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Abstract

Many situations involve an informed agent choosing when to reveal a

payo�-relevant state of the world to an uninformed decision-maker. This

paper di�ers from previous studies analysing such interactions by consid-

ering the case when the informed party commits to a particular disclosure

policy before learning the state, and also by explicitly looking at how

disclosure is a�ected by the distribution of decision-maker's preference

parameter. It turns out that at an equilibrium, the informed party will

pool some states into at most one set, fully separating the rest. The

complexity of this set depends on the complexity of the distribution of

decision-maker's preference parameter. The exact disclosure policy de-

pends on that distribution as well, and while prior research has largely

concluded that disclosure of all states is optimal under fairly general con-

ditions, this paper �nds that full revelation occurs only when the decision-

maker is likely to be biased against the informed party. These results help

shed some light on a number of phenomena, such as degree and e�ects of

political censorship, impact of varying levels of central bank transparency,

and �rms' disclosure of information related to product quality, �nancial

situation, or environmental performance.
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sorship, product quality, transparency
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1 Introduction

On February 17 1982, an escalator in the Aviamotornaya station of the Moscow
Metro su�ered a failure, causing an accident which claimed eight lives. Since
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the station had to be closed, it was impossible to entirely conceal the news of
the disaster. The government-controlled Soviet media, however, provided few
details of the accident and did not mention the death toll. The aim of concealing
the truth was probably to prevent the public from forming a negative opinion
about the safety of the metro, and by extension, about the competence of the
government. But rather than shoring up the support of the government, media
silence had an opposite e�ect - within days, rumours began to circulate that
hundreds of people had been killed. Clearly, the attempt at controlling public
opinion has back�red; perhaps the government would have been better o� if it
had published the true story1.

When is it optimal for an informed agent to disclose payo�-relevant infor-
mation to an uninformed party which then makes a payo�-relevant decision,
and what are the e�ects of various disclosure policies? These questions has re-
ceived substantial attention in both theoretical and applied research. A number
of studies in economic theory have focused on the so-called persuasion games,
in which an agent chooses whether to reveal a state of the world to a decision
maker, who then selects an action that a�ects payo�s of both sides. The ini-
tial analysis of such games (Grossman, 1981; Milgrom, 1981) suggested that at
an equilibrium, Receiver would learn every state of the world. Seidmann and
Winter (1997), Koessler (2003), and Mathis (2008) show that this result holds
in various fairly general settings. Exceptions to the full disclosure result have
largely been due to uncertainty over whether the informed agent has precise in-
formation (Shin, 1994), or due to informed agent's preferences being uncertain
(Wolinsky, 2003) or non-monotonic in decision-maker's action (Giovannoni and
Seidmann, 2007).

In contrast, there is no consensus in applied literature that that full revela-
tion is the best policy for the informed party in various settings. For instance,
researchers analysing political communication frequently conclude that censor-
ship of unfavourable information can be successfully used to manipulate politi-
cal outcomes in the interest of the censoring agent. Thus, various studies have
shown that media bias has played a role in determining election outcomes in
Peru and Brazil (Boas, 2005), Mexico (Lawson and McCann, 2005), and Rus-
sia (Enikolopov et al., 2011). On the other hand, some studies suggest that
non-disclosure is not always the optimal strategy - Dyczok (2006) questions
the e�ectiveness of censorship in supporting Kuchma's government in Ukraine;
Kern and Hainmueller (2009) report that the East German government enjoyed
greater public support in areas where the population could watch West German
television; Goldstein (1989) shows that censorship of anti-government carica-
tures in nineteenth-century France has at times led to an increase of support
for the message they contained.

Similarly, research on disclosure of information by �rms and non-governmental
organisations has led to ambiguous conclusions regarding the optimality of full
revelation. For example, Jin and Leslie (2003) conclude that mandatory disclo-
sure causes �rms to divulge more information about the quality of their prod-

1The accident, its reporting, and subsequent rumours are mentioned in Zolotov (2002).
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ucts, compared to the situation when disclosure is voluntary. Similarly, the
rich literature on disclosure of �nancial information (see a review by Healy and
Palepu 2001) does not provide clear-cut support for the full revelation result.
Neither do �rms always provide full information about their environmental per-
formance, as Patten (2002) shows. Finally, Rothman et al. (2011) report that
the vast majority of health advocacy organisations do not reveal the full extent
of their relationships with the pharmaceutical industry.

This paper contributes to the existing literature in two ways. First, it ex-
amines what happens when an informed party has to commit to a particular
disclosure strategy (i.e. to choose which states will be revealed and which are
to be hidden) before learning the state. This makes the model applicable to a
wide range of situations. For example, disclosure of politically sensitive infor-
mation (e.g. censorship of anti-government news stories, or restrictions on hate
speech or incitement of violence) is often regulated by either laws or by bureau-
cratic instructions, none of which can be quickly adjusted in reaction to a new
story. Similarly, �rms can commit to revealing or concealing particular facts
(such as information about their product quality, �nancial status, etc.) if these
facts have to be determined by an outside expert (e.g. an auditor assessing a
company's �nancial situation, or a reviewer evaluating a theatre play) who then
makes them public. Finally, commitment may arise as a credible equilibrium
strategy in a repeated interaction - consider intelligence agencies that choose
never to comment on whether a suspected spy has been working for them even
when the suspect is innocent.

