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1 Introduction

In recent years advances in data collection and storage led to the possibility of recording

many real life processes at increasingly high accuracy. Examples include high frequency

data such as financial transactions, environmental data such as ozone or insolation maps

and economic data such as income distributions or yield curves. The availability of large

amounts of data offers manifold opportunities for researchers to obtain a better under-

standing of the underlying processes. However, to make use of this growing information

and efficiently handle big data sets, suitable statistical tools are required to describe,

model and forecast the relevant characteristics of this data. Functional data analysis

(FDA) has emerged as a response to this request and has consequently been growing into

an important field of statistical research.

In FDA, where large data sets are utilized in the form of functional observations (or

curves), the focus has been mostly on independent and identically distributed observa-

tions. In many empirical applications data is collected sequentially over time. Conse-

quently, we expect that the functional observations in a given time period are affected by

past observations. Therefore, additional tools are required to analyze data that is given in

the form of a functional time series (FTS). This paper studies the problem of describing

and forecasting FTS and consists of two main parts. In a first step we provide a simple yet

broad framework to quantify time dependencies in FTS. Second, we develop forecasting

techniques for FTS under the given definition of time dependency.

Stochastic processes with time dependencies have been considered in the statistical

literature. In the context of classical (i.e., finite dimensional) time series analysis, er-

godicity and various mixing conditions are well established and frequently used (see, e.g.

Hamilton (1994) and Davidson (1994) for a review). In the functional context, however,

only few concepts are available when dealing with time-dependent observations. A key

reference is Hörmann and Kokoszka (2010) who introduce a moment based notion of weak

dependence using m-dependence. In this paper we complement the approach of Hörmann

and Kokoszka (2010) by suggesting an alternative concept of time dependencies for FTS.

Using the spectral Karhunen-Loeve representation functional observations can be repre-

sented by their functional principal component (FPC) scores. Therefore, the dependence

between functional observations can be quantified through their respective FPC scores.

This approach allows us to adapt various concepts of dependence available in the time

series literature to the functional context. In particular, we consider dependence based

on the autocovariances and cumulants of FPC scores. Further, since FPCs play a major

role in explaining time dependencies it is necessary to establish the consistency of their

estimates. We derive the convergence rates for the estimators of the FPCs under quite

general serial dependence that allows for the long range dependence of the FPC scores.
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This in turn extends the result in Hörmann and Kokoszka (2010).

In the second part of the paper we discuss forecasting methods for FTS. Most work

dedicated to the prediction of (FTS) has focused on the functional autoregressive model

of order one (FAR(1)) suggested in Bosq (2000). In particular, Bosq (2000) derives the

estimator and the predictor for the FAR model using the Yule Walker equation and shows

their consistency. Besse et al. (2000) propose a local adaptation of the FAR(1) model by

introducing a nonparametric weighted kernel estimator. The issue of weak convergence

for estimates of the FAR(1) model is addressed in Mas (2007). Kargin and Onatski (2008)

develop a predictive factor technique for the estimation of the autoregressive operator.

Park and Qian (2012) apply the FAR(1) framework to model FTS of distributions. Did-

ericksen et al. (2012) provide a small sample simulation study of the performance of the

FAR(1) model and several competing prediction techniques. More recently, Kokoszka and

Reimherr (2013) suggest a testing procedure to determine the lag order for more general

FAR(p) processes. Aue et al. (2015) suggest a simple alternative procedure to transform

the FAR model into a vector autoregressive model of functional principal scores, where

standard multivariate techniques can be used to model and predict FTS.

In order to forecast FTS that follow our concept of time dependence we discuss two

forecasting techniques. First, FTS processes that have a linear response to the past func-

tional observations can be forecasted by the FAR model. We show that the autocovariance

estimator given in Bosq (2000) is consistent under our notion of time dependence and de-

rive its convergence rate. However, the concept of time dependence we introduce covers

a broader class of processes than described by FAR. More precisely, the behavior of the

autocovariances of the FPC scores is less restrictive (in particular we can allow for long

range dependence) and non-linear responses are possible. For this reason we generalize

the FAR model to the functional additive autoregressive model (FAAR). The idea of

functional additive models was introduced by Müller and Yao (2008) in the context of

functional linear regressions. This approach gives rise to a more flexible and essentially

nonparametric model and allows us to consider the problem of prediction as a problem

of nonlinear response of the FPC scores. To estimate the nonlinear responses we pro-

pose a k-nearest neighbors classification approach that is simple to implement and in

the finite-dimensional setting well understood. As this approach has been successfully

applied to classical time series analysis (see, e.g., Cover and Hart (1967), Stone (1977),

Stute (1984) and Yakowitz (1987)), we can use the available theoretical results to derive

the convergence rate of our predictor in the FAAR model.

To assess the performance of the proposed forecasting methods in small samples we

provide a Monte Carlo simulation study. In particular, we compare the accuracy of the

prediction of the FAAR model to the FAR model, the multivariate score model suggested

by Aue et al. (2015) and benchmark models such as mean predictor, naive predictor and
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prediction of VAR for discrete observations. Further, we compare the performance of the

above mentioned FTS models in forecasting electricity consumption in Denmark, Finland,

Norway and Sweden. Our results show that FAAR models and multivariate score models

provide the most accurate forecasts.

