χL)

 ≤ 0,

with strict inequality if µ∗
R(xL) ̸= 0. Finally, the difference between the last two terms in

the RHS of (12) and (13) is also smaller than or equal to zero. Indeed, for all xR ∈ (xL, xR],

the conditional payoffs are such that πL(xL, xR) ≤ πL(xR − ϵ, xR), since πL(·, xR) has a

unique maximum at x∗
L = xL and decreases above x∗

L (recall x∗
L = xL < xR = x∗

R

implies that β > (χL + χR)/4). Thus integrating with respect to µ∗
R over (xL, xR] we

get that
∫ xR

xL
πL(xL, xR) dµ

∗
R ≤

∫ xR

xL
πL(xR − ϵ, xR) dµ

∗
R, as required. And combining the

three previous observations, it follows that UL(xL, µ
∗
R) < UL(xR− ϵ, µ∗

R), a contradiction.

Hence, xR = xL ≡ x; and by Claim 1, x ≥ 1/2.

Claim 5 x = x̃L(β, χR).

Proof By Claims 1-4, supp(µ∗
L) ⊆ [1/2, x∗

R] and xR > x; hence, µ∗
R(x) < 1. Assume, by

contradiction, x > x̃L(β, χR). (The other case is similar.) By the definition of MSE, for

any ϵ > 0 small enough, UR(µ
∗
L, x

∗
R) ≥ UR(µ

∗
L, x− ϵ), where

UR(µ
∗
L, x

∗
R) = µ∗

L(x) · πR(x, x
∗
R)+

+

∫
xL ̸=x

(
1

2
+

1− xL − x∗
R

4β

)
· (x∗

R − xL + χR) · dµ∗
L + µ∗

L(x
∗
R)

χR

2
,

(14)

and

UR(µ
∗
L, x− ϵ) = µ∗

L(x) · πR(x, x− ϵ)+

+

∫
xL ̸=x

(
1

2
+

x− ϵ+ xL − 1

4β

)
· (x− ϵ− xL + χR) · dµ∗

L.
(15)

Note that since by hypothesis x > x̃L(β, χR), we have that lim supxR→−x πR(x, xR) >

πR(x, x
∗
R). Therefore,

µ∗
L(x) · [πR(x, x− ϵ)− πR(x, x

∗
R)] > 0. (16)

Applying once again the definition of a mixed strategy equilibrium, Claims 3 and 4
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imply that UR(µ
∗
L, x

∗
R) = UR(µ

∗
L, x). Thus,∫

xL ̸=x

πR(xL, x) dµ
∗
L = µ∗

L(x) ·
[
πR(x, x

∗
R)−

χR

2

]
+

+

∫
xL ̸=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
.

(17)

If x < 1
2
+ β − χR

2
+ (χR −

√
2βχR), then πR(x, x

∗
R) >

χR

2
. Hence, (17) implies that∫

xL ̸=x

πR(xL, x) dµ
∗
L >

∫
xL ̸=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
. (18)

Notice that the left hand side of (18) is left continuous in xR at x, since πR(xL, x) =(
1
2
+ xL+x−1

4β

)
· (x− xL + χR), meaning that for ϵ > 0 sufficiently small,

∫
xL ̸=x

πR(xL, x− ϵ) dµ∗
L ≥

∫
xL ̸=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
. (19)

Thus, combining (16) and (19), it follows from (14) and (15) that UR(µ
∗
L, x

∗
R) <

UR(µ
∗
L, x− ϵ), a contradiction.

Alternatively, if x ≥ 1
2
+ β − χR

2
+ (χR −

√
2βχR), then

πR(x, x
∗
R) ≤

χR

2
; (20)

and from (17) we have that∫
xL ̸=x

πR(xL, x) dµ
∗
L ≤

∫
xL ̸=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
. (21)

Using again the continuity of πR(xL, xR) =
(

1
2
+ xL+xR−1

4β

)
· (xR − xL + χR) in xR at

x, for ϵ > 0 small enough∫
xL ̸=x

πR(xL, x− ϵ) dµ∗
L ≈

∫
xL ̸=x

πR(xL, x) dµ
∗
L. (22)

By definition, x̃L(β, χR) ≡ 1/2 · (1 + 2β + 3χR − 2
√
2
√
2βχR + χ2

R). Thus, since by

the hypothesis of Prop. 4 χR < 2β, we have that x̃L(β, χR) > 1/2, which implies that

x > 1/2 as well (recall we assumed before x > x̃L). Hence, by the discontinuity of p(·) at
(x, x), p(x, x− ϵ) is well above 1/2, meaning that for ϵ > 0 sufficiently close to zero

πR(x, x− ϵ) =

(
1

2
+

2x− (1 + ϵ)