Second, this paper adds to the previous studies by explicitly modeling pos-
sible uncertainty about the uninformed party's preferences and its e�ect on
disclosure policy. Thus, it can be used to analyse how the equilibrium level of
political censorship di�ers in societies with di�erent distributions of attitudes
towards the government (e.g. how much censorship would be expected at an
equilibrium in a society that largely supports the government, compared to one
that is against it, or to one which is sharply divided), how the distribution of
customers' ex ante preference for a �rm's product a�ects the optimal disclosure
policy by the �rm, and so on. This would help explain the often-noted fact that
the amount of disclosure often varies in di�erent settings - for example, dif-
ferent authoritarian regimes allow di�erent amounts of media freedom (Egorov
et al., 2009), central banks di�er in their level of transparency (Eij�nger and
Geraats, 2006), commercial banks have been revealing varying amounts of �-
nancial information (Pérignon and Smith, 2010), while �rms vary in the amount
of information on their environmental record that they reveal (Cho and Patten,
2007).

In addition to the works mentioned above, two articles o�er a theoretical
approach similar to the one used in this paper. Rayo and Segal (2010) o�er a
model in which an informed agent can commit to a strategy of disclosing in-
formation to a decision-maker; they then characterise optimal revelation policy.
In contrast to their work - which while considering uncertainty over decision-
maker's preferences derives its main results for a uniform distribution of the
relevant preference parameter - I look explicitly at the relationship between the
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distribution of the audience's preferences and the optimal disclosure strategy.
Kamenica and Gentzkow (2009) also allow the informed party to commit and
derive general conditions under which it can bene�t from an imperfect disclosure
strategy; unlike their work, this paper explicitly characterises optimal revelation
policy and examine the e�ect of decision-maker's preferences on it.

To address these question, this paper proposes a model in which an informed
party (such as a government or a �rm) chooses a partition (representing disclo-
sure strategy) of the space of possible news. The news are then realised, and a
decision-maker (a voter, a customer, an investor, etc) �nds out which element
of the partition contains the news. She then chooses an action, on which the
informed agent's payo� depends. Decision-maker's payo�, on the other hand,
depends on her action, the news, and her preference parameter, which is her
private information. Speci�cally, she bene�ts from taking an action favourable
to the informed agent when the value of the news is higher then her preference
parameter.

The results of the paper suggest that the equilibrium disclosure policy cru-
cially depends on the decision-maker's preferences. In general, an optimal dis-
closure policy will consist of singletons plus at most one non-singleton set, sug-
gesting that the news are either fully disclosed, or pooled into one set. The
number of disjoint intervals comprising this set cannot be higher than the num-
ber of peaks in the density of decision-maker's preference parameter - in other
words, diclosure policy is likely to be simple if the distribution of preferences is
simple.

The actual disclosure policy will largely depend, at an equilibrium, on the
shape of decision-maker's preferences, indicating, for example, that the e�ect of
censorship crucially depends on the existing opinion of the population. Some-
what paradoxically, more information will be revealed at ane equilibrium if
the decision-maker is skeptical about taking an action that the informed party
prefers. Full revelation emerges as a special case, being an equilibrium if and
only if the density of the preference parameter is an increasing function - which
corresponds to a decision-maker that is biased against the informed agent. On
the other hand, decreasing density makes it optimal for the informed agent to
pool all states, disclosing nothing. Finally, unimodal density in general produces
a partially separating equilibrium.

2 Model

There are two players: Sender (he) and Receiver (she). State of the world is

a pair (τ, ω) ∈ [0, 1]
2
; ω is what Sender chooses whether to disclose (referred

to as �news�), and τ is Receiver's preference parameter, which is her private
information. Higher values of ω indicate �better� news, and higher values of τ
suggest that Receiver is predisposed against Sender. The cdf of τ and ω are F
and G, respectively, and the associated densities are f and g. Assume that τ
and ω are independent. Further, assume that f is continuously di�erentiable,
and that g is strictly positive everywhere on [0, 1].
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Receiver chooses an action c ∈ C, where the action set C is a compact subset
of R. Sender's strategy is a partition P of the set of news [0, 1]. I assume that
P contains a �nite or countable number of non-singleton sets, and that each
element of P has a �nite or countable number of boundary points. Denote by
P the set of all partitions of the [0, 1] interval that meets this assumption.

The timing of the game is as follows. First, Sender commits to a disclosure
policy by choosing P ∈ P, which is announced to Receiver. Then, Nature draws
τ and ω from F and G, respectively; and Receiver learnsτ . Next, the element
of P to which ω belongs is disclosed to Receiver. Receiver then chooses c ∈ C.
Finally, payo�s are realised in the following way: Sender's payo� equals c, while
Receiver's payo� is c(ω − τ).

Let us pause for a moment to examine the intuition of the model. In the
context of this model, Sender and news can refer to, respectively, a government
and some politically-relevant information that it can hide, a �rm and the quality
of its product, a central bank and the degree to which the currency is stable,
etc. Receiver's preference parameter τ can indicate median voter's preferences
for supporting or opposing the government, a buyer's reservation value, or an
investor's ex ante trust in the currency - all of which are unknown but come from
a known distribution. Alternatively, we can see τ as representing the preferences
of a unit population of agents, distributed with a known density.

By choosing a partition of the news space, Sender can select how much in-
formation he discloses. For example, full disclosure, in which Receiver always
learns the exact value of news, corresponds to partitioning the news space into
singletons. On the other extreme, a partition that contains only one set (the
entire [0, 1] interval) reveals no information to Receiver. Sender can also reveal
the news with imperfect precision, for example, choosing a partition that con-
tains several large sets - in the real world, this may correspond to, for example,
announcing that the news are �good�, �moderate�, or �bad�, without giving more
detail. Note that the sets comprising P need not be connected - Sender can,
for example, reveal whether the news are �moderate� or �exceptional�, without
specifying whether the latter means good or bad.

