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Abstract

Short sellers face special fees and regulations in many financial markets. Moreover,

in recent years governments in Europe have imposed restrictions that increase the cost

of taking short positions government liabilities. We propose a dynamic model of trade in

sovereign debt and use it to analyze the effects of shortselling costs on the pattern of trade

along a path leading towards default. Costs on shortsellers act to delay and concentrate

trade and bond price movements in a model that is calibrated to reproduce Greece’s ex-

perience between 2008 and 2012. Our results suggest that sovereign debt prices may be a

poor leading indicator of sovereign default.
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Figure 1: Greece 5yr Government Bond Yield.
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1 Introduction

As a country approaches default yields on government debt have the property that the biggest

increases in bond yields occur shortly before the default event. Figure 1, which reports the

yield on 5 year Greek debt, illustrates a typical pattern. Increases in bond premia are relatively

low between November 2008 and August 2011 and then increase sharply between November

of 2011 and March 9 of 2012, the date when a credit event was declared on Greek sovereign

debt credit default swaps (CDS). What is striking is that the credit event in Marcy of 2012

was preceded by a long string of bad news reports that date back to 2009. For instance, Fitch

downgraded Greek debt from A- to BBB+ in December of 2009. Eurostat announced that

their Greek public debt statistics were not reliable on January 12, 2010 and Greece requested

its first bailout from the IMF and EU on April 23, 2010.

Greece is not unique. Paluszynski (2015) points out that other peripheral countries in the

EU also experienced large declines in GDP and a worsening in their trade balance in 2008 but

that yields on their sovereign debt did not begin to respond until two years later. Nieto-Parra

(2009) using data from 13 sovereign debt crises, finds that investment banks start charging

significantly higher fees to underwrite sovereign debt one to three years in advance of a default

2



but that sovereign bond yields don’t begin to rise until shortly before the crisis.

These empirical observations are puzzling because bond prices are determined by par-

ticipants beliefs about future payoffs. Thus, bond prices should be a leading indicator of a

sovereign debt crisis, reacting immediately to any news that the risk of a sovereign debt crisis

has increased. Yet, bond prices appear to lag behind other indicators available to investors

as a country moves towards default.

One explanation for these observations is that the negative content of news occurring

shortly before a crisis is particularly large. This can happen, for instance, if a sovereign

chooses to strategically delay releasing bad news about the risk of a sovereign default to the

market. Braun, Mukerjee and Runkle (1996) and Paluszynski (2015) develop theories where

a sovereign has superior information that a default is likely and is able to successfully delay

releasing this information in the sense that the delay itself does not signal to the market that

the risk of a default is elevated.

In this paper we provide an alternative explanation for this pattern of bond yields. Our

explanation assumes no informational asymmetries and instead relies on a particular type of

financial friction. Shortselling activities are subject to a range of special regulations in most

countries (see Angel (2004) for a description of regulatory restrictions on shortselling in the

U.S., Europe and Asia). To give a specific recent example, at the time of the financial crisis in

2008 settlement failures of short positions in the Greek repo market were handled by holding

a forced auction that exposed shortsellers and market makers to uncertain and potentially

large ex post large borrowing costs. These costs grew in significance as the crisis unfolded. As

uncertainty about Greece’s fiscal situation increased liquidity in the Greek government debt

repo market collapsed.1

It is also not uncommon for sovereigns to increase the costs of shortselling when the price

of government obligations including debt and/or currency falls. Germany banned naked short-

sales of sovereign CDSs in 2010. In November of 2012 this ban was extended to the entire Euro

area. Governments also take actions to increase the costs of shot-sellers when their currencies

are threatened. Some of the more extreme measures include splitting onshore and off-shore

currency markets (Spain in 1992 and Thailand in 1997), imposing capital controls (Malaysia

in 1998), or undertaking large interventions in equity markets (Hongkong in 1998).2

1See ICMA ERC European repo market white paper and White Paper Update, July and March 2011 and

FT Alphaville July 19,2010, “Frozen in the Greek repo markets” for more details.

2In August 1998 the Hongkong Monetary Authority purchased domestic stocks amounting to about 7% of

the Hongkong Stock Exchange’s total market capitalization and 30% of its free float in an effort to fend off

shortsellers. See the discussion in Corsetti, Pesenti and Roubini (2001) for more details.
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We use a model to show that the trajectories of participation rates, liquidity and thus gov-

ernment bond yields along a path resulting in default can be very different when shortselling

is costly. To provide a basis for trade, we assume that individuals are risk neutral and have

heterogenous beliefs about the probability of a sovereign debt crisis. The most optimistic

individuals borrow to leverage up their purchases of government debt while more pessimistic

individuals either choose not to participate in the bond market at all or alternatively choose

to take naked short positions on government debt. Both types of agents are subject to col-

lateral constraints that restrict the sizes of their positions. Those taking long-positions hold

government bonds as collateral and those taking short positions hold cash as collateral. The

leverage rates are determined endogenously as in Geanakoplos (2003, 2010). Trade occurs in

multiple periods and sovereign default is explicit.3

We choose the initial distribution of beliefs and the size of the shortselling costs to re-

produce the pattern of Greek bond yields shown in Figure 1 and then use the model as a

laboratory for understanding how costs on shortsellers affect the dynamics of trade and bond

yields as the economy moves towards a sovereign debt credit event. When shortselling is

costless all individuals choose to participate in the bond market and trade on their beliefs

even when default is a distant prospect. One period holding returns drop sharply in response

to the initial bad news about the possibility of a future debt crisis. In subsequent periods

both participation and trading volume fall monotonically as the economy approaches default.

In contrast, when short-sales are costly, many potential shortsellers of government debt

find it too costly to trade on their beliefs and choose to remain on the sidelines in early

periods. Optimists determine the bond price and it follows that bond prices don’t react much

or even at all to the first bad news. However, as the default event approaches there is a burst

in participation and the size of the market increases. The timing of when the burst in trading

activity occurs depends on the size of shortselling costs and the model is able for instance,

to reproduce the hump-shaped pattern in Greek sovereign debt CDS positions between 2008

and 2012.

Our results are robust. For instance, imposing costs on shortsellers has an even larger

impact on the dynamics of bond yields and trading activity, if the economy is calibrated to

Greece under the assumption that the bond market is frictionless instead. More generally, the

results presented here are also consistent with the pattern of trade in a wide range of derivative

markets. Costs on shortsales offers an explanation for the observation that open positions

3In Braun and Nakajima (2014) we also report results for an economy where a sovereign default is implicitly

engineered by inflation. This scenario may be more relevant for countries such as the U.S. and Japan that are

not in a currency union.
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and trade volumes in many futures and options markets is concentrated in the contracts that

are closest to maturity. Open positions and trade volumes are small or even zero for contracts

that mature at horizons of 6 or more months.

Our model of costly shortselling is related to models with heterogeneous beliefs and finan-

cial frictions considered by Geanakoplos (2003, 2010). He investigates the role of ruling out

short-sales on asset pricing. Our model extends the work of Geanakoplos by allowing for both

leveraged short and long-sales and differs in other respects due to our interest in sovereign

default. Introducing shortselling creates a conceptual and a computational issue. Agents hold

one of three portfolios in each period and the market clearing conditions are discontinuous

functions of the endogenous variables. We derive an algorithm that allows one to recursively

state the equilibrium conditions as a function of the history as the number of model periods

is increased. The second issue is that the number of possible configurations of equilibrium

conditions that have to be checked increases geometrically in the number of periods.