The remainder of this paper is organized as follows. Section 2 introduces the notion of

dependence for functional time series. Section 3 discusses the impact of time dependence

on the estimators of the functional principal components. In Section 4 we address the FAR

model, while a generalization of the FAR model to FAAR, its estimation and asymptotic

properties are presented in Section 5. A supporting small sample study is presented in

Section 6. An empirical application to electricity consumption is described in Section 7

and concluding remarks are given in Section 8. All proofs, figures and tables are collected

in the Appendix.

2 Methodology and Assumptions

We shall assume that we observe a series of functional observations {Xi(t)} for t ∈ [a, b]

and i = 1, ..., N , where the interval [a, b] is normalized to [0, 1]. For each i the observation

Xi belongs to the Hilbert space H = L2 ([0, 1], ‖ · ‖) of square integrable functions which

is equipped with a norm ‖ · ‖ induced by the inner product 〈x, y〉 ≡
∫ 1

0
x(t)y(t)dt. The

object {Xi(t)}Ni=1 is referred to as functional time series (see e.g., Horváth and Kokoszka,

2012, Chapter 13-16 and Bosq, 2000 for a survey on FTS analysis) and we refer to i as the

time index. In what follows the data {Xi} are assumed to be given in a functional form

since the problem of data representation in functional form has been extensively studied

in the literature (see, e.g., Ramsay and Silverman, 2005 for a review of the available

techniques and general description of FDA).

Our attention is restricted to weakly stationary processes allowing for the standard

time series representation

Xi = G (εi, εi−1, . . .) , (1)

where {εi} denotes the series of errors or innovations which are i.i.d elements from Hilbert

space H, and G is a measurable function G : H∞ → H. In this paper two cases of

representation (1) are considered. The first is the functional autoregressive (FAR) model

that models linear responses of a FTS to its lags (see Section 4). Second, To account

for possible nonlinear responses we extend the FAR framework to more general settings

using the functional additive approach suggested in Müller and Yao (2008) for functional

regressions (see Section 5). Representation (1) can also be extended to non-stationary

sequences {Xi}. We do not pursue this topic in our paper and refer the interested reader

to Horváth et al. (2014) for additional insights. For future reference, S denotes the

space of Hilbert-Schmidt operators from H to H and is equipped with the operator norm
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‖ · ‖S (i.e., for some Ψ ∈ S, ‖Ψ‖S = (
∑∞

h=1 ‖Ψ(eh)‖2)1/2 for any orthonormal basis

{eh}h≥1) and the space of bounded linear operators on H is denoted by L with the norm

‖Ψ‖L = sup‖x‖≤1 {‖Ψ(x)‖, x ∈ H}.
We begin by describing the concept of time dependency in functional time series. It

is founded on the spectral decomposition of random functions as follows. All random

functions are defined on a common probability space (Ω,A, P ). Let LpH (Ω,A, P ) denote

the space of H valued random variables X such that for p ≥ 1, E‖X‖p < ∞. Every

function X ∈ L2
H possesses a mean function µ := E (X) and a covariance operator C(x) :=

E [〈X − µ, x〉X − µ], where x ∈ L2 and C admits the spectral decomposition. That is,

C(x) =
∞∑
`=1

λ`〈ψ`, x〉ψ`, (2)

where {λ`}`≥1 is the strictly positive decreasing sequence of eigenvalues and {ψ`}`≥1 de-

notes the corresponding sequence of eigenfunctions (i.e., C(ψ`) = λ`ψ`) which forms an

orthonormal basis system of H. It follows that X admits the Karhunen-Loève represen-

tation

X(t) = µ(t) +
∞∑
`=1

θ`ψ`(t), (3)

where θ` = 〈X,ψ`〉 denotes the `-th functional principal component score of X. By

construction, the sequence of functional principal component scores {θ`}`≥1 is such that

the elements θ` are uncorrelated across the spectral dimension `, have mean zero and

variance λ`. Then for a given weakly stationary FTS {Xi} (such that for each i = 1, ..., N ,

Xi ∈ L2
H) Xi admits a Karhunen-Loève decomposition which in turn yields a sequence

of scores {θi,`}, and the corresponding sequences of eigenvalues {λ`} and eigenfunctions

{ψ`}`≥1.
The following assumption formalizes how time dependencies between functional obser-

vations {Xi} are translated into their score series. Let κ`1,...,`q (0,τ1,...,τq−1) denote the q-th

order cumulant of (θi,`1 , θi+τ1,`2 , . . . , θi+τq−1,`q), where τ1, . . . , τq−1 ∈ N are integers (see,

e.g., Brillinger, 2001, p.19 for a more detailed description of cumulants). Then we shall

assume:

Assumption 1

(i) For some α > 2 and all ` ≥ 1,

λ` − λ`+1 ∼ `−α−1.

(ii) Define B
(h)
`,s := sup

i
|E [θi,`θi−h,s]|. Then there exists a constant B > 0 and some
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β > 0 such that

B
(h)
`,s ≤ B h−β

√
λ`λs.

(iii) For fixed q ≥ 3 and some constant B > 0, the joint q-th order cumulants are

absolutely summable

∞∑
. . .
∑

τ1,...,τq−1=−∞

∣∣κ`1,...,`q (0,τ1,...,τq−1)

∣∣ ≤ B

q∏
j=1

λ
1/2
`j
.

Part (i) of Assumption 1 is the standard assumption that prevents the spacing be-

tween adjacent eigenvalues λ` from being too small. It also implies that λ` ∼ `−α. The

importance of spacing property (i) will become particularly apparent from the results of

Corollary 2, where the asymptotic properties of eigenfunction estimators are studied.