Sender always wants to choose P that would encourage Receiver to pick
higher c - depending on the speci�c application, higher cmay mean that Receiver
supports a more pro-government party, buys more of the good, etc (note that
C can be both discrete and continuous). Receiver, on the other hand, is better
o� with larger c if and only if the news are good enough to exceed a threshold
given by her preferences (i.e. when ω ≥ τ). Higher τ thus means a Receiver
that is gains less choosing an action favourable for Sender - for example, this
might be a citizen who is generally opposed to the government but may change
her mind if the news are very good.

Several assumptions are implied when the model is applied to speci�c situ-
ations. First, it is assumed that Receiver's preferences are independent of the
news. This may not hold in the long term - for example, a citizen may become
less inclined to support the government if bad news keep coming - but in a one-
shot interaction this should hold. Alternatively, we may think of τ as indicating
Receiver's preferences caused by factors other than those captured in ω - for
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instance, if ω characterises how well the government is conducting its foreign
policy, then τ can show a citizen's level of support for its economic programme.

Additionally, the model assumes that Sender can hide the news or reveal
them up to a subset of the news space, but he cannot lie. In some situations,
this is straightforward - when thinking of �rms choosing whether to disclose
their �nancial situation or produc quality, we may assume that they will be
subjected to very severe punishment if caught lying. If Sender is a government,
which may be not restricted by law, we may assume that revealing information
means either providing hard evidence of the news (photos and videos, testimony
by independent witnesses), or allowing to independent media to report the news;
we can also suppose that failing to do so will lead Receiver to disbelief whatever
the government is saying.

3 Analysis and Results

Let us say that Sender has chosen a partition P. If the news picked by Nature
fall into a set S ∈ P, Receiver's expected payo� from taking an action c, given
her preference parameter τ equals E [c(ω − τ) | ω ∈ S] = c (E [ω | ω ∈ S]− τ).
If τ < E [ω | ω ∈ S], this expression is maximised at c = max {C}, while if
τ > E [ω | ω ∈ S], it is maximised at c = min {C}. This describes Receiver's
best response. Since only max {C} and min {C} will ever be chosen by Receiver,
we can normalise C to {0, 1} from now on.

Given that ω ∈ S ∈ P, Sender's expected payo� equals the probability
that τ < E [ω | ω ∈ S], which is F (E [ω | ω ∈ S]). Denote denote by µS the
probability that ω falls in S (i.e. the measure of S associated with g). Then,
µS ≡

´
ω∈S

g (ω) dω. Then Sender's overall expected payo� from choosing P

equals

v (P) =
ˆ

S∈P

F (E [ω | ω ∈ S]) dµS

which Sender maximises by choosing P ∈ P.
For subsequent analysis, it is useful to make the following simpli�cations of

Sender's strategy space. First, note that by assumption, the number of non-
singleton sets in P is at most countable. Hence, if P contains any zero-measure
sets other than singletons, then the overall measure of such sets is zero. But
note that v (P) = v (P

⋃
M) = v (P \M) for any countable collection M of

zero-measure sets. Thus, every P ∈ P that contains zero-measure non-singleton
sets gives Sender the same payo�s as another partition in which these sets are
further split into singletons. Because of this, without loss of generality we
can restrict attention to partitions in which every non-singleton element has a
positive measure.

Second, every S ∈ P has at most a countable number of boundary points,
so the overall measure of all boundary points of S is zero. But v (P) =
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v (P
⋃
{S
⋃
M}) = v (P

⋃
{S \M}), where M is a zero-measure set. So, with-

out a change in Sender's payo�, a positive-measure set S can be split by trans-
forming all boundary points that are not attached to intervals2 into singletons,
and this can be done to all positive-measure sets because there is a countable
number of them. Thus, we can only look at partitions that contain either sin-
gletons or sets that are countable collections of intervals.

Finally, we can also restrict attention to partitions in which every ω that
forms a singleton set in P has a neighborhood of such news. This is because every
ω that does not have this property forms a boundary point of some positive-
measure set. Therefore, the overall measure of these points is zero, so they can
be pooled with some positive-measure set without a change in v (·).

Proposition 1. max
P∈P

{v (S)} exists.
Proof: see Appendix.
This proposition ensures the existence of a pure-strategy equilibrium.
Note that if a set S ∈ P is a singleton {ω}, then dµS = g (ω), and E [ω | ω ∈ S] =

ω. If S is not a singleton, i.e. if µS > 0, let tS ≡E [ω | ω ∈ S] = 1
µS

´
ω∈S

ωg (ω) dω.

The expression for Sender's expected payo� then becomes:

v (P) =
∑

S∈P : µs>0

F (tS)µS +

ˆ

ω∈S∈P : µS=0

F (ω)g(ω)dω

Clearly, the strategy that maximises it depends on the shapes of f and g.
In order to characterise it, de�ne for every positive-measure set S a function
zS (ω) ≡

´ ω
tS
f (tS) − f (x) dx. Now consider a partition P that is a candidate

for an optimal partition. We can check for several kinds of deviations from P.
First, we can take some news ω that are pooled into a positive-measure set A
and disclose them, i.e. turn them into singleton elements of the partition. We
can also remove them from A and pool them with some other set B instead.
Finally, we can also take some other news that under P are not pooled into any
positive-measure set (i.e. that forms a singleton element of P), and merge them
with some A ∈ P. If P is optimal, none of these deviations can be bene�cial.
This is captured in the following necessary condition for an optimum:

Proposition 2. Suppose that P maximises v (·). Then the following must hold

for every positive-measure set A ∈ P:

1. zA (ω) ≥ 0 for any ω ∈ A

2. zA (ω) ≥ zB (ω) for any ω ∈ A and any positive-measure set B ∈ P

3. zA (ω) ≤ 0 for any ω such that {ω} forms a singleton element of P
2I.e. all ω ∈ S for which there exists a neighborhood T that contains no other elements of

S besides ω.
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Proof: see Appendix.
Using this condition, we can substantially narrow down the set of possible

equilibrium strategies, in the following way:

Proposition 3. For any g and as long as f is horizontal on no more than one

interval, there always exists an optimal Sender's strategy in which the partition

P contains at most one positive-measure set.