The combination of heterogenous beliefs and an exogenous ban on short sales has also been

used by Harrison and Kreps (1978), Scheinkman and Xiong (2003) and Hong and Sraer (2011)

to account for bubbly phenomena in asset prices. For instance Scheinkman and Xiong (2003)

show that agents are willing to purchase an asset even when it exceeds their evaluation of its

fundamental value because they expect to be able to sell it in the future at a higher price. We

consider versions of our model with multiple period bonds. However, the subjective evaluation

of cash flows for optimistic agents who purchase these bonds exceeds the equilibrium price.

It follows that this type of bubble does not arise in our model.

Our research is also complementary to previous research by Bi (2011) and Bi, Leeper and

Leith (2012). These papers also produce nonlinear movements in bond rates leading up to

a sovereign default in representative agent dynamic general equilibrium models. The source

of the nonlinearity in bond rates in their setup is nonlinearities in the objective probability

of default. We also generate nonlinearities in the dynamics of bond yields. In our model

the nonlinearities are jointly determined by the initial distribution of beliefs, the market

structure and the resulting patterns of trade in the bond market. The principal message of our

analysis is that the micro-structure of the bond market is important. Financial frictions and

asymmetries in the cost of shortselling government debt creates nonlinearities and magnifies

any nonlinearities that might arise in frictionless financial markets.

The remainder of the paper is organized as follows. Section 2 describes the T-period

model. Section 3 provides an analytical characterization of equilibrium when T = 1. Section

4 presents numerical results when T = 4. The model is calibrated to reproduce annual 5-year

bond yield data from Greece between 2008 and Greece’s credit event 2012. 5 contains our
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Figure 2: Event tree.
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2 The T-period model

Our objective is to show how costs on selling government bonds short affect the dynamics

of government bond prices and the pattern of trade along a history resulting in a sovereign

default.4 We consider the situation of a small open economy such as Greece and allow the

demand for loans to differ from the domestic supply of loans.

The economy has a finite number of periods, indexed by t = 0, 1, . . . , T . Let B̄ be the

face value of government debt in period 0 and suppose that the government does not issue

new debt in any other period. All government debt is long-term and matures in the final

period, T . Suppose also that the government only collects taxes in the last period. Under

these assumptions the nominal outstanding value of government debt is B̄ in all but the last

period.

There is a continuum of agents (traders), who participate in the market for government

debt. Prior to time zero all agents agree that the probability of a sovereign default is zero.

At the beginning of time zero, however, before any trade takes place they realize that there is

a possibility of default. They all agree that the default occurs if and only if a bad event (D)

happens T times. But they disagree on the probability of the occurrence of event D in each

4Our model builds on Geanakoplos (2010). We extend his model in three ways: (i) there are multiple

periods; (ii) agents can short sell government bonds; and (iii) we consider a general distribution of agents.
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period.

The event tree is illustrated in Figure 2. In each period t = 1, . . . , T , either a good event

(U) or a bad event (D) occurs. We denote the history of events by st and assume that the

initial state is s0 ≡ 0. The government defaults in period T if sT = DT , and it repays the

full amount of B̄ otherwise. Thus, we assume that if st = U for some t, then st+j = U for all

j = 1, . . . , T − t. A bad event may occur in period t, only when st−1 = Dt−1. It follows that

the set of histories in period t = 1, . . . , T is given by

St ≡ {(Dr, U t−r) : r = 0, . . . , t},

with S0 ≡ {0}.
Agents differ in their subjective belief about the occurrence of good/bad events at each

st = Dt. We index agents by h ∈ [0, 1], so that an agent of type h believes that the probability

of st+1 = U conditional on st = Dt is h. That is,

φh(st+1 = U |Dt) = h, t = 0, . . . , T − 1,

where φh(·) is the subjective belief of agent h. All agents agree that st+1 = U with probability

one at st 6= Dt. Thus, agents with high h assign less probability to the sovereign default event,

and are optimistic in that sense. Let f(h) denote the density of type h agents, where f(h) ≥ 0

for all h and
∫ 1

0 f(h) dh = 1.

Government policy is exogenous. When the government defaults, it repays only a fraction

α ∈ (0, 1) of B̄. Let q(st) be the price of government debt at history st ∈ St. Then the price

of government debt in the last period becomes5

q(sT ) =

{
α, for sT = DT ,

1, otherwise.
(1)

Agents have linear preferences of the form

uh =
∑
st∈St

ch(st)ψh(st), (2)

where ch(st) is consumption of an agent of type h, and ψh(st) is the subjective belief of type

h agent about history st ∈ St

ψh(st) =

{
(1− h)rh, for st = (Dr, U t−r), r = 0, . . . , t− 1,

(1− h)t, for st = Dt.

5Here, for simplicity, we do not explicitly consider how the government finances B̄ at sT 6= DT and αB̄ at

sT = DT . Our model can be modified so that the government collects taxes from the agents for the repayment,

without causing any (significant) change in its implications.
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We assume that consumption is nonnegative in all dates and states throughout the analysis.

Agents have endowments of the consumption good and government bonds in period 0 (and

no other periods). All agents with the same belief type have the same endowments of the

consumption good, yh0 , and government bonds, b̄h.6 Since f(h) is the density of belief types,

y0 =

∫ 1

0
yh0f(h) dh, and B̄ =

∫ 1

0
b̄hf(h) dh,

where y0 is the aggregate endowment of goods in period 0. For simplicity, we assume that

there exists a non-negative function e(h) such that

yh0 = e(h)y0, and b̄h = e(h)B̄.

Then g(h) ≡ e(h)f(h) is the density function for the distribution of initial wealth across belief

types, and

G(h) ≡
∫ h

0
g(η) dη

is the cumulative distribution function describing the fraction of initial wealth held by belief

types η ∈ [0, h].

In addition to government debt, agents have access to a risk-free storage technology that

offers a gross rate of return R > 1, and also to a private loan market where they can borrow

and lend. We allow agents to take leveraged long and short positions on government debt.

It follows from our assumption of risk neutrality that optimistic agents, who believe that

the rate of return on government bonds is sufficiently large, will want to borrow as much

as possible and use the proceeds to purchase government bonds. Their total positions are

limited by the requirement that they post government bonds as collateral in order to obtain

a loan. How much can an agent borrow with one unit of government bonds as collateral?

One way to proceed would be to impose an exogenous ad hoc constraint as in e.g. Kiyotaki

and Moore (1997). We pursue an alternative avenue that determines the collateral constraint

endogenously. Geanakoplos (2003, 2010) posits a broad array of loan/default contracts and

determines which ones trade in equilibrium. Applying this approach to our model yields a

“no-default constraint,” that requires that the amount of repayments not exceed the value

of the collateral in any state. We simplify the ensuing exposition of the model by directly

imposing the no-default constraint.

6Allowing for heterogeneous endowments within each belief type does not change any results here. What

matters is the distribution of endowments across belief types (the fraction of total wealth held by each belief

type).
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Since there is no default on loans, loans are risk-free. Thus the interest rate on loans

is equal to R in equilibrium. Consider a type-h agent who borrows φh(st) and purchases

government bonds bh(st) at date-event st ∈ St. She must repay Rφh(st) in the following

period. The no-default constraint requires that

Rφh(st) ≤ q(st+1)bh(st) (3)

for all successive date-events st+1|st.
Similarly, agents who believe that the rate of return on government bonds is sufficiently

low will want to borrow as much government debt as they can acquire, sell it today, purchase

it back tomorrow at the anticipated lower price and return the government debt to the lender.