Part (ii) and (iii) of Assumption 1 describe the form of time dependencies that we

allow for the scores {θi,`}i,`≥1. The assumed behavior of B
(h)
`,s , which represents a mea-

sure of absolute covariances between score series {θi,`} and lagged series {θi−h,s}, is only

a mild restriction. In particular, part (ii) implies an intuitive restriction on the abso-

lute summability of the h-th autocovariances of the score series {θi,`}i across the spectral

dimension `, since
∑

`≥1 |E [θi,`θi−h,`]| ≤
∑

`≥1B
(h)
`,` ≤ Ch−β. However, absolute summa-

bility of the autocovariances of the score series is not required across the time dimension

i and fixed spectral dimention `. More precisely, for 0 < β < 1 one can conclude that∑N
h=1 E [θi,`θi−h,`] ≤

∑N
h=1B

(h)
`,` is of order N1−βλ` which diverges for fixed ` and large N .

In what follows we refer to this as a long range dependence property. A similar restriction

holds for the covariances of the score series across time dimension with fixed the spectral

dimensions ` 6= s, i.e.,

N∑
h=1

|E [θi,`θi−h,s]| = O
(
N1−β

√
λ`λs

)
Finally, Assumption 1 (iii) requires absolute summability of the joint cumulants of

{θi,`} up to q-th order. This allows us to control the temporal dependencies in the q-th

moments of the score series across spectral and time dimension. In particular, condition

(iii) for one fixed spectral direction `,
∑∞

τ1,...,τq−1=−∞ |κ`,...,`(0,τ1,...,τq−1)| ≤ Cλ
q/2
` , implies

the finiteness of the q-th moment, i.e., E‖Xi‖q < ∆ < ∞ for all i. For more details on

how moments are related to cumulants see Appendix A equation (A.1). In general this

cumulant condition is standard for the time series literature (see, e.g. Andrews, 1991,

Brillinger, 2001, and Demetrescu et al., 2008) and provides us with a useful measure of

the joint statistical dependence of higher order moments and a convenient tool for deriving
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the rates of convergence. It should be noted that the value of q is method-specific and as

we shall see in the sequel relaxing linear structure of the model may require strengthening

the restrictions on the moments.

Furthermore, note that the concept of α-mixing is closely related to the form of time

dependencies assumed in (ii)-(iii). In fact, α-mixing together with finite sixth moments

implies absolute summability of the joint cumulants up to sixth order (see, e.g. Andrews,

1991 or Gonçalves and Kilian, 2007). Hence, the main difference between the two ap-

proaches lies in the way autocovariances are handled. In general we find that conditions

(ii) and (iii) have several advantages in a functional setting. First, they allow for a

broader scope of time dependencies (in that absolutely summable autocovariances are not

necessary which can be controlled through parameter β). Second, incorporating decay

across the spectral dimension ` is straighforward, which is crucial for the analysis. Third,

the stated conditions have an intuitive interpretation of the time dependence concept for

functional data when compared to various mixing properties. Moreover, using standard

time series techniques it can be easily verified in practice if there is time dependence

between the scores of the FTS.

3 Properties of Functional Principal Components

The fundamental ingredients for describing time dependence in functional data are princi-

pal component scores. However, in practice scores and other FPC (C and its eigenvalues

and eigenfunctions) are not known and must be estimated. Therefore, before developing

forecasting methods that rely on Assumption 1, it is crucial to verify the convergence of

the estimated FPC to their population counterparts. Consistency results for the FPC

are available for independent observations (see, e.g., Dauxois et al., 1982) and for L4-m-

dependent functional data (see e.g., Hörmann and Kokoszka, 2010). In this section we

show that consistency of the corresponding estimators extends to our time dependency

settings.

We start with the preliminaries. Suppose we observe X1, ..., XN . The standard es-

timators for the mean function, µ, and the covariance operator, C(x), are given by the

following sample averages

µ̂(t) =
1

N

N∑
i=1

Xi (t) , (4)

ĈN(x) =
1

N

N∑
i=1

〈Xi − µ̂, x〉 (Xi (t)− µ̂ (t)) , x ∈ L2. (5)

Further, we denote the estimators of eigenvalues and eigenfunctions as {λ̂`}L`=1 and {ψ̂`}L`=1,
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respectively. Using ĈN(t), they are computed from the eigenequation

ĈN(ψ̂`) = λ̂`ψ̂`.

Typically estimates of eigenelements (λ̂` and ψ̂`) can be obtained for an arbitrary fixed

level L such that L < N . The asymptotic results in Section 4 and 5 provide a discussion

of this issue, where L is set to be a function of N , such that L→∞ as N →∞. Ramsay

and Silverman (2005, Section 6.4) discuss practical/computational methods for solving

eigenequations.

Remark 1 In what follows we shall assume without loss of generality that Xi have means

equal to zero for all i = 1, ..., N . For any practical application the methodology introduced

in this paper remains unchanged if data are centered prior to the forecasting exercise. For

the completeness of the discussion we state the following result for the estimator of µ. For

the weakly stationary FTS {Xi}Ni=1 that fulfills Assumption 1 (i)-(ii) we have

E ‖µ̂N − µ‖2 = O
(
max

{
N−β, N−1

})
.

The following result establishes the consistency of estimator (5).

Theorem 1 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 1 with joint cumu-

lants up to order 4 then

E
∥∥∥ĈN − C∥∥∥2

S
= O

(
N−2β

∗)
,

where β∗ := min{β, 1/2}.