4β

)
(χR − ϵ) >

χR

2
. (23)
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Finally, from (17),

µ∗
L(x) ·

[
πR(x, x

∗
R)−

χR

2

]
+

∫
xL ̸=x

[πR(xL, x
∗
R)− πR(xL, x)] dµ

∗
L + µ∗

L(x
∗
R)

χR

2
= 0; (24)

and combining (20), (22) and (23) and comparing them with (24), the expression below

µ∗
L(x)· [πR(x, x

∗
R)− πR(x, x− ϵ)] +

+

∫
xL ̸=x

[πR(xL, x
∗
R)− πR(xL, x− ϵ)] dµ∗

L + µ∗
L(x

∗
R)

χR

2

(25)

turns out to be strictly smaller than zero. However, that means that UR(µ
∗
L, x

∗
R) <

UR(µ
∗
L, x− ϵ), contradicting that x∗

R ∈ supp(µ∗
R). Therefore, x = x̃L(β, χR).

Claim 6 If β ≤ χL+χR

4
, then xL = x∗

R.

Proof Suppose, by way of contradiction, that xL < x∗
R. (Recall that by Claim 3, xL ≤

x∗
R.) Then, for any x′, x′′ ∈ (xL, x

∗
R), with x′ < x′′, we have that πR(xL, x

′′) > πR(xL, x
′)

for all xL ∈ supp(µ∗
L), because πR(xL, ·) is strictly increasing on (xL, x

∗
R).

26 Integrating

with respect to xL over supp(µ∗
L), we get that UR(µ

∗
L, x

′′) > UR(µ
∗
L, x

′); and since this

holds for any x′ < x′′, it follows that (i) R doesn’t allocate probability mass on (xL, x
∗
R),

and (ii) by Claim 3, µ∗
R has an atom at x∗

R, i.e., µ
∗
R(x

∗
R) > 0. The rest of the proof shows

that candidate L would profitably undercut x∗
R from below.

To do that, first we prove that µ∗
R(xL) = 0. That follows by considering the difference

between the left-wing candidate’s conditional expected payoff at xL and at xL − ϵ, with

ϵ > 0 arbitrarily small, which is equal to

UL(xL, µ
∗
R)− UL(xL − ϵ, µ∗

R) =

∫ xL−ϵ

x

[πL(xL, xR)− πL(xL − ϵ, xR)] dµ
∗
R +

+

∫ xL

x−ϵ

[πL(xL, xR)− πL(xL − ϵ, xR)] dµ
∗
R +

+ µ∗
R(x

∗
R) [πL(xL, x

∗
R)− πL(xL − ϵ, x∗

R)] +

+ µ∗
R(xL)

[χL

2
− πL(xL − ϵ, xL)

]
.

(26)

Using the continuity of the payoff function outside the main diagonal and the fact that

ϵ is by hypothesis arbitrarily small, the first three terms of the RHS of (26) are arbitrarily

close to zero. Therefore, since χL

2
< πL(xL − ϵ, xL), the fact that xL ∈ supp(µ∗

L) implies

that µ∗
R(xL) = 0. (Otherwise, we would have that UL(xL, µ

∗
R) < UL(xL − ϵ, µ∗

R), which

would contradict that (µ∗
L, µ

∗
R) is by hypothesis a MSE of G.)

26In fact, πR(xL, ·) is strictly concave with a maximum at x∗
R.
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Second, we work out candidate R’s probability mass on x∗
R by equalizing the left-wing

candidate’s conditional expected payoffs at x and xL, which turns out to be

µ∗
R(x

∗
R) =

µ∗
R(x)

[
χL

2
− πL(xL, x)

]
+
∫ xL

x
[πL(x, xR)− πL(xL, xR)] dµ

∗
R

πL(xL, x∗
R)− πL(x, x∗

R)
. (27)

Finally, notice that

UL(x
∗
R − ϵ, µ∗

R)− UL(xL, µ
∗
R) =

∫ xL

x

[πL(x
∗
R − ϵ, xR)− πL(xL, xR)]︸ ︷︷ ︸

<0 ∀xR∈(x,xL)

dµ∗
R +

+ µ∗
R(x

∗
R) [πL(x

∗
R − ϵ, x∗

R)− πL(xL, x
∗
R)]︸ ︷︷ ︸

> 0 because π′
L(·, x∗

R) > 0

,
(28)

and replacing (27) into (28), we get the desired contradiction, namely, UL(x
∗
R − ϵ, µ∗

R) >

UL(xL, µ
∗
R). Therefore, xL = x∗

R.

Claim 7 If β > χL+χR

4
, then xL = x∗

L < x∗
R.