In practice, shortsellers have to post collateral, we assume that the collateral is safe storage.

shortsellers are also subject to a no default condition. That is, if a type-h agent takes a

short position of government debt at date-event st, i.e., b(st) < 0, then she must repay

−q(st+1)bh(st) at each successive date-event. Thus the no-default constraint requires that her

holding of safe storage kh(st) must satisfy

Rkh(st) ≥ −q(st+1)bh(st) (4)

for all successive date-events st+1|st.
In addition, we assume that short sales are costly. Let χh(st) be the shortselling cost that

a type-h agent must pay in st then

χh(st) = χmax
{

0,−q(st)bh(st)
}
, (5)

for some non-negative constant χ ≥ 0.

The flow budget constraints for a type-h agent are

ch0 + kh0 − φh0 + q0b
h
0 + χh0 = q0b̄

h + yh0 , (6)

ch(st) + kh(st)− φh(st) + q(st)bh(st) + χh(st) (7)

= q(st)bh(st−1) +R
[
kh(st−1)− φh(st−1)

]
, st ∈ St, t = 1, . . . , T − 1,

ch(sT ) = q(sT )bh(sT−1) +R
[
kh(sT−1)− φh(sT−1)

]
, sT ∈ ST . (8)

Each agent chooses {ch(st), kh(st), φh(st), bh(st): st ∈ St, t = 0, . . . , T} so as to maximize

her utility equation (2) subject to the flow budget constraints equations (6)-(8), the collateral

constraints equations (3)-(4), and the non-negativity constraint on {ch(st), kh(st)}.
A competitive equilibrium in our small open economy consists of an allocation {ch(st),

kh(st), φh(st), bh(st): st ∈ St, t = 0, . . . , T , h ∈ [0, 1]} and prices {q(st)} such that (i) for
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each h ∈ [0, 1] the allocation {ch(st), kh(st), φh(st), bh(st): st ∈ St, t = 0, . . . , T} solves the

utility maximization problem of the type-h agents; and (ii) the market for government bonds

clears at all date-events∫ 1

0
bh(st)f(h) dh = B̄, st ∈ St, t = 0, . . . , T − 1. (9)

We now turn to discuss the properties of an equilibrium. Let ah(st) be the beginning-of-

period wealth of agent h ∈ [0, 1] at date-event st ∈ St

ah(st) =

{
q0b̄

h
0 + yh0 , for t = 0,

q(st)bh(st−1) +R
[
kh(st−1)− φh(st−1)

]
, for t = 1, . . . , T .

(10)

Since agents are risk neutral with no discounting and have access to the risk-free storage

technology at the rate of R > 1, they choose to consume only in the last period

ch(st) =

{
0, for all st ∈ St with t = 0, . . . , T − 1,

ah(sT ), for all sT ∈ ST .
(11)

The equilibrium prices at sT ∈ ST , q(sT ), are as given in equation (1). Also, since no

uncertainty remains at date-events st ∈ St \ {Dt}, t = 1, . . . , T − 1, the equilibrium prices are

clearly given by

q(st) = Rt−T , for all st ∈ St \ {Dt}, t = 1, . . . , T − 1. (12)

Since government debt, risk-free storage, and private loans are prefect substitutes at st ∈
St \ {Dt}, all agents are indifferent about their portfolios, and thus, as long as the asset

market clearing condition is satisfied, any allocation of assets can be equilibrium.

What remains to be determined are prices q(st) and asset allocations {bh(st), kh(st), φh(st)}
along the path leading to the sovereign default: st = Dt, for t = 0, . . . , T−1 (D0 is interpreted

as the initial period 0). Since q(Dt, U) ≥ q(Dt+1), the collateral constraints equations (3) –

(4) at date-event Dt are rewritten as

Rφh(Dt) ≤ q(Dt+1)bh(Dt), (13)

Rkh(Dt) ≥ −q(Dt, U)bh(Dt). (14)

At these date-events, agents can be classified into three groups depending on their positions

in government debt: those who take a long position; those who take a short position; and

those who do not participate in the market of government debt. Furthermore, due to the

linearity of preferences, agents taking a long position in government debt borrow as much

as possible holding government bonds as collateral so that equation (13) holds with equality.
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Similarly, agents taking a short position in government debt borrow government bonds as

much as possible holding safe storage as collateral so that equation (14) is satisfied with

equality.

For Dt, t = 0, . . . , T − 1, let h̄(Dt) and h(Dt) be the marginal buyer and seller of govern-

ment debt. That is, agents of type h ≥ h̄(Dt) take a long position in government debt with

the maximum amount of leverage

kh(Dt) = 0,

φh(Dt) =
q(Dt+1)

R
bh(Dt), (15)

bh(Dt) =

{
q(Dt)− q(Dt+1)

R

}−1

ah(Dt);

those of type h ≤ h(Dt) choose the portfolio

φh(Dt) = 0,

kh(Dt) =
q(Dt, U)

R

[
−bh(Dt)

]
, (16)

bh(Dt) = −
{
q(Dt, U)

R
− (1− χ)q(Dt)

}−1

ah(Dt);

and those of type h ∈ (h(Dt), h̄(Dt)) are “inactive” and hold only risk-free assets

bh(Dt) = 0,

kh(Dt)− φh(Dt) = ah(Dt). (17)

Equations (15)–(16) show that traders of government debt can take leveraged positions. Define

the leverage factors for the long and short positions by

λL(Dt) ≡
{
q(Dt)− q(Dt+1)

R

}−1

, (18)

λS(Dt) ≡
{
q(Dt, U)

R
− (1− χ)q(Dt)

}−1

. (19)

As shown by equations (15)–(17), the equilibrium asset allocation {bh(Dt), kh(Dt), φh(Dt) :

t = 0, . . . , T−1, h ∈ [0, 1]} is determined by the marginal traders {h̄(Dt), h(Dt) : t = 0, . . . , T−
1}. Given prices {q(st)}, the marginal traders are determined by the following indifference

conditions.

Consider the portfolio choice of a type-h agent at date-event DT−1. If she buys government

debt and chooses the portfolio given by equation (15), then she receives in sT

ah(sT ) =

{
λL(DT−1)

[
q(DT−1, U)− q(DT )

]
ah(DT−1), for sT = (DT−1, U),

0, for sT = DT .
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Thus, her expected return from this portfolio is

RhL(DT−1) ≡ hλL(DT−1)
[
q(DT−1, U)− q(DT )

]
. (20)

Alternatively, if the type-h agent sells government debt and holds the portfolio given by

equation (16), then the proceeds in sT are

ah(sT ) =

{
0, for sT = (DT−1, U),

λS(DT−1)
[
q(DT−1, U)− q(DT )

]
ah(DT−1), for sT = DT .

The expected return for her is then

RhS(DT−1) ≡ (1− h)λS(DT−1)
[
q(DT−1, U)− q(DT )

]
. (21)

Finally, if she chooses the portfolio given by equation (17), her expected return is R.

Each agent chooses the portfolio that (she believes) yields the highest return. Let ρh(Dt)

be the (subjective) expected return that a type-h agent earns between periods t and T given

that the realization of events in period t is Dt. At DT−1 we have

ρh(DT−1) ≡ max
{
R,RhL(DT−1), RhS(DT−1)

}
. (22)

Notice that RhL(DT−1) is increasing in h, RhS(DT−1) is decreasing in h, and

R0
L(DT−1) = R1

S(DT−1) = 0 < R.

Thus, as long as R1
L(DT−1) > R, the marginal buyer h̄(DT−1) ∈ (0, 1) is uniquely given by

the condition

R
h̄(DT−1)
L (DT−1) = max

{
R,R

h̄(DT−1)
S (DT−1)

}
. (23)

As a matter of fact, since government debt is in positive supply, this equation must have a

solution h̄(DT−1) ∈ (0, 1) in order for an equilibrium to exist (that is, R1
L(DT−1) > R must

be true in equilibrium).