Theorem 1 implies that the fastest convergence speed that can be achieved for the

empirical estimator of the covariance operator is N−1 when β ≥ 1/2. This extends

previously obtained results in Bosq (2000) and Hörmann and Kokoszka (2010) showing

that the fastest convergence can also be achieved for processes that potentially posses long

range dependencies. In other words, the absolute summability of the autocovariances of

the functional principal component score series {θi,`}i≥1 across the time dimension i, is

not necessary to get rate N−1. If one is only interested in establishing the consistency

of the covariance operator estimator, part (ii) of Assumption 1 can be relaxed to B
(h)
`,s ≤

Bbh
√
λ`, λs with

∑∞
h=1 h

−1bh < ∞. This condition allows for a slow decay of the time

dependencies represented by component bh that can even be of logarithmic order bh =

O
(

ln (h)−1−β
)

for β > 0 (see, e.g., Davidson, 1994, Theorem 2.31).

The autocovariance operator defined as

Γh = E [〈Xi, x〉Xi−h] , (6)
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for i = 1, ..., N and some h, can estimated similarly by the sample analogue

Γ̂h,N =
1

N − 1

N−1∑
i=1

〈Xi, x〉 (Xi (t)) . (7)

Furthermore, the following holds for any autocovariance operator of order h.

Corollary 1 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 1 with joint cumu-

lants up to order 4 then

E
∥∥∥Γ̂h,N − Γh

∥∥∥2
S

= O
(
N−2β

∗)
.

Our next result gives explicit bounds for the mean squared error of the eigenelement

estimators.

Corollary 2 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 1 with joint cumu-

lants up to order 4 then

(i) E
(

sup
`≥1

∣∣∣λ̂` − λ`∣∣∣2) = O
(
N−2β

∗)
,

(ii) E
(

sup
1≤`≥L

∥∥∥a`ψ̂` − ψ`∥∥∥2) = O
(
δ2`N

−2β∗)
,

where a` := sign(〈ψ̂`, ψ`〉), δ` := max1≤k≤`(λk − λk+1)
−1.

The results in Corollary 2 indicate that, as ` increases, it becomes more difficult to esti-

mate the eigenfunctions ψ` associated with λ` since the expected L2 error is proportional

to δ2` . As a consequence, the spacing between adjacent eigenvalues {λ`}`≥1 cannot decrease

too fast. In particular, by Assumption 1(i) E
(

sup
1≤`≥L

∥∥∥a`ψ̂` − ψ`∥∥∥2) = O
(
L2(1+α)N−2β

∗)
.

Therefore, restriction L = o
(
Nβ∗/(1+α)

)
has to hold for estimators {ψ̂`}L`=1 to be con-

sistent. Further, the estimator ψ̂l of ψl is only identified up to a change in sign. As is

standard in the literature, we shall tacitly assume that the sign of ψ̂l is chosen such that∫
ψ̂lψl ≥ 0.

Note, recently Hörmann and Kidziński (2015) proofed that for the consistency of FPCs

estimators the spacing property given in Assumption 1(i) can be relaxed to more general

settings. However, our subsequent analysis of the forecasting techniques in Sections 4 and

5 requires explicit rates of convergence for the estimators λ̂` and ψ̂` and consequently the

spacing property.

4 Forecasting Linear FTS

In this section we discuss estimation and forecasting techniques for FAR models. As

pointed out in the introduction the FAR(1) model is the model most commonly used in
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the FTS analysis and it is natural to use it as the main linear FTS benchmark model.

The theory of FAR(1) processes in Hilbert and Banach spaces is studied in Bosq (2000)

to which we refer the reader for a general overview. In this section we study the estimator

suggested in Bosq (2000) and derive its convergence rate under the time dependency

assumption stated in Section 2. For simplicity of exposition we consider the FAR model

of order one.1 The model takes the form

Xi = ρ (Xi−1) + εi, (8)

where εi is a strong white noise in L2
H , i.e., εi is a zero mean iid sequence in L2

H with

the covariance operator Cε(x) := E [〈εi, x〉εi] being a positive definite Hilbert-Schmidt

operator. The autoregressive operator ρ is a assumed to be Hilbert-Schmidt operator

satisfying

‖ρk‖L < 1 for some k ≥ 1. (9)

This condition assures strict stationarity for process Xi (see, e.g., Bosq, 2000, Theorem

3.1). In other words, if (9) holds then function G(·) in FTS representation (1) takes an

additive linear form

Xi =
∞∑
h=1

ρh(εi−h).

To formulate the estimator of ρ(·) and derive its convergence rate we first address

the well known issue often referred to as an ill-posed inverse problem. Recall that

C(x) = E [〈Xi, x〉Xi] and Γh(x) = E [〈Xi, x〉Xi−h], and both operators allow for spec-

tral representations

C(x) =
∞∑
`=1

λ`〈ψ`, x〉ψ`, (10)

Γh(x) =
∞∑
`=1

∞∑
s=1

E [θi,`, θi−h,s] 〈ψ`, x〉ψs. (11)

It follows from (8) that operator equation Γ1 = ρC holds and formally gives the solution

ρ = Γ1C
−1. However, the operator C does not have a bounded inverse on the entire space

H. It follows from (10) that C−1 =
∑∞

`=1 λ
−1
` 〈ψ`, x〉ψ`, where λ−1` →∞ as `→∞ and the

domain of C−1 is restricted to D (C−1) = {y ∈ H |
∑∞

`=1〈y, ψ`〉2/λ2 <∞}. The standard

method in the literature to circumvent this problem is to use only the first L functional

components. That is, for λ1 > λ2 > . . . > 0 we define HL, a subspace of H spanned by