Proof: see Appendix.
Proposition 3 ensures that at the optimum, almost all shapes of f induce a

revelation strategy under which the news are pooled into at most one set. In
other words, Sender will either disclose the news precisely, or suppress them
altogether, revealing nothing except that the news are in of a kind that are not
disclosed. Sender will never want to take the middle road of revealing the news
imprecisely, i.e. disclosing them up to a subset of the news space.

Note that if f has a horizontal section, it is possible that there exists a
partition with several positive-measure sets that brings the same expected payo�
to Sender. In particular, if f is uniform on [0, 1], any partition will give Sender
the same payo�.

Additionally, note that any positive-measure set S ∈ P can be split into sets
S1 and S2 such that tS = tS1

= tS2
; the resulting partition will yield the same

payo� to Sender as P. From now on, however, we can assume that, when having
several optimum strategies, Sender will always choose a partition with not more
than one positive-measure set - perhaps because, all other things being equal,
he has a preference for �simpler� strategies.

From now on, let us denote by S a positive-measure set that is a part of P
at the equilibrium.

By eliminating all partitions with more than one positive-measure set, Propo-
sition 3 substantially decreases the set of potentially optimal strategies and re-
duces the problem of determining the optimal partition to �nding the optimal
partition. Nevertheless, there are still many potential shapes of S. In partic-
ular, S can be considered more or less complex depending on the number of
disjoint intervals it includes. The following proposition puts a restriction on the
complexity of S:

Proposition 4. If f has m <∞ local weak maxima, then at the equilibrium,

S includes no more than m disjoint intervals.

Proof: see Appendix.
This proposition underscores the importance of f , the distribution of Re-

ceiver's preference parameter, in determining the optimal revelation strategy.
It shows that in most cases, we should not expect a very complicated disclosure
policy. Optimal disclosure strategy will only be �complex� - i.e. include a set of
suppressed news consisting of many disjoint intervals - when the distribution f
of Receiver's preference parameter is �complex� (i.e. has many peaks). For dis-
tributions with a small number of peaks, this again reduces the space of possible
optimal strategies. This result suggest that for the most part, we are unlikely
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to see very complex diclosure and censorship policies in real-life situations, as
long as Sender is optimising.

With these results in mind, we can look at the actual equilibrium disclosure
policies for some speci�c shapes of f and g. We can start by examining the
case that has often been the focus of research on disclosure - namely, the full
disclosure case, which in this setting corresponds to a partition P consisting
entirely of singletons.

Proposition 5. Full disclosure is an equilibrium strategy if and only if f is

weakly increasing. Furthermore, full disclosure is the unique equilibrium strategy

if and only if f is strictly increasing.

Proof: see Appendix.
This result show that full revelation can only emerge if fairly restrictive

conditions are met. Recall that f is the density of τ , which can be interpreted
as a minimum value of the news that still make Receiver better o� from taking
the action that Sender prefers. The higher the τ , the bigger is the payo� to
Receiver from taking a pro-Sender action. Increasing f thus means that Receiver
is predisposed against Sender - e.g. in the censorship application it may imply
that the distribution of the society's attitudes is skewed towards opposing the
government.

The idea that Sender is better o� disclosing all the news when Receiver is
biased against him may sound somewhat paradoxical. The intuitive explanation
is that when τ is high, Receiver is better o� not acting in Sender's interest if
the news are hidden. Increasing f means that high τ is more likely, which
encourages disclosure.

We can now look at the other possible extreme - the strategy of pooling all
the news into one set, which is equivalent to communicating no information to
Receiver.

Proposition 6. Pooling all the news is the unique equilibrium strategy if f is

strictly decreasing.

Proof: see Appendix.
Similarly in spirit to the previous result, this suggests that Sender is better

o� hiding all states when the Receiver is more likely to be on his side. Note
that this is a su�cient but not a necessary condition. Based on Proposition
2, a necessary condition for full pooling to be an equilibrium is that zS (ω) =´ ω
tS
f (tS)−f (x) dx ≥ 0 for all ω - meaning, in particular, that f must be weakly

decreasing at tS .
Finally, we can also look at a more general result, one that considers all

unimodal densities f .

Proposition 7. If f strictly increasing on (0, k) and strictly decreasing on

(k, 1) for some k ∈ (0, 1), then there is a unique equilibrium strategy S = [a, 1],
such that 0 ≤ a < k, and tS > k.

Proof: see Appendix.
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The unimodal case thus gives rise to a partially separating equilibrium in
which news are pooled over a certain interval. It is easy to see that full sepa-
ration and full pooling emerge as special cases of this result when k is 1 and 0,
respectively.