On the other hand, shortsellers do not need to exist in equilibrium. If R0
S(DT−1) >

max{R,R0
L(DT−1)}, then set h(DT−1) = 0. Otherwise, there exists a (unique) h(DT−1) ∈

(0, 1) such that

R
h(DT−1)
S (DT−1) = max

{
R,R

h(DT−1)
L (DT−1)

}
. (24)

The marginal traders in earlier periods, h̄(Dt) and h(Dt), t = 0, . . . , T −2, are determined

recursively. At Dt, if a type-h agent takes a long position in government debt, her expected

return between periods t and T would be

RhL(Dt) = hλL(Dt)
[
q(Dt, U)− q(Dt+1)

]
RT−t−1, (25)
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if she takes a short position, it would be

RhS(Dt) = (1− h)λS(Dt)
[
q(Dt, U)− q(Dt+1)

]
ρh(Dt+1), (26)

and if she does not participate in the market for government debt

RhM (Dt) = R
[
hRT−t−1 + (1− h)ρh(Dt+1)

]
. (27)

Note that RhL(Dt) is increasing in h, RhS(Dt) and RhM (Dt) are decreasing in h, and

R0
L(Dt) = R1

S(Dt) = 0, R1
M (Dt) = RT−t, R0

M (Dt) = Rρ0(Dt+1).

Again, as long as R1
L(Dt) > R1

M (Dt), which must be true in equilibrium, there exists a unique

value h̄(Dt) ∈ (0, 1) such that

R
h̄(Dt)
L (Dt) = max

{
R
h̄(Dt)
M (Dt), R

h̄(Dt)
S (Dt)

}
. (28)

For the marginal seller, set h(Dt) = 0 if R0
S(Dt) < R0

M (Dt); otherwise, the marginal seller

h(Dt) ∈ (0, 1) is uniquely determined by the condition

R
h(Dt)
S (Dt) = max

{
R
h(Dt)
M (Dt), R

h(Dt)
L (Dt)

}
. (29)

The expected return of the type-h agent is therefore

ρh(Dt) = max
{
RhL(Dt), RhM (Dt), RhS(Dt)

}
. (30)

Given the identities of marginal traders, {h̄(Dt), h(Dt)}, the evolution of wealth of each

agent, {ah(Dt)} can be computed as follows. For t = 1, . . . , T , let γh(Dt) be the realized

(cumulative) return that a type-h agent earns from the initial date 0 to date-event Dt. It is

defined recursively as

γh(Dt) =


0, for h ≥ h̄(Dt−1),

Rγh(Dt−1), for h ∈ (h(Dt−1), h̄(Dt−1)),

λS(Dt−1)[q(Dt−1, U)− q(Dt)]γh(Dt−1), for h ≤ h(Dt−1),

(31)

with γh0 ≡ 1 for all h. Then the type-h agent’s wealth at Dt is

ah(Dt) = γh(Dt)ah0 = γh(Dt)e(h)(q0B̄ + y0). (32)

Note that ah(Dt) = 0 for h ≥ h̄(Dt−1).
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Using equations (15), (18), (31), and (32), the aggregate demand for government debt at

Dt is expressed as

Bd(Dt) ≡
∫ 1

h̄(Dt)
bh(Dt)f(h) dt,

=

∫ h̄(Dt−1)

h̄(Dt)
λL(Dt)γh(Dt)(q0B̄ + y0)g(h) dt. (33)

Note that Bd(Dt) > 0 requires h̄(Dt) < h̄(Dt−1). Similarly, the aggregate supply of govern-

ment debt is given as

Bs(Dt) ≡ B̄ −
∫ h(Dt)

0
bh(Dt)f(h) dt,

= B̄ +

∫ h(Dt)

0
λS(Dt)γh(Dt)(q0B̄ + y0)g(h) dt. (34)

The market clearing condition for the government debt at Dt is

Bd(Dt) = Bs(Dt), t = 0, . . . , T − 1. (35)

To summarize, the marginal traders {h̄(Dt), h(Dt) : t = 0, . . . , T − 1} and the prices of

government debt {q(Dt) : t = 0, . . . , T − 1} along the path leading to the sovereign default

are determined by the equations: (23), (24), (28), (29), and (35). It is worth noting that

these equilibrium conditions only involve the density function g(h), and its decomposition

between f(h) and e(h) is irrelevant. For this reason, in what follows, whenever we refer to

the distribution of initial wealth, we mean g(h) (and G(h)).

As can be seen in equations (31)– (32), the ordering of the marginal traders {h̄(Dt), h(Dt) :

t = 0, . . . , T −1} matters when computing the evolution of the wealth distribution, and hence

when solving for a competitive equilibrium.

Proposition 1. The identities of marginal traders {h̄(Dt), h(Dt) : t = 0, . . . , T − 1} satisfy

the following inequalities:

h̄(Dt) < h̄(Dt−1), t = 1, . . . , T − 1,

h(Dt) ≤ h̄(Dt), t = 0, . . . , T − 1.

Proof. The first inequality is necessary to clear the market for government debt. The second

inequality follows from equations (28)-(29).

With this proposition, however, there still remain many possible configurations of {h̄(Dt), h(Dt)}.
As we discuss later, this constitutes the main difficulty in solving the model numerically when

T becomes large.
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3 Analytical results when T = 1

It is difficult to obtain further analytical results with a general time horizon T . In this section

we consider the special case with T = 1 (the one-period model) and conduct some comparative

statics analysis.

The one-period model has two instants of time that are indexed by t = 0, 1. Trades occur

only in period 0. There are two states of nature in period one, S1 = {U,D}. Default occurs

in state D. The price of government debt in the last period is

q(U) = 1, and q(D) = α < 1. (36)

Thus, a competitive equilibrium for the one-period model is described by the bond price in

period 0, q0, and the marginal traders in period 0, h̄0 and h0.

For the one-period model, a type-h agent’s expected returns from holding a long and short

positions in government debt are given respectively by

RhL,0 = hλL,0
[
q(U)− q(D)

]
, (37)

RhS,0 = (1− h)λS,0
[
q(U)− q(D)

]
, (38)

where λL,0 and λS,0 are the leverage factors for the long and short positions

λL,0 =

{
q0 −

1

R
q(D)

}−1

, (39)

λS,0 =

{
1

R
q(U)− (1− χ)q0

}−1

. (40)

The equilibrium conditions for {q0, h̄0, h0} are then given by: (i) h̄0 satisfies the indifference

condition

Rh̄0L,0 = max
{
R,Rh̄0S,0

}
, (41)

(ii) if R0
S,0 < R, then h0 = 0; otherwise, h0 satisfies the indifference condition:

R
h0
S,0 = max

{
R,R

h0
L,0

}
, (42)

(iii) the market clearing condition for government debt

B̄ + λS,0(q0B̄ + y0)G(h0) = λL,0(q0B̄ + y0)
[
1−G(h̄0)

]
, (43)

where the right-hand-side is the demand, Bd
0 , and the left-hand-side is the supply, Bs

0. For

the one-period model, we have the following results.
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Proposition 2. Consider the one-period of the model with B̄ ≥ 0, χ ∈ [0, 1), α ∈ (0, 1), and

R > 1.

1. The equilibrium exists and is unique.

2. If χ = 0, then the marginal buyer and seller of the government debt are identical and

there are no inactive traders:

h̄0 = h0,

and if χ > 0, then there exist inactive traders

h̄0 > h0.

3. The expected return of the marginal traders equals the risk-free rate R:

Rh̄0L,0 = R
h0
S,0 = R.