1See, e.g., Bosq (2000, Section 5) and Horváth and Kokoszka (2012, Chapter 15.1) for the review on
how to estimate higher order FAR models
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the L-eigenvectors ψ1, ..., ψL associated with λ1 > . . . > λL, and consider

C−1L =
L∑
`=1

λ−1` 〈ψ`, x〉ψ`, (12)

where C−1L is the inverse of C on HL and L is the function of N such that L → ∞ as

N → ∞. Then the estimator of ρ is based on (7), the sample analog of (12) and can be

formulated as

ρ̂N (x) =
1

N − 1

N∑
i=1

L∑
`,s=1

λ̂−1` 〈ψ̂`, x〉θ̂i,`θ̂i+1,sψ̂s. (13)

Remark 2 Note that the FAR process (8)-(9) satisfies the time dependence notion dis-

cussed in Section 2, however it impose stricter conditions on the autocovariances of the

FPC scores:

1. The FAR process (8)-(9) does not posses the long range dependence property (i.e.,

β > 1). Indeed, condition (9) implies
∑∞

h=1

∥∥ρh∥∥L < ∞ which in turn implies∑∞
h=1 ‖Γh‖L < ∞. Using expression (11) one can conclude that

∑∞
h=1 ‖Γh‖L < ∞

if β > 1.

2. The autocovariances of the FPC scores E[θi,`θi−h,`] decay faster then the variances

E[θi,`θi,`] across spectral dimension `. To see this note that the autoregressive oper-

ator ρ admits the representation

ρ(x) =
∞∑
`=1

∞∑
s=1

a`,s〈ψ`, x〉ψs, with x ∈ H, (14)

where a`,s = E [θi,`, θi−1,s]λ
−1
` denote the spectral coefficients. Further, we adopt the

approach of Hall and Horowitz (2007) for functional linear regressions and substitute

Assumption 1 (ii) with one, that allows us to control the decrease of the spectral

coefficients a`,s with more flexibility (see Assumption 3.3 in Hall and Horowitz,

2007). That is, instead of Assumption 1 (ii) assume there exists a constant B > 0,

some β > 1 and γ > 1/2 + α such that for all ` ≥ 1,

B
(h)
`,s ≤ B h−β`−γs−γ. (15)

Then, since ρ is the Hilbert-Schmidt operator we have
∑∞

s=1

∑∞
`=1 a

2
`,s < ∞. The

squared summability of a`,s is assured if and only if γ > 1/2 + α. In turn, the

autocovariances of the FPC scores behave as E[θi,`θi−h,`] = O(`2γ) and decay faster

then the variances E[θi,`θi,`] = O(`α).

The following result shows the consistency of ρ̂N and its speed of convergence.
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Theorem 2 If a FAR process (8)-(9) satisfies Assumption 1 (i) and (iii) with joint cu-

mulants up to order 4, and condition (15) then

‖ρ̂N − ρ‖L = Op

(
max

{
L2α+ 3

2

√
N

,L1+2(α−γ)

})
. (16)

The rate of convergence for the estimator of the autoregressive operator consists of two

parts. The first one, L
2α+3

2√
N

, characterizes the convergence of estimator ρ̂N to the truncated

true operator ρL = Γ1C
−1
L . Moreover, it restricts L for the estimator ρ̂N to be consistent

such that L = o
(
N1/(4α+3)

)
and L→∞ as N →∞. The second part, L1+2(α−γ), describes

asymptotic behaviour of the reminder ‖ρL − ρ‖L, which converge in probability to zero

since 1+2(α−γ) < 0. Note that the fastest convergence rate Op

(
N−1/2

)
can be achieved

when space H is finite dimensional which is inline with the results for the OLS estimator

of stationary multivariate autoregressive models (such as VAR for instance).

5 Forecasting Nonlinear FTS

As the correct model specification for FTS is not known in practice it might be too

restrictive to assume a linear modeling framework, as for instance, FAR model. For

this reason, in this section we propose a simple, yet robust and versatile approach to

tackle potential nonlinearity in FTS. We use the functional additive approach of Müller

and Yao (2008) to generalize FAR(1) model (8) and rewrite it as a functional additive

autoregressive model. Using equation (14) the FAR model can be rewritten as standard

linear regression model with infinitely many FPC score as predictors,

E [Xi+1|Xi] =
∞∑
s=1

∞∑
`=1

a`,sθi,`ψs,

In particular, the relationship between the response and predictor scores is modeled lin-

early as E [θi+1,s|Xi] =
∑∞

s=1 a`,sθi,`. Furthermore, the linear framework of the FAR

model and the uncorrelatedness of the FPS scores imply that E [θi+1,s|θi,`] = a`,sθi,`. As

suggested in Müller and Yao (2008), this model can be generalized by replacing the linear

terms a`,sθi,` by functional counterparts m`,s(θ`). This transforms the FAR model into a

functional additive autoregressive model (FAAR)

E [Xi+1|Xi] =
∞∑
s=1

∞∑
`=1

m`,s(θi,`)ψs, (17)

where it is assumed that E[m`,s(θi,`)] = 0 for all `, s ≥ 1 to assure identifiability. We

impose a mild restriction on the model (17). Let the random principal component scores

11



θi,` have unconditional probability density function f`(θi,`), and write f`,s(θi+1,s|θi,`) for

the conditional probability density of θi+1,s given θi,`.