Note that as at the optimum, tS > k, greater k - i.e. a peak further to the
right - will in general lead to more states being disclosed. This, together with
the result from Proposition 5, suggests that more news will be disclosed if τ is
more likely to be large. Recalling that larger τ means that Receiver is more
skeptical about taking an action favourable for Sender, we can again conclude
that if Receiver is biased against the Sender, more information will be revealed,
while if Receiver becomes pre-disposed towards Sender, a greater range of news
become disclosed.

The idea that more extensive revelation is optimal is Receiver is more in-
clined to take an action favourable to Sender has several implications for real-
world situations. On the normative side, suppose that Receiver represents a
population of citizens who choose whether to adopt a racist model of behaviour,
depending on their existing views and some incitement from an activist, which
may be more or less e�ective. If Sender is a government that can choose whether
to restrict hate speech, we can say that such a restriction will be e�ective if cit-
izens are already pre-disposed against racism; if they are ex ante inclined to be-
lieve racist statements, restrictions on hate speech would be counterproductive.
Similarly, we can say that a central bank is better o� with more transparency
if investors have a higher level of trust in the currency.

On the positive side, these results suggest that �rms operating in markets
with skeptical consumers are better o� revealing more, or that less political cen-
sorship is optimal in societies where citizens are skeptical about the government,
or . Note that this is not saying that more freedom of information will actually
be observed in such societies, as there may be other factors (such as ideological
constraints, legal requirements, disagreements within the ruling group, or the
fact that the regime may be seeking support from only part of the public) that
drive governments' behaviour. Rather, this suggests that when the population
is not inclined to trust the government, political censorship is likely to harm
rather than help it.

If we assume that authoritarian regimes do try to maxmise the support of the
public, we can make certain conclusions about possible causes of certain political
changes. A rise in the level of support for the government - for example, due to
an outburst of patriotic feeling caused by a war - may encourage an optimising
government to reduce media freedom. On the other hand, when facing a decline
in popular support, a rational authoritarian ruler may choose to relax political
censorship. Writing about the French Revolution, Alexis de Tocqueville has
famously noted that �the regime which is destroyed by a revolution is almost
always an improvement on its immediate predecessor, and experience teaches
that the most critical moment for bad governments is the one which witnesses
their �rst steps toward reform�. In this case, perhaps the regime becomes less
repressive precisely because it is in danger of being overthrown.
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4 Conclusions

This paper has examined optimal information disclosure of a Sender who com-
mits to a particular disclosure policy in advance. The main focus of the paper
was the e�ect of Receiver's preference distribution f on the disclosure strategy.

In general, Sender's strategy space was quite large, allowing him to pick an
arbitrary information partition subject to a few technical restrictions. Never-
theless, the set of possible optimal strategies has been found to be quite small.
An optimal information partition generally has at most one positive-measure
set, and the number of disjoint intervals of which this set consists is limited by
the number of peaks of f .

Speci�c optimal disclosure policies in general depend on the shape of f . In
particular, full revelation - the benchmark result that has often been the focus
of other work in this area - has been found to only occur when f is increasing.

In general, more information is likely to be revealed when Receiver is biased
against the Sender. Thus, for instance, a �rm facing largely skeptical consumers
is more likely to reveal information about its product than a �rm whose cus-
tomers are ex ante willing to trust it. Similarly, we can expect less political
censorship at the equilibrium when the distribution of views in the population
is skewed towards opposing the government. Alternatively, when censorhip is
present under such circumstances, we can expect it to hurt the government. We
can also expect an optimising government to change political censorship in re-
sponse to a shift in public opinion, restricting the freedom of information when
citizens become more willing to support it, and relaxing censorship when the
views of the population turn against it.
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5 Appendix

5.1 Proof of Proposition 1

The proof that max
P∈P

{v (S)} exists follows several steps.

Step 1. A metric on P.
Take a partition P ∈ P, and denote its positive-measure sets by

(
Si
)
i∈N such

that inf
(
Si
)
≤ inf

(
Si+1

)
.3 For every Si ∈ N, denote by

(
sij
)
j∈N an increas-

ing sequence of the boundary points of Si.4 The sequence of such sequences,((
sij
)
j∈N

)
i∈N

, fully describes5 a partition P (up to a closure6). To measure

the distance between two partitions P and P̂, we can measure the Euclidean

3Recall that every P ∈ P must include at most a countable number of positive-measure
sets, so it is possible to assign to each set a natural number.

4Again, recall that the number of boundary points for each Si ∈ P is at most countable.
5In case P has a �nite number N of positive-measure sets, let

(
sij

)
j∈N

= (1, 1, ...) for every

i > N . Similarly, if some set Si has a �nite number N of boundary points, let
(
sij

)
j∈N

=(
si1, s

i
2, ... s

i
N−1, s

i
N , siN , ...

)
6Recall that the overall measure of all boundary points of all positive-measure sets in P

is zero, so v (P) = v (cl (P)), where cl (P) is the closure of P. Thus, we can treat the as the
same partition.
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distance between each pair of boundary points in each pair of positive-measure
sets belonging to P and P̂, and then �nd the largest such distance. Formally,
let the measure d : P×P→ R be de�ned as:

d
(
P, P̂

)
≡ sup
i,j∈N

{∣∣sij − ŝij∣∣ : sij ∈ Si ∈ P , ŝij ∈ Ŝi ∈ P
}

Step 2. Sequential compactness of (P, d).
Let us prove that every sequence in P has a convergent subsequence. Take

an arbitrary sequence of partitions (Pv)v∈N lying in P. De�ne h : N2 → N as
a bijective function that gives a number to every pair (i, j).

First, for every partition Pv take the element
(
sij
)
v
for which h (i, j) = 1.