4. An increase in B̄ reduces q0, h̄0, and h0.

5. An increase in χ raises q0 and h̄0, and lowers h0.

6. Consider two distribution functions G1(h) and G2(h) such that G2 first-order stochas-

tically dominates G1. Then the associated equilibrium satisfies

q0(G1) ≤ q0(G2), h̄0(G1) ≤ h̄0(G2), h0(G1) ≥ h0(G2),

Proposition 2 shows that government debt and shortselling costs have opposing effects on

the price of government bonds. On the one hand, inspection of equation 43 indicates that an

increase in χ does not affect the demand for bonds, but shifts the supply curve inward. Thus,

the price of bonds increases. On the other hand, an increase in the supply of government

debt, B̄, affects both the supply and demand for government debt. Supply increases due to

the increase in the supply of government debt. This shift is amplified because shortsellers

have access to leverage. Demand also increases because those who wish to buy bonds also

have access to leverage. This effect on demand is weaker though and the bond price falls

when the supply of government debt is increased.

The response of the bond price to bad news also depends on g(h0). For instance, suppose

that we hold fixed the fraction of the aggregate endowment held by each type of individual.

Then the response of q0 to bad news is smaller if the distribution of beliefs becomes more

optimistic. This property of the model is important in what follows because we will see that
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if g(h) is sufficiently skewed to the right, that one can account for the qualitative features of

Figure 1 with a frictionless economy in which χ = 0.

A final noteworthy property of the model is that higher shortselling costs reduce partici-

pation in the bond market and thus the set of beliefs that determine the price of government

debt. We will see that this property of our model has important dynamic effects when we

extend the number of periods.

4 Numerical results

4.1 Computing equilibrium in the T-period model

As we have seen in the previous sections, because of linear preferences, agents’ portfolio choices

are discrete: they are either equations (15), (16), or (17). As a result, the market clearing

conditions for government debt are discontinuous functions of endogenous variables, which

make computing equilibrium in the T -period model challenging as T gets large. Specifically,

discontinuities arise when the ordering of the marginal traders, {h̄(Dt), h(Dt) : t = 0, . . . , T −
1}, changes.

For instance, consider the market clearing condition at D, which is a function of endoge-

nous variables: q0, q(D), h̄0, h0, h̄(D), and h(D). Regarding the ordering of the marginal

traders, we know from Proposition 1 that h̄0 > h̄(D) ≥ h(D) and that h̄0 ≥ h0. This leaves

three possibilities: (i) h0 ∈ (h̄(D), h̄0], (ii) h0 ∈ (h(D), h̄(D)], and (iii) h0 ∈ [0, h(D)], as

illustrated in Figure 3.

The demand and supply functions, equation (33) and equation (34), at state D are given

by

Bd(D) =


[
G(h0)−G(h̄(D))

]
λL(D)λS,0

[
q(U)− q(D)

]
(q0B̄ + y0)

+
[
G(h̄0)−G(h0)

]
λL(D)R(q0B̄ + y0), for h0 ∈ (h̄(D), h̄0],[

G(h̄0)−G(h̄(D))
]
λL(D)R(q0B̄ + y0), for h0 ∈ [0, h̄(D)],

and

Bs(D) = B̄ +


G(h(D))λS(D)λS,0

[
q(U)− q(D)

]
(q0B̄ + y0), for h0 ∈ (h(D), h̄0],

G(h(D))λS(D)λS,0
[
q(U)− q(D)

]
(q0B̄ + y0)

+
[
G(h(D))−G(h0)

]
λS(D)R(q0B̄ + y0), for h0 ∈ [0, h(D)].

As T increases, the number of possible configurations of marginal traders increases. For

the market clearing condition at D2, we need to distinguish 15 cases as illustrated in Figure

4. In general, for the market clearing condition at Dt, the number of different configurations

to be considered separately is 3× 5× · · · × (2t− 1).
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Figure 3: Possible configurations of marginal buyers and shortsellers of government debt for

states 0 and D.

h (0)

h (D)h(D)

2"1" 3"

s=0"

s=D"

The first line shows the possible configurations of the marginal shortseller and marginal purchaser of

government bonds in state 0 (period 0) and and the second line shows configurations of the marginal

traders in state D) (period one). Observe that there are three regions for h0 given that h(D) ≤ h̄(D) ≤
h̄0 and h0 ≤ h̄0. The statement of the bond market clearing condition at D is different in each of these

three regions.

To compute equilibrium, we start by guessing the sequence of prices: {q0, q(D), . . . , q(DT−1)}.
Given these guesses we can derive {h0, h̄0, h(D), h̄(D), . . . , h(DT−1), h̄(DT−1)} using equations

(23), (24), (28), and (29). We then check the appropriate bond market clearing condition in

each period 0, . . . , (T − 1) and finally update the guess of the bond price sequence based on

the sign of excess demand in each period.

4.2 Calibrating the four-period model to Greek data

Our model has a rich set of implications for how the pattern of trade and the dynamics of

bond price movements vary with the size of shortselling costs, χ and the initial distribution

of aggregate bond holdings by belief, G(h). At the same time, the model is nonstationary

and the number of possible configurations of trading histories increases so quickly in T that

it is a challenge to compute equilibria for T = 4. What this means is that we are only able

to use a very small number of observations when calibrating the model. In what follows we

will condition on some of the parameters that are less contentious and focus our attention on

using data on bond yields to calibrate G(h) and χ. In particular, we assume throughout that
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Figure 4: Possible configurations of marginal buyers and shortsellers for 0, D, and D2.
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This figure shows the configurations of the marginal traders in state 0 (period 0), state D (period one)

and state D2 (period 2). Observe that h(D) can fall into one of three regions given that h(D2) ≤
h̄(D2) ≤ h̄(D) ≤ h̄0. In the picture we have depicted the situation where h(D) falls in to region 1.

This in turn defines five regions for h0. Overall, there are 15 distinct bond market clearing conditions

in period 3 depending on the history of h(D) and h0 and 3 distinct bond market conditions in period

one depending on the history of h0.

a model period is one year and that the size of the debt-output level and the real interest

rate are B̄/y = 1.5 and R = 1.04.7 It is difficult to imagine how one would construct direct

measures of aggregate bond holdings by belief type. Yet, this (initial) distribution clearly

matters for the dynamics of bond yields. For instance, we will see that one way to produce a

small response of bond yields to bad news is to assume that shortselling frictions are negligible

and that most government debt is held by a small measure of very optimistic agents.

We choose to infer G(h) indirectly by calibrating the model to annual observations on

Greek 5 year bond yields in the 5 years leading up to the Greek credit event in March 2012.

We face two distinct issues when calibrating G(h) in this way. The first issue is how to map

bond prices from the model to our Greek data. The Appendix describes our dataset and how

7For purposes of comparisons Greece’s debt-GDP ratio was 150% in 2010 and 178%.
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Figure 5: Calibrated densities (g(h)) for the baseline and the frictionless economies.

(a) Baseline economy (χ = 0.02).

The specific parameters are: υ = 0.9136,

µ1 = 0.6766, µ2 = 1, σ1 = 0.0507, σ2 = 0.1.

(b) Frictionless economy (χ = 0).

The specific parameters are: υ = 0.9967, µ1 =

1, µ2 = 3.2e− 05, σ1 = 0.1376, σ2 = 18.287.

this is done. The second issue is that we would like to specify a flexible parametric form for

G(h) but we can only solve a four period version of the model and thus we only have a total

of 5 observations.

Given these constraints we parameterize the distribution of h, using a (truncated) mixture

of two normal distributions. Let Φ(·|µ, σ) denote the cdf of the normal distribution with mean

µ and standard deviation σ, N(µ, σ2). Consider two normal distributions N(µi, σ
2
i ), i = 1, 2.