Proof The claim is proved following the same type of reasoning we have applied before

in the proof of Claim 6. (The fact that x∗
L < x∗

R is shown in the proof of Lemma 3.) The

only main difference is that the second term in the RHS of (28) is not anymore positive

when β > χL+χR

4
, because the conditional payoff function πL(·, x∗

R) is decreasing above

x∗
L. That explains why undercutting the right-wing candidate’s upper bound policy x∗

R

is not anymore profitable for candidate L.

Claim 8 If β ≤ χL+χR

4
, then supp(µ∗

i ) = [x, x] for all i = L,R, with x = x̃L(β, χR) and

x = 1
2
+ β − χR

2
= x∗

R.

Proof The fact that for all i, xi = x̃L(β, χR) (respectively, xi = x∗
R) follows from Claim

5 (respectively, from Claims 3 and 6). Thus, it remains to be shown that supp(µ∗
i )

is an interval. Without loss of generality, consider x ∈ (x, x) and assume, by way of

contradiction, that x ̸∈ supp(µ∗
R). The other case, i.e., x ̸∈ supp(µ∗

L), is analogous.

By definition of supp(µ∗
R), there exists ϵ > 0 such that µ∗

R([x − ϵ, x + ϵ] ∩ X)) = 0.

Consider any two alternatives x′, x′′ ∈ [x − ϵ, x + ϵ], with x′ < x′′. Since πL(·, xR) is

increasing for all xR ∈ (x + ϵ, x∗
R], it is easy to show that UL(x

′′, µ∗
R) > UL(x

′, µ∗
R).

Therefore, x′ ̸∈ supp(µ∗
L); and repeating the argument, it follows that µ∗

L has an atom at

x+ ϵ. But then R must find it profitable to undercut x+ ϵ from below (recall x+ ϵ > x̃L),

contradicting that by hypothesis µ∗
R([x− ϵ, x+ ϵ] ∩X)) = 0.

Claim 9 If β > χL+χR

4
, then supp(µ∗

L) = [x, x] and supp(µ∗
R) = [x, x] ∪ {x∗

R}, with

x = x̃L(β, χR) and x = 1
2
− β + χL

2
= x∗

L.
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Proof The fact that xL = x∗
L follows from Claim 7. To show that µ∗

R((x
∗
L, x

∗
R)) = 0,

we use the argument of the proof of Claim 6. To be more precise, consider any x′, x′′ ∈
(xL, x

∗
R), with x′ < x′′. Since for all xL ∈ [x, x], the conditional payoff πR(xL, ·) is strictly

increasing on (xL, x
∗
R), we have that πR(xL, x

′′) > πR(xL, x
′). Integrating with respect to

xL over supp(µ∗
L), we get that UR(µ

∗
L, x

′′) > UR(µ
∗
L, x

′). Hence, since the pair x′ < x′′

was arbitrarily chosen, it follows that candidate R doesn’t allocate probability mass on

(xL, x
∗
R). The rest of the proof is similar to the proof of Claim 8.

B Appendix: Data

Table 9 displays the ordinary least square (OLS) regressions y = a+ b ·1/t corresponding
to the learning analysis of Section 6.2.

Table 10 shows for each treatment and for each period the mean position as well as the

standard deviation for the Left player and for the Right player. The table also reports the

average absolute distance from the Nash equilibrium as well as the standard deviation.

For Treatment 6 we report the distance from the support as well as the distance from

the entire equilibrium distribution. The table also provides averages of these statistics

for selected intervals.

Finally, Table 11 shows for each treatment for selected intervals the average position

of the Left and of the Right player for each matching pair.
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Table 9: OLS regressions y = a+ b · 1/t.
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(a) Treatment 1.

Table 10: Players’ positions and distance from the Nash equilibrium.
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(b) Treatment 2.

Table 10: Players’ positions and distance from the Nash equilibrium (continued).
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(c) Treatment 3.

Table 10: Players’ positions and distance from the Nash equilibrium (continued).
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(d) Treatment 4.

Table 10: Players’ positions and distance from the Nash equilibrium (continued).
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(e) Treatment 5.

Table 10: Players’ positions and distance from the Nash equilibrium (continued).
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(f) Treatment 6.

Table 10: Players’ positions and distance from the Nash equilibrium (continued).
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(g) Treatment 7.

Table 10: Players’ positions and distance from the Nash equilibrium (continued).
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(a) Treatment 1.

(b) Treatment 2.

(c) Treatment 3.

(d) Treatment 4.

Table 11: Players’ average positions in the matching pairs.
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(e) Treatment 5.

(f) Treatment 6.

(g) Treatment 7.

Table 11: Players’ average positions in the matching pairs (continued).
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