The sequence of these elements along v,
(
sij
)
v∈N is bounded between 0 and 1;

therefore, by Bolzano-Weierstrass Theorem, it must have a convergent subse-
quence. Denote this convergent subsequence by

(
sij
)
v∈V1

, and denote its limit

by lij . Thus, the sequence of partitions must have a subsequence (Pv)v∈V1
in

which the ��rst� boundary point converges to lij .
Now suppose that there exists a subsequence of partitions (Pv)v∈Vn

in which

every boundary point sij converges as long as such that h (i, j) ≤ n. Then

(Pv)v∈Vn
must have a subsequence in which sij for wich h (i, j) = n+1 converges

as well.
By induction, therefore, there must exist a subsequence of partitions over

which every point sij converges to a limit lij . Then that subsequence of partitions

converges to a limit described by
((
lij
)
j∈N

)
i∈N

.

Step 3. Compactness of P.
We we have shown that every sequence of partitions in P converges, so P is

sequentially compact, which in metric spaces implies compactness. Thus, v (·)
is a continuous function with compact support; by Weierstrass theorem it must
then have a maximum�

5.2 Proof of Proposition 2

To prove (1), take a partition P containing a positive-measure set A. Now take
a w belonging to the interior of A and suppose that zA (w) < 0.7 Consider a
deviation from P to a partition P̂ that di�ers from P in that an interval [w, r]
is removed from A and instead all the news in [w, r] are disclosed (i.e. turned

into singleton elements of the partition). If r = w, then v
(
P̂
)
= v (P). Recall

7The assumption that w is in the interior of A is without loss of generality, since for every
w on the boundary of A such that zA (w) < 0, there must (by continuity of zA (w)) be another
w′ in the neighborhood of w for which this property also holds.
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that v (P) =
∑

S∈P : µs>0

F (tS)µS +
´

ω∈S∈P : µS=0

F (ω)g(ω)dω. Then

v
(
P̂
)
− v (P) = F

(
tA\[w,r]

)
µA\[w,r] +

ˆ r

w

F (ω)g(ω)dω − F (tA)µA

Note that that

µA\[w,r] =

ˆ

ω∈A

g (ω) dω −
ˆ r

w

g (ω) dω

and

tA\[w,r] =

´
ω∈A

ωg (ω) dω −
´ r
w
ωg (ω) dω

´
ω∈A

g (ω) dω −
´ r
w
g (ω) dω

Taking the derivative of v
(
P̂
)
− v (P) with respect to r yields

∂
[
v
(
P̂
)
− v (P)

]
∂r

= g (r)
[
f
(
tA\[w,r] − r

)
− F

(
tA\[w,r]

)
+ F (r)

]
= −g (r) zA\[w,r] (r)

If r = w, then A \ [w, r] = A, and v
(
P̂
)
= v (P), so the di�erence is zero.

If P is an optimal strategy, the di�erence must be weakly decreasing in r at
r = w. But if zA (w) < 0, then

∂v
(
P̂
)

∂r

∣∣∣∣
r=w

= −g (w) zA (w) > 0

As g is assumed to be strictly positive everywhere. Therefore, increasing r is a
pro�table deviation for Sender, which means that P̂ is not optimal.

Parts (2) and (3) are proved analogously. To prove (2), suppose that for some
positive-measure sets A,B ∈ P, zA (w) < zB (w) for some w ∈ A. Consider a
deviation from P to P̂ in which an interval [w, r] is removed from A and pooled

with B. Again, v
(
P̂
)
= v (P) for r = w. But then

∂
[
v
(
P̂
)
− v (P)

]
∂r

∣∣∣∣
r=w

= −g (w) zA (w) + g (w) zB (w) > 0

Hence, Sender bene�ts from a deviation in which r is increased, and thus P
cannot be an equilibrium strategy.

Finally, to prove (3), assume that zA (w) > 0 for some positive-measure set
A and for some w that is not part of any positive-measure set. Now take some
interval [w, r] such that every ω ∈ [w, r] is a singleton element of the partition,
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and consider a change from P to P̂ in which this interval is pooled with A.
Then

∂
[
v
(
P̂
)
− v (P)

]
∂r

∣∣∣∣
r=w

= g (w) zA (w) > 0

so again there is a pro�table deviation�

5.3 Proof of Proposition 3

Suppose that there exists a partition P which includes two positive-measure sets
A and B, and assume without loss of generality that tA ≤ tB . Denote by P̂ a
partition that di�ers from P in that A and B are pooled together.

It is possible to prove in several steps that either P̂ gives Sender the same
expected payo� as P, or that there exists a partition that gives a higher payo�.

Step 1. If tA = tB , then v
(
P̂
)
= v (P).

Note that µA
⋃
B = µA + µB , and

tA
⋃
B =

´
ω∈A

ωg (ω) dω +
´
ω∈B

ωg (ω) dω

µA + µB
=

µA
µA + µB

tA +
µB

µA + µB
tB = tA

Hence,

v
(
P̂
)
− v (P) = F

(
tA

⋃
B

)
µA

⋃
B − F (tA)µA − F (tB)µB =

= F (tA) (µA + µB)− F (tA)µA − F (tB)µB = 0

Step 2. If tA < tB , then for P to be an optimal partition, f must be increasing
on [tA, tB ].