We mix them with weights (υ, 1− υ) for υ ∈ [0, 1]. We need to restrict that h ∈ [0, 1]. Let

P0 ≡ υΦ(0|µ1, σ1) + (1− υ)Φ(0|µ2, σ2),

P1 ≡ υΦ(1|µ1, σ1) + (1− υ)Φ(1|µ2, σ2).

Then, for h ∈ [0, 1], the probability that h̃ ≤ h is defined as

G(h) ≡ 1

P1 − P0

{
υΦ(h|µ1, σ1) + (1− υ)Φ(h|µ2, σ2)− P0

}
.

This distribution has a total of 5 parameters. We also would like to appeal to the data when

setting the recovery rate α, and the costs of shortselling χ. However, the model is under-

identified. We deal with this issue by restricting the structural parameters in the following

way when calibrating the model.

The recovery rate α is set to 0.1587. This value insures that the model reproduces our

final observation for the 5-year government bond in February 2012. We first fix χ = 0 and

calibrate G(h) to to reproduce Greek bond yields under the assumption that G(h) is Gaussian.

This step is then repeated for larger values of χ ranging up to χ = 0.1.8 The model prefers

8We have found that the quantitative properties of the model at χ = 0.1 are very similar to its properties
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Table 1: Yields on Greek 5 year government debt and 5 year yields in the 4-period model for

the history that results in a sovereign default.

Greek Data Model

Baseline Calibration Frictionless Calibration

Date Annual % Period χ = 0.02 χ = 0.0 χ = 0.0 χ = 0.02

February 2008 3.83 0 4.08 4.50 4.18 4.04

February 2009 5.19 1 4.71 5.35 4.77 4.05

February 2010 6.30 2 6.62 7.56 6.68 4.85

February 2011 13.04 3 12.94 13.98 12.83 10.17

February 2012 50.35 4 50.34 50.34 50.34 50.34

*All numbers are percentage annual returns.

a value of χ = 0.09 when G(h) is assumed to be normally distributed. Next we allow for

deviations from normality. Due to the lack of degrees of freedom we use the first stage

Gaussian parameterizations of G(h) as a reference point. In particular, µ1 and σ1 are held

fixed at their previous calibrated values and the model is fit to the same data but this time

υ, µ2 and σ2 are varied subject to the smoothness condition that σ2 ≥ 0.01. This restriction

rules out bimodal distributions that fit the bond yield data by assigning significant mass to

a very small interval of optimistic beliefs. Column one in Table 1 reports the Greek 5 year

government bond yields that are targeted and column 2 reports the model estimates of the

yields with χ = 0.02. This value of χ produces the best fit among χ ∈ [0, 0.1] and is used as

the baseline parameterization in the ensuing discussion. The density, g(h), for the baseline

parameterization of the model is reported in the left panel of Figure 5.9

4.3 Results for the four-period model

We start by analyzing the dynamic effects of costly shortselling using our baseline calibration

of the model. For purposes of comparison column 3 of Table 1 shows the 5-year bond yield

when χ is set to zero instead. The distribution of initial beliefs G(h) and all other parameters

when χ = ∞. Moreover, the data does not prefer values of χ that are so large. Thus, we do not to consider

values of χ that exceed 0.1 when calibrating the model.

9The specific parameterization of G(h) is reported in the notes to the figure.
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are held fixed their baseline values. Observe that the yields in column 3 of the table are higher

in those in column 2 in all but the final period.

In constructing 5-year yields we have had to make an assumption about how the return

on government debt evolves after the default event. As explained in the Appendix we assume

that the yields are identical after the default event and this is why the yields are the same in

the two scenarios in February 2012.

An alternative way to document the effects of shortselling costs on government bonds price

dynamics is to consider one-year holding returns. One can compute one-year holding returns

without making any assumption about bond returns in periods subsequent to default. The

first two columns of Table 2 report one-year holding returns for the baseline calibration for

the baseline scenario (χ = 0.02) and the frictionless scenario (χ = 0).10

It is immediately clear that the declines in the one-year holding return in the baseline

scenario (χ = 0.02) is smaller in absolute value as compared to its value in the frictionless

specification (χ = 0) in each of the first three periods. Based on the logic from the one-period

model it follows that the decline in the one-year holding return in the final period is larger

when shortselling is costly. Taken together these results show that costly shortselling acts to

delay and thereby concentrate the declines in the price of government debt into states that

occur shortly before default.

Why are the holding returns so small in the first three periods in the baseline economy?

The small declines in holding returns in the baseline model reflect the fact that shortselling

costs are constraining the supply of debt. Recall from equation (43) that the total supply

of bonds has two components. The first component is the amount of bonds issued by the

government B̄ which is exogenous and the second component arises due to shortselling and

leverage. When shortselling is costly the second term declines and the supply of bonds con-

tracts. This effect is very pronounced using the baseline calibration of the model as shown

in Figure 7c. This figure reports total government bond supply when χ = 0.02 and χ = 0.0.

In the baseline economy. total bond supply exceeds B̄ by only 0.01%. However, if χ is set

to zero instead liquidity provided by shortselling activities has a massive effect on the total

supply of government bonds. The total supply of government debt exceeds B̄ by a factor of

27.5 in period zero.

The reason that the supply of bonds is so small in the baseline model is because shortselling

costs are driving a wedge between the identity of the marginal purchaser of government debt

and the marginal shortseller and as we previously illustrated using the one-period model, many

agents prefer not to participate in the bond market. This effect is larger in the four-period

10The numbers in this table are deviations from a 4% annualized risk free return.
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Table 2: One-year holding returns in the 4-period model for the history that results in a

sovereign default.

Baseline Calibration Frictionless Calibration

Date Period χ = 0.02 χ = 0.0 χ = 0.0 χ = 0.02

February 2008 0 -0.21 -2.18 -0.69 0.00

February 2009 1 -2.95 -3.97 -2.76 -0.03

February 2010 2 -8.64 -9.88 -8.66 -3.78

February 2011 3 -25.02 -25.15 -24.44 -21.91

February 2012 4 -76.08 -74.96 -76.19 -78.87

*These numbers are deviations from a 4 percent annualized riskfree return.

model as can be seen in 7a. Only agents with the strongest beliefs choose to trade in period

zero in the baseline model. The identity of the marginal shortseller is 0.47 and the identity of

the marginal purchaser is 0.95. Note also that the fraction of agents with pessimistic beliefs

is very small as can be seen in Figure 7b. Only 0.19 percent of the population takes short

positions In period zero and over 98 percent of the population stays out of the bond market

in period zero.

When χ = 0.0, in contrast, all agents participate in the bond market in period zero and

all agents with h < 0.66 sell government bonds short. The overall fraction of shortsellers in

period zero in this economy is 35%. The G(h(0)) term is much larger in equation (43) when

χ = 0. We are abstracting from other effects such as leverage in providing this intuition. But,

from Figure 7c we can see that these other effects are second order and that the first order

effect of shortselling costs is to constrain the supply of government debt not only in period 0

but in all periods along the path resulting in default.

Finally, note that the difference in bond supply between the two specifications is largest in

period zero. On the one hand, bond supply contracts steadily along this history when short-

selling is costless. In the baseline economy, on the other hand, bond supply actually increases

until period 2. In this period the gap between the two specifications is only marginally greater

than one.

We next show that our results are robust to the choice of G(h) by recalibrating G(h) under

the assumption that shortselling costs are zero. We refer to this as the frictionless calibration

of the model and to the resulting estimate of initial beliefs as the frictionless G(h). Column
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Figure 6: Pattern of trade in the baseline specification.
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three of Table 1 reports the yields model for the frictionless calibration scheme and the right

panel of Figure 5 shows the calibrated density for this economy. Although the data prefers

the baseline (χ = 0.02) calibration, it is clear from Table 1, that the difference in fit between

columns 2 and 4 is small.11 Observe though that the two economies require very different

distributions of initial beliefs to account for the trajectory of Greek 5-year bond yields. Beliefs

are much more optimistic in the calibrated frictionless economy as compared to the baseline

economy.