Assumption 2 m`,s(·), f` (·) and f`,s (·) are twice continuously differentiable and f`(·),

and f`(·) are bounded. Furthermore, the functional principal component scores θi,` and

θi,s are independent for ` 6= s.

That is, the only requirement for functions m`,s(·) is smoothness. Further, Assumption

2 strengthens contemporaneous uncorrelatedness of the FPC scores to independency. This

in turn implies that

E [θi+1,s|θi,`] = E [E [θi+1,s|Xi] |θi,`] = E

[
∞∑
q=1

mq,s(θi,q)|θi,`

]
= m`,s (θi,`) .

The simple and flexible framework of model (17) provides us with a non-linear alter-

native to the FAR model. In particular, representation (17) motivates a straightforward

forecasting scheme to predict the expected value of XN+1 through estimates of the con-

ditional means m`,s(θN,`). Define the predictor M(XN) := E [XN+1|XN ]. Then using the

approximation X̂i,L =
∑L

`=1 θ̂i,`ψ̂` instead of real functions Xi the estimator of M(XN)

can be constructed as

M̂N,L(X̂N,L) =
L∑
`=1

L∑
s=1

m̂`,s(θ̂N,`)ψ̂s, (18)

where L is set to be a function of N such that L→∞ as N →∞. While the estimation

of the functional principal components ψ` and θi,` has already been discussed in Section

3, we propose in the following section an estimator for the conditional means m`,s(θi,`).

5.1 k-Nearest Neighbors Estimator

In this section a simple method based on the k-nearest neighbors approach (KNN) is

suggested to estimate predictor M(XN). The main idea behind forecasting with KNN is

to identify the past observations of the time series that are most similar (in terms of some

distance) to the last onservation and use a combination of their future values to predict

the next value of the series.

If FTS satisfies model (17) and Assumptions 1 and 2 then the KNN method can be

adopted directly to the series of the FPC scores. The estimation procedure consists of

three basic steps:

1. Use data X1, ..., XN and the FPC analysis to compute estimates ψ̂`, λ̂` and FPC

scores {θ̂i,`}Ni=1 for ` = 1, ..., L (as described in Section 3).

12



2. Compute the distance between the most recent FPC score θ̂N,` and each element

in the rest of the score series {θ̂i,`}N−1i=1 . A typical choice for this task Minkowski

distance. Denote the index set of the kN closest neighbors to the feature score

component θ̂N,` by I(kN ; θ̂N,`), where the number of neighbors depends on sample

size N such that kN →∞ as N →∞.

3. Once the kN closest elements are identified their subsequent values are averaged to

obtain the final estimator, i.e.,

m̂`,s(θ̂N,`) :=
1

kN

∑
i∈Î(kN ;θ̂N,`)

θ̂i+1,`, (19)

for `, s = 1, ..., L.

Substituting estimates m̂`,s(θ̂N,`) and ψ̂s where `, s = 1, ..., L back to (18) gives the func-

tional predictor. Note that KNN estimator (19) is presented with equal weights 1/kN .

Alternative weighting schemes can be considered as well. For instance, weights can be

set to be inversely proportional to the distance between the last observation θ̂N,` and a

neighbor from Î
(
kN ; θ̂N,`

)
, i.e.,

wi =
1
di

kN∑
j=1

1
dj

,

where di is a distance between θ̂N,` and a neighbor i ∈ Î
(
kN ; θ̂N,`

)
.

5.2 Asymptotic properties of FKNN

We split the investigation of the asymptotic properties of predictor (18)-(19) for FAAR

model into two parts as follows. Consider the infeasible estimator of m`,s(θ`) given by

m̃`,s(θN,`) :=
1

kN

∑
i∈I(kN ;θN,`)

θi+1,`.

where all quantities of spectral decomposition, λ`, ψ` and θi,` are assumed to be known.

Consequently, the infeasible functional predictor MN,L(xL) with the additional smoothing

step based on a approximation Xi,L(t) =
∑L

`=1 θi,`ψ`(t) is defined by

MN,L (XN,L) :=
L∑
`=1

L∑
s=1

m̃`,s(θN,`)ψs.

Then to obtain the convergence rate of the estimator (18)-(19) to the true predictor

it suffices to obtain the convergence rate of infeasible estimator to the true predictor,
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E‖MN,L(XN,L) −M(XN)‖2, and convergence rate of the feasible estimator (18)-(19) to

infeasible one, E
∥∥∥M̂N,L(x̂L)−MN,L(xL)

∥∥∥2. The following theorems present the respective

convergence rates.

Theorem 3 Let a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 1 with joint cumu-

lants up to order 4, Assumption 2 and follows model (17). Moreover, it is assumed that

Lα−1
∑∞

`=L E
[
m2
`,s(θi,`)

]
= O (λs). Then we have

E‖MN,L(XN,L)−M(XN)‖2 = O
(
max

{
k−1N , L1−α}) ,

where kN ∼ N4/5.

Theorem 4 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 1 with joint cumu-

lants up to order 6, Assumption 2 and follows model (17) then

E
∥∥∥M̂N,L(x̂L)−MN,L(xL)

∥∥∥2 = O

(
L3+2α log(N)

N2β∗

)
, (20)

where β∗ = min {β, 1/2}.

The result of Theorem 3 implies that the infeasible estimator is consistent and its

convergence rate consists of two parts. The first part, k−1N , describes the convergence of

the infeasible estimator to the truncated true predictor ML(XN,L) =
∑L

s,`=1m`,s(θN,`)ψs.