Suppose that P is an optimum partition, and consider the following devia-
tion: take C ⊆ A such that tC = tA = tA\C . Now remove it from A and pool
with B; call the resulting partition P ′. Then

v (P)− v (P ′) = F (tA)µA + F (tB)µB − F
(
tA\C

)
µA\C − F

(
tB

⋃
C

)
µB

⋃
C =

= F (tA)µA + F (tB)µB − F (tA) (µA − µC)− F
(
tB

⋃
C

)
(µB + µC) =

= F (tA)µC + F (tB)µB − F
(

µB

µB+µC
tB + µC

µB+µC
tA

)
(µB + µC)

The expression above must be non-negative for P to be the optimal partition.
Denote γ ≡ µC

µB+µC
, and note that we can choose µC to be of any value between

0 and µA. Then

γF (tA) + (1− γ)F (tB) ≥ F (γtA + (1− γ) tB) , ∀γ ∈
[
0,

µA
µA + µB

]
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Now consider a deviation from P to P ′′ of the following form: take D ⊆ B
such that tD = tB = tB\D, remove D from B and pool it with A. Then

v (P)− v (P ′′) = F (tA)µA + F (tB)µB − F
(
tB\D

)
µB\D − F

(
tA

⋃
D

)
µA

⋃
D =

= F (tA)µA + F (tB)µB − F (tB) (µB − µD)− F
(
tA

⋃
D

)
(µA + µD) =

= F (tA)µA + F (tB)µD − F
(

µA

µA+µD
tA + µD

µA+µD
tD

)
(µA + µD)

Denote δ ≡ µA

µA+µD
; note that µD can be chosen between 0 and µB . Then

δF (tA) + (1− δ)F (tB) ≥ F (δtA + (1− δ) tB) , ∀δ ∈
[

µA
µA + µB

, 1

]
This inequality and the previous one, taken together, imply that F must be

convex on [tA, tB ], and thus f must be increasing.

Step 3. If tA < tB and f is constant on [tA, tB ], then v
(
P̂
)
= v (P).

If f is horizontal then F is linear, which implies

v
(
P̂
)
− v (P) = F

(
tA

⋃
B

)
µA

⋃
B − F (tA)µA − F (tB)µB =

= F
(

µA

µA+µB
tA + µB

µA+µB
tB

)
(µA + µB)− F (tA)µA − F (tB)µB = 0

Step 4. If tA < tB , and f is not constant on [tA, tB ], P cannot be optimal.
If f is not constant on [tA, tB ], then in the neighbourhood of either tA or tB

it must be strictly increasing. Assume it is increasing in the neighbourhood of
tA.

Suppose that P is optimal. Then, as we have established, f must be increas-
ing on (tA, tB), and thus zA (ω) =

´ ω
tA
f (tA)−f (x) dx < 0 for every ω ∈ (tA, tB)

- thus, by Proposition 2, no news in the interval (tA, tB) belong to A. On the
other had, increasing f implies that f (tB) > f (tA). Then for every ω ≥ tB ,
zA (ω) =

´ ω
tA
f (tA) − f (x) dx <

´ ω
tB
f (tA) − f (x) dx <

´ ω
tB
f (tB) − f (x) dx =

zB (ω). Hence, by Proposition 2 no ω ≥ tB can belong to A. Therefore, optimal
P implies that tA ≥ max {A}, which is not possible.

In a similar way we can show that P cannot be optimal if f is increasing in
the neighbourhood of tB .

To summarise, we have shown that unless f is constant between the expected
values of all positive-measure elements of P (in which case they can all be pooled
together without a loss in utility), P cannot be optimal. Yet Proposition 1 has
established that optimal strategy must exist. Therefore, there is always an
optimal strategy in which P has at most one positive-measure set�
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5.4 Proof of Proposition 4

We have earlier established that without loss of generality S can be thought of
as a countable union of disjoint intervals. Thus, we can write S =

⋃
i∈I

[ai, bi]

such that 0 ≤ ai ≤ bi ≤ ai+1 ≤ 1, ∀i ∈ I, where I is countable.
Let us start by taking a set S comprising |I| disjoint intervals. What is the

smallest number of local maxima that f needs to have in for S to be Sender's
equilibrium strategy?

Observe that since we have assumed the number of weak local maxima to
be �nite, f cannot be constant at any interval. This means that zS (·) cannot
equal zero on any interval [p, q] ⊆ [0, 1], since if it was zero, this would mean
that f (ω) = f (tS), ∀ω ∈ [p, q], i.e. that f is horizontal. The fact that zS (·)
cannot be zero on an interval, together with Proposition 2, implies that zS (ω)
is decreasing at ω = ai and increasing at ω = bi, ∀i ∈ I. This means - since
zS (ω) is continuously di�erentiable - that dzS

dω (ai) > 0 and dzS
dω (bi) < 0.

Hence, for every i ∈ I, zS (ω) must have at least one local maximum ci ∈
(ai, bi) and at least one local minimum di ∈ (bi, ai+1). At a local maximum,
dz2S
dω2 (ci) = −f ′ (ci) < 0, while at a local minimum,

dz2S
dω2 (di) = −f ′ (di) > 0.

But f is assumed to be continuously di�erentiable, and thus for every i ∈ I
there must be news wi ∈ (ci, di) such that (i) f ′ (wi) = 0, and (ii) in some
neighbourhood of wi, f

′ (ω) > 0 for ω < wi and f
′ (ω) < 0 for ω > wi. This

wi is therefore a local maximum of f , and there must be such a point in every
interval (ai, ai+1). There are |I| − 1 such intervals, which gives us |I| − 1 local
maxima.