It turns out that imposing costs on shortsellers has an even bigger effect on the pattern of

trade and bond prices using the frictionless calibration of the model. To demonstrate that this

is the case we simulated the model using the frictionless calibration of G(h) but set χ = 0.02

instead. The results for this simulation are reported in column 5 of Table 1 and column 4

of Table 2. The difference in the one-year holding return between the frictionless and costly

short selling economies is now bigger in all periods and is almost 5% in period two. Notice also

that there is now virtually no discernible response in the one-year holding return in periods

0 and 1 when χ = 0.02.

Figure 7 shows the pattern of trade for these two economies. A comparison of the pattern

of trade shows that shortselling costs have an even bigger effect now. In period 0 there is

no shortselling activity, virtually all individuals choose safe storage and it follows that the

size of the bond market is very small. In the frictionless economy, in contrast, all agents

participate and the bond market is now even larger in period zero approaching 50 times the

size of government debt. There are also large differences in periods 1 and 2. When shortselling

is costly participation in the bond market is hump-shaped. It peaks in period 2 at over 70%

and exceeds 34% in period 2. The overall size of the bond market has the same shape and

peaks in period 2 at a multiple of 5 times government debt. In the frictionless economy, in

contrast, participation and the size of the bond market both fall monotonically. Participation

is less than 5 percent in the final two periods and the size of the bond market in the frictionless

economy is about the same size as in the counterfactual with χ = 0.02. Taken together these

results suggest that our findings about the effects of costs on shortselling are reasonably robust

to the particular choice of G(h).

This is a very parsimonious model but the we wish to point out that the qualitative

properties of the two specifications with costly shortselling are consistent with a number of

other data observations. First, gross and net notional amounts Greek sovereign credit default

swaps are both hump shaped. Gross positions peak in April of 2011 and net positions peak

in December of 2009. We have seen that the two specifications with costly shortselling can

11This should not be surprising given the large number of parameters to be set.
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produce a hump-shaped response on the supply of government debt but that when these costs

are absent that the size of the supply of government debt falls monotonically as the economy

moves towards default.

Futures market data is not available for Greek sovereign debt during this period, but we

wish to point out that the hump-shaped pattern of trade that emerges in the specifications

with costly shortselling is consistent with the pattern of trade in futures markets in other

sovereign debt markets. The futures market for U.S. Treasuries also has the property that

trade is concentrated in contracts that are closer to maturity and it is not unusual for the

pattern of trade to be hump-shaped. For instance, on March 22, 2017 there were 396 open

contracts at the C.M.E. for U.S. Treasury Bond Futures that mature in March 2017; 628,788

open contracts that mature in June of 2017 and; 10 open contracts that mature in September

2017. On that same date, 94 March 2017 contracts traded, 314,203 June 2017 contracts traded

and there was no trade in the September 2017 contracts.

According to our model, Germany’s decision to ban naked short sales of Greek debt in 2010

had nonlinear effects. It boosted Greek bond prices in the short run. But, it also magnified

the decline in bond prices between 2011 and 2012.12

5 Conclusion

The world has recently seen governments take a number measures that are aimed at increasing

the cost of shortselling government liabilities. Our results suggest that these actions have a

potent impact on the pattern of trade and thus prices in government debt markets. We have

found that costs on sortsellers can disrupt a basic price-revelation mechanism associated with

forward looking behavior. In frictionless markets bad news about even distant future outcomes

gets reflected in bond prices today as individuals trade on the news. Our findings suggest

that the action of shortsellers plays an essential role in this price-revelation mechanism. Small

transactions costs on shortsellers reduce participation in bond markets in early periods but

can increase participation in later periods closer to the default event. It follows that the

distribution of beliefs of traders and bond prices can be quite different when shortselling is

costly. In particular, increasing shortselling costs creates a bias towards optimists and this

acts to delay and concentrate the response of bond price movements into states that occur

immediately prior to default. An implication of these findings is that if shortselling costs are

significant, bond prices may not be a good leading indicator of sovereign default.

12To provide an idea about the size of these effects if χ is increased from 0.02 to 0.08 in period 2 (2010), the

one-year holding return is -6.38% in 2010, -21.87% in 2011 and -77.89% in 2012.
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Figure 7: Pattern of trade using the alternative specification G(h) which is calibrated assuming

no financial frictions.
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A Appendix

A.1 Proof of Proposition 2

1. Pick any q0 ∈ Q0 ≡ (q(D)/R, q(U)/R). Then we can derive marginal traders h̄0(q0)

and h0(q0) as functions of q0 using the equilibrium conditions (i)-(ii) for the one-period

model. Note that since q0 < q(U)/R, equation (41) has an interior solution h̄0(q0) ∈
(0, 1). The marginal seller may not be interior.

Now consider an increase in q0. Then λL,0 falls and λS,0 rises. It follows that,

viewed as functions of h, RhL,0 shifts downward, and RhS,0 shifts upward. This tends to

increase h̄0 and (weakly) decrease h0. Hence, dh̄0(q0)/dq0 > 0 and dh0(q0)/dq0 ≥ 0.

Let Bd
0(q0) and Bs

0(q0) be the demand and supply curves for government debt,

respectively

Bd
0(q0) =

q0B̄ + y0

q0 − q(D)/R
[1−G(h̄0(q0))],

Bs
0(q0) = B̄ +

q0B̄ + y0

q(U)/R− (1− χ)q0
G(h0(q0)).

Straightforward calculation yields

dBd
0

dq0
< 0, and

dBs
0

dq0
≥ 0.

Furthermore,

lim
q0→q(D)/R

Bd
0(q0) = +∞ > lim

q0→q(D)/R
Bs

0(q0),

lim
q0→q(U)/R

Bd
0(q0) = 0 < lim

q0→q(U)/R
Bs

0(q0).

This establishes the existence and uniqueness of competitive equilibrium.

2. Given q0 ∈ Q0, define η ∈ (0, 1) by RηL,0 = RηS,0, that is

η
q(U)− q(D)

q0 − q(D)/R
= (1− η)

q(U)− q(D)

q(U)/R− (1− χ)q0
. (44)

Note that if RηL,0 ≥ R, then h̄0 = h0 = η, and otherwise h̄0 > h0 and Rh̄0L,0 = R
h0
S,0 = R.

Solving equation (44) for q0, we obtain

q0 =
1

1− χη
1

R

[
ηq(U) + (1− η)q(D)

]
. (45)
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Suppose χ = 0. Then substituting for q0 from equation (45) into equation (44) yields

RηL,0 = RηS,0 = R.

Thus, h̄0 = h0 when χ = 0. Next, consider the case of χ > 0. Then, again, substituting

for q0 from equation (45) into equation (44) implies that

RηL,0 = RηS,0 < R.

Hence, h̄0 > h0 and Rh̄0L,0 = R
h0
S,0 = R.

3. This property has been shown in the proof of the previous claim.

4. Consider an infinitesimal change in government debt, dB̄. We first determine the sign

of dq0
dB̄

. Continue to write the marginal traders as functions of q0, h̄0(q0) and h0(q0),

using equilibrium conditions (i)-(ii). Write the market clearing condition equation (43)

as

B̄ +G
[
h0(q0)

] y0 + q0B̄

q(U)/R− (1− χ)q0
=
(
1−G

[
h̄0(q0)

]) y0 + q0B̄

q0 − q(D)/R
.