It also shows that the consistency result requires the number of neighbors to be the

function of the sample size such that kN ∼ N4/5. The second one characterizes the

convergence of the remainder E‖ML(XN,L)−M(XN)‖2 which is of order O (L1−α).

Theorem 4 delivers the convergence between feasible and infeasible estimators. One

benefit of this result is that it allows us to state the restrictions on the principal component

cutoff L. It is required that L = o
(
N2β∗/(2α+3)/ log(N)1/(2α+3)

)
and L → ∞ as N → ∞

to obtain the consistent FAAR predictor.

6 Small Sample Performance

We now turn to study the small-sample properties of the proposed models. The objective

of this section is twofold. The first objective is to evaluate the forecasting performance of

the FAR and the FAAR frameworks in different setups, relating to the asymptotic results

obtained in Sections 4 and 5. The second one is to conduct a comparison of the proposed

models with other alternatives available in the related forecasting/functional literature.

The last aspect is covered by examining the comparative forecast performance of the FAR

model and FAAR approach with that of the
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1. VAR model. It is natural to investigate when functional settings provide an ad-

vantage compared to standard multivariate techniques. For this reason we include

the VAR method, where functional observations Xi are treated as T × 1 vectors

Xi = [Xi(t1), ..., Xi(tK)]′. These vectors are obtained by evaluating the original

functions at T equidistant points ts = s−1
T−1 , s = 1, ..., T and i = 1, ..., N ;

2. Improved FAR [iFAR]. This approach is suggested by Kokoszka and Zhang (2010)

to control for possibly small values of λ̂` that potentially can be translated into large

errors in λ̂−1` . It is suggested to add a positive baseline to λ̂` in (13) for ` ≥ 2;

3. Multivariate score model. This model is recently suggested by Aue et al. (2015) and

is based on the standard multivariate techniques applied to the vector of scores.

Here we employ the VAR model for the score series which provides a simplified and

elegant alternative for the FAR model.. In what follows this method will be referred

to as MSM method.

We also supplement our comparative analysis with two standard benchmarks commonly

employed in functional data analysis (see, e.g., Didericksen et al., 2012). The first is

Mean prediction [MP], where predictors are obtained as the mean of the sample X̂N+1 =
1
N

∑N
i=1Xi, and the second is Naive Prediction [NP] given as X̂N+1 = XN .

We use the FAR(1) model as the main benchmark design for FTS processes

Xi(t) =

∫ 1

0

ρ(t, s)Xi−1(s)ds+ εi(t), (21)

for i = 1, ..., N . The error terms are generated as Brownian bridges

εi(t) = W (t)− tW (1), (22)

where W (·) is the standard Wiener process generated as W ( k
K

) = 1√
K

∑k
j=1 Zj for k =

1, ..., K and Zj are independent standard normals.

Three different forms of the kernel ρ(t, s) are used: ρ(t, s) = Ce
−(t2+s2)

2 , ρ(t, s) = C

and ρ(t, s) = Ct. In all cases the constant C is chosen such that ‖ρ‖S = 0.5. Samples

of size N = 50, 100 and 200 have been generated with a burn-in period of 100 functional

observations. In all cases N − 1 observations where used for the estimation and on

the last observation a one-step ahead forecast was computed. All results were repeated

Nr = 1000 times. For the FAAR model, the number of nearest neighbors kN was set to

N4/5 as suggested by Theorem 3. To estimate and forecast with the VAR model the size

of the grid has to be specified and the following rule was applied T = 0.1N . Finally, to

measure the forecasts performance, the mean squared error (MSE) and the mean median
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error (MME) were computed, i.e.,

MSE ≡ 1

Nr

Nr∑
j=1

‖Xj
N+1 − X̂

j
N+1‖

2, (23)

MME ≡ 1

Nr

Nr∑
j=1

∫ 1

0

∣∣∣Xj
N+1(s)− X̂

j
N+1(s)ds

∣∣∣ , (24)

where Xj
N+1 and X̂j

N+1 represent real observations and obtained forecasts, respectively,

for j’s replication. It should be mentioned that we used two approaches to estimat the

number of FPC L. First, L is selected such that FPCs explain at least 99% or 95% of

the variability in the sample. Second, we apply the selection criteria suggested in Aue

et al. (2015). We report that the second approach provides forecasts with smaller MSE

and MME errors. Therefore, the results based on the first approach are omitted here and

are available upon request.

We report our results in the form of boxplots of the errors MSE and MME for different

sample sizes and kernels. Figures 1, 2 and 3 present the results for the case when the

kernel is given as ρ(t, s) = Ce
−(t2+s2)

2 , ρ(t, s) = C and ρ(t, s) = Ct, respectively. All models

based on functional observations (e.g., FAAR, FAR, iFAR and MSM) perform significantly

better than the benchmark predictors and the VAR model, except for the special case

when ρ(t, s) = C. In this setup, the mean predictor provides the best forecasting results

due to the structure of the DGP. In general, none of the FAR, iFAR and MSM dominates

the others, while the FAAR model has marginally higher median and variance of the

forecast errors. This stems from the fact that the aim of the FAAR model is to forecast

general autoregressive processes while FAR, iFAR and MSM are explicitly tailored for the

considered FAR DGP.

7 Forecasting electric load demand in the Nordic coun-

tries

In this section we are considering the prediction of daily electric load demand curves

in the Nordic countries from a functional perspective. This problem has been of high

interest to decision makers in the energy sector and has seen numerous contributions in

the statistical literature. Traditionally, parametric time series models have been applied

to this problem - both classical time series methods and machine learning type methods

such as artificial neural networks and support vector machines (see, e.g., Kyriakides and

Polycarpou, 2007, Feinberg and Genthliou, 2005, Hippert et al. (2001) and Chen et al.