Additionally, note that zS (tS) = 0, and also, dzSdω (tS) = 0. This gives several
possibilities. If tS ∈ (bi, ai+1) for some i ∈ I, then it is a local maximum, and
there are not one but at least two local minima in (bi, ai+1) - one to the left of tS
and one to the right. So there is one more pair of a maximum and a minimum of
zS (ω), and by the above logic, there must be a local maximum of f in addition
to the ones analysed in the previous paragraph. If tS ∈ (ai, bi) for some i ∈ I,
then it is a local minimum, and there are two local maxima in (ai, bi) - again,
f must have an extra local maximum. If tS = ai for some i ∈ I, then the shape

of zS (ω) implies that in some neighbourhood of ai,
dz2S
dω2 (ω) = −f ′ (ω) < 0 for

ω < ai and
dz2S
dω2 (ω) = −f ′ (ω) > 0 for ω > ai. Consequently, f must have an

additional local maximum at ai. Finally, if tS = bi for some i ∈ I, then the
shape of zS (ω) implies that f must have not one but at least two local maxima
in (ci, di).

Hence, if S forms part of an equilibrium, f must have at least |I| − 1 local
maxima plus one more. Therefore, m ≥ |I|�

5.5 Proof of Proposition 5

First statement. To prove necessity, suppose that f is not weakly increas-
ing - this implies that is is strictly increasing on some interval [p, q]. Let

P̂ ≡
{
[p, q] , {ω}ω∈[0,1]\[p,q]

}
be a partition consisting of the interval [p, q] and
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singletons. Then the di�erence in Sender's payo� from P̂ and from the fully

revealing partition
{
{ω}ω∈[0,1]

}
equals:

v
(
P̂
)
− v

({
{ω}ω∈[0,1]

})
= F

(
t[p,q]

)
µ[p,q] −

´ q
p
F (ω) g (ω) dω =

= Pr (ω ∈ [p, q])F [E (ω | ω ∈ [p, q])]− Pr (ω ∈ [p, q])E (F [ω] | ω ∈ [p, q]) =
= Pr (ω ∈ [p, q]) [F [E (ω | ω ∈ [p, q])]− E (F [ω] | ω ∈ [p, q])] > 0

where the last inequality sign follows from Jensen's inequality and the fact
that decreasing f implies concave F . Hence, if f is not weakly increasing, full
disclosure cannot be optimal.

To prove su�ciency, consider a weakly increasing f . Pick an arbitrary par-
tition P̃ containing one8 positive-measure set S. Now consider a partition P ′

that di�ers from P̃ by having singletons instead of S - i.e. every ω ∈ S is a
singleton element of P̃. If f (ω) = f (tS) for all ω ∈ S, then

v
(
P̃
)
− v (P ′) = F (tS)µS −

´
ω∈S

F (ω)g(ω)dω =

=
´
ω∈S

[F (tS)− F (ω)] g(ω)dω =
´
ω∈S

f (tS) [tS − ω] g(ω)dω =

= f (tS)
´
ω∈S

[tS − ω] g(ω)dω = f (tS) [tSµS − tSµS ] = 0

On the other hand, if f (w) 6= f (tS) for some w ∈ S, then either w > tS
and f (w) > f (tS), or w < tS and f (w) < f (tS). In either case, zS (w) =´ w
tS
f (tS) − f (x) dx < 0. From Proposition 3 it follows that P̃ containing S

cannot be an optimal.
Hence, a partition containing a positive-measure set S can only be optimal

if f (ω) = f (tS) for all ω ∈ S. But every strategy that �ts this criterion yields
the same expected payo� to Sender as the fully revealing strategy. Thus, full
disclosure must be an equilibrium strategy.

Second statement. To prove necessity, suppose, that f is not strictly in-
creasing. Then f is weakly decreasing on some interval [p, q] ⊆ [0, 1]. De�ning

P̂ ≡
{
[p, q] , {ω}ω∈[0,1]\[p,q]

}
as above and using the same reasoning, we can

prove that v
(
P̂
)
− v

({
{ω}ω∈[0,1]

})
≥ 0, so full disclosure cannot be a unique

equillibrium strategy.
To prove su�ciency, note that if f is strictly increasing, then for any partition

P containing a positive-measure set S, we have ω > tS ⇔ f (ω) > f (tS). Pick
news w ∈ S such that w > tS (such w exists as tS < max (S) ), and observe
that zS (w) =

´ w
tS
f (tS) − f (x) dx < 0. Proposition 2 then ensures that P is

not an equilibrium strategy�

8Proposition 3 has already established that, in general, a partition chosen by Sender will
have at most one positive-measure set.

19



5.6 Proof of Proposition 6

Take a strictly decreasing f , and consider a partition P. If P is fully revealing,
it cannot be optimal by Proposition 5. Now suppose P is not fully revealing,
i.e. it contains a positive-measure set S. If there exists ω /∈ S, then zS (ω) =´ ω
tS
f (tS) − f (x) dx > 0 - so P cannot be optimal. But Proposition 1 states

that an optimal partition must exist. Therefore, P = {[0, 1]} is an equilibrium,
and as such it is unique�

5.7 Proof of Proposition 7

From Propositions 4 and 5 it follows that under a unimodal density f with a
peak on (0, 1), the set S will consist of exactly one interval. Therefore, tS must
be in the interior of S. If tS ≤ k, this would mean that f is increasing on some
neighbourhood of tS , which would mean that zS (ω) < 0 for the news in that
neighborhood, which in the equilibrium cannot hold. Thus, tS ∈ (k, 1]. Then
zS (ω) > 0 for all ω > tS . Similarly, zS (k) > 0, and zS (ω) > 0 for some ω < k.
Hence, S = [a, 1]�
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