Differentiating this function with respect to B̄ and q0, we obtain

dB̄

{
1 +G(h0)

q0

q(U)/R− (1− χ)q0

}
+ dq0

{
g(h0)h′0(q0)

y0 + q0B̄

q(U)/R− (1− χ)q0

+G(h0)

[
B̄

q(U)/R− (1− χ)q0
+

(1− χ)
(
y0 + q0B̄

)(
q(U)/R− (1− χ)q0

)2
]}

= dB̄
[
1−G(h̄0)

] q0

q0 − q(D)/R

+ dq0

{
−g(h̄0)h̄′0(q0)

y0 + q0B̄

q0 − q(D)/R

+
[
1−G(h̄0)

][ B̄

q0 − q(D)/R
− y0 + q0B̄

(q0 − q(D)/R)2

]}
,

which can be rearranged as

dB̄

{
1 +G(h0)

q0

q(U)/R− (1− χ)q0
−
[
1−G(h̄0)

] q0

q0 − q(D)/R

}

= dq0

{
−g(h0)h′0(q0)

y0 + q0B̄

q(U)/R− (1− χ)q0
−G(h0)

α(U)B̄/R+ (1− χ)y0[
q(U)/R− (1− χ)q0

]2
− g(h̄0)h̄′0(q0)

y0 + q0B̄

q0 − q(D)/R
−
[
1−G(h̄0)

] y0 + q(D)B̄/R

(q0 − q(D)/R)2

}
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It is straightforward to see that the coefficient on dq0 in this equation is negative. We

shall show that the coefficient on dB̄, x, is positive

x ≡ 1 +G(h0)
q0

q(U)/R− (1− χ)q0
−
[
1−G(h̄0)

] q0

q0 − q(D)/R
.

Note that the market clearing condition for government debt can be written as

xB̄ =
1− x
q0

y0.

If B̄ = 0, then x = 1. If B̄ > 0,

sign(x) = sign

(
1− x
q0

)
,

which implies x > 0. It follows that dq0/dB̄0 < 0, and thus dh̄0/dB̄ < 0, and dh0/dB̄ ≥
0.

5. Consider an infinitesimal change in χ. We start to prove that dq0
dχ > 0. To see the effect

of a change in χ, let us use conditions Rh̄0L,0 = R
h0
S,0 = R to define the functions h̄0(q0)

and h0(q0, χ) as

h̄0(q0) ≡ Rq0 − q(D)

q(U)− q(D)
, (46)

h0(q0, χ) ≡ 1− q(U)− (1− χ)q0

q(U)− q(D)
. (47)

Note that

dh̄0

dq0
> 0,

∂h0

∂q0
> 0,

∂h0

∂χ
< 0.

The market clearing condition for government debt is

B̄ +G
[
h0(q0, χ)

] y0 + q0B̄

q(U)/R− (1− χ)q0
=
(
1−G

[
h̄0(q0)

]) y0 + q0B̄

q0 − q(D)/R
. (48)

Differentiating this function with respect to χ and q0, we obtain

dχ

{
g(h0)

∂h0

∂χ

y0 + q0B̄

q(U)/R− (1− χ)q0
−G0(h0)

q0

(
y0 + q0B̄

)[
q(U)/R− (1− χ)q0

]2}

+ dq0

{
g(h0)

∂h0

∂q0

y0 + q0B̄

q(U)− (1− χ)q0

+G(h0)

[
B̄

q(U)/R− (1− χ)q0
+

(1− χ)
(
y0 + q0B̄

)(
q(U)/R− (1− χ)q0

)2
]}

= dq0

{
−g(h̄0)

dh̄0

dq0

y0 + q0B̄

q0 − q(D)/R

+
[
1−G(h̄0)

][ B̄

q0 − q(D)/R
− y0 + q0B̄

(q0 − q(D)/R)2

]}
,

32



which can be rearranged as

dχ

{
−g(h0)

∂h0

∂χ

y0 + q0B̄

q(U)/R− (1− χ)q0
+G(h0)

q0

(
y0 + q0B̄

)[
q(U)/R− (1− χ)q0

]2}

= dq0

{
g(h0)

∂h0

∂q0

y0 + q0B̄

q(U)/R− (1− χ)q0
+G(h0)

q(U)B̄/R+ (1− χ)y0[
q(U)/R− (1− χ)q0

]2
+ g(h̄0)

dh̄0

dq0

y0 + q0B̄

q0 − q(D)/R
+
[
1−G(h̄0)

] y0 + q(D)B̄/R

(q0 − q(D)/R)2

}
Clearly, the coefficients on dχ and dq0 are both positive, and thus dq0/dχ > 0. It then

follows that dh̄0/dχ > 0.

It remains to show dh0/dχ < 0. For this, using condition Rh̄0L,0 = R to define the

function q0(h̄0)

q0(h̄0) ≡ q(U)− q(D)

R
h̄0 +

q(D)

R
.

Thus, dq0/dh̄0 > 0. Next, using condition R
h0
S,0 = R, eliminate χ from the market

clearing condition equation (48) as

B̄ +
G(h0)

1− h0

R
[
y0 + q0(h̄0)B̄

]
q(U)− q(D)

=
[
1−G(h̄0)

] y0 + q0(h̄0)B̄

q0(h̄0)− q(D)/R
.

Note that this equation is defined as a function of the two variables, h̄0 and h0 (q0 enters

as a function of h̄0 and all other variables are constant). Differentiating this equation

with respect to h̄0 and h0, we obtain

dh0

dh̄0
=

(
d

dh0

[
G(h0)

1− h0

]
R
[
y0 + q0(h̄0)B̄

]
q(U)− q(D)

)−1

×

{
−G(h0)

1− h0

R dq0
dh̄0

B̄

q(U)− q(D)
− g(h̄0)

y0 + q0(h̄0)B̄

q0(h̄0)− q(D)/R
−
[
1−G(h̄0)

] y0 + q(D)B̄/R[
q0(h̄0)− q(D)/R

]2 dq0

dh̄0

}
< 0.

Therefore, dh0/dχ < 0. This completes the proof.

6. Corresponding to the distribution function Gi, i = 1, 2, let Bs
0(q0|Gi) and Bd

0(q0|Gi) be

the supply and demand functions for government debt defined in equation (43). Since

G2 first-order stochastically dominates G1, G1(h) ≥ G2(h) for all h ∈ [0, 1]. It follows

that for all q0

Bs
0(q0|G1) ≥ Bs

0(q0|G2), and Bd
0(q0|G1) ≤ Bs

0(q0|G2).
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Therefore, q0(G1) ≤ q0(G2). It then follows that h̄0(G1) ≤ h̄0(G2) and h0(G1) ≥ h0(G2).

A.2 Mapping prices in the model to data on Greek government bond yields.

Our data consists of monthly annualized 5 year bond yields from the Bank of Greece. We

take the February observation in the years 2008–2012. February is chosen because this is the

final month for which we have complete data. The collective action clauses were invoked on

Greek Sovereign debt on March 9, 2012. We recover the prices associated with these bond

yields: qdatat = (1/(1 + rdatat ))5 where rdatat is the yield on a five year bond in period t.

In the model, the maturity of the single bond that trades is declining in each period.

To account for this difference between the model and our data we adjust the bond price

in the model in each period to five year bond equivalent. This adjust is made assuming

that the riskfree rate on government debt is 4% in periods after the default event. Thus,

q̃2008 = q0/1.04, q̃2009 = q1/(1.04)2,... q̃2012 = q4/(1.04)4. Then our calibration scheme

minimizes the squared difference between qdatat and q̃t for t = 2008, ..., 2012.
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