(2004) among others). This section describes the implementation and comparison of the
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FTS models discussed in Section 6.

The data that is used in this application has been provided by Nord Pool Spot AS, the

energy exchange of the Nordic and Baltic countries in Oslo, Norway 2. Hourly demand

data is made available for Denmark, Finland, Norway and Sweden since 2013. The time

stamps of the raw data are converted to UTC such that every day has always 24 hours.

That is, our sample for each country consist of N = 987 daily observations from January

1, 2013 till September 15, 2015, where each one is observed at 24 equidistant time points

(e.g., hourly). Figure 4 plots a typical daily observation in a summer period. Further, a

visual inspection of the data reveals that the level of the electricity demand significantly

changes between different seasons of the year. Therefore, the data was centered and

adjusted for monthly seasonality by subtracting from each observation the corresponding

monthly average. Figure 5 plots the seasonal monthly components for each country.

Since we treat discrete observations as realizations of continuous functions, a prelim-

inary smoothing step is required to reconstruct the underlying functional observations.

For reconstruction of the deseasonalized load demand functions we consider a basis rep-

resentation in terms of fourth-order B-splines with knots placed at each observed hour.

Thus, the number of employed basis functions is 24 per curve. This amount of basis

functions leads inevitably to overfitting the data and we thus penalize the sum of squared

errors for roughness (as measured through the squared second derivative). The optimal

choice of the smoothing parameter λ can be determined through minimizing a generalized

cross-validation criterion (GCV). The FDA package offered by Ramsay et al. (2009) for

the Matlab was applied here.3

We start with the report on the estimation of the functional principal components.

For each country the first three principle components combined account for more than

90% of the total variation in the sample. Figure 6 plots the eigenfunctions and their

respective percentages. Further, an analysis of the estimated score series provides evidence

of the time dependencies for each sample. In particular, we verify the presence of the

dependencies by looking at autocovariances and partial autocovariances of the score series.

Figure 7 illustrates our findings for the first FPC score series.

We apply FAAR, FAR, iFAR, MSM, VAR models and benchmark models such as

the naive prediction and the mean prediction to obtain forecasts for the deseasonalized

electric load demand functions. The original sample is split into two parts. The first one

from January 1, 2013 till December 31, 2014 is reserved for the estimation and learning

purposes and the second for the evaluation of the one step ahead forecast performance.

Finally, MSE and MME given in (24) and (24), respectively, are used for the comparison

of the quality of the competing procedures. The number of principal components and

2http://www.nordpoolspot.com/historical-market-data/
3http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/
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lags is selected according to the selection criteria suggested in Aue et al. (2015). Further,

more attention is paid to choosing the number of neighbors for the predictor in the FAAR

model. More precisely, we forecast the last observation in the estimating part of the

sample using (18)-19 with different values of kN = 1, ..., N4/5. Then the number kN is

selected to minimize the MSE between the obtained predictors and the last observation.

The results are reported in Figure 7 in the form of boxplots of the MSE and the MME

errors. In general the MSM model is the best framework for forecasting electricity demand

in Nordic countries except Denmark. In the case of Denmark the FAAR model provides

forecasts with smaller errors when compared to MSM and for other cases is a runner-up.

This finding indicates that there is a nonlinear response of the FPC score series to the

past observations. This statement is also supported by the evidence from scatter plots

illustrated in Figure 9. The bold lines show the best polynomial fit of order 3. In all

countries but Denmark we can see that the relationship between the current first FPC

score value and its lag is linear. Finally, FAR, iFAR and VAR models deliver equally good

results and in general are able to outperform the naive predictors.

8 Conclusion

In this paper a time dependence concept for functional observations is proposed. It is

based on the idea of the Karhunen-Loève decomposition of functional observations which

gives us the vector valued time series of FPC scores. In particular, time dependence in

FTS is quantified through the autocovariances and cumulants of its FPC scores series.

To operate with this concept in practice we show that the estimates of the FPCs are

consistent under the described dependencies. Further, two forecasting techniques for

functional time series are discussed. The first one is the FAR model for processes that

have a linear relation with the past observations. We then extend this linear framework

using the functional additive approach suggested in Müller and Yao (2008) and offer

a simple forecasting technique based on the kNN approach. Asymptotic consistency is

derived. Further our simulations indicate that the loss of efficiency against the FAR model

when the true underlying DGP is linear is only marginal.
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A Appendix: Auxiliary results

To economize notations we use
∑N

i,j=1 and
∑N

i 6=j=1 instead of full expressions
∑N

i=1

∑N
j=1

and
∑N

i=1

∑N
j=1,j 6=i throughout this appendix. Further, the following combinatorial repre-

sentation of p-th order moments in terms of joint cumulants is often used for proofs and

is stated here for future reference. For a set of random variables x1, . . . , xp one has

E [x1 · . . . · xp] =
∑
π

∏
B∈π

κ(xi:i∈B), (A.1)

were π cycles through all possible partitions of the set {1, 2, . . . , p} and B cycles through

all blocks of partition π. For instance, zero mean random variables satisfies the following

expressions: κ(x1,x2) = E [x1, x2] for p = 2, κ(x1,x2,x3) = E [x1, x2, x3] for p = 3 and

κ(x1,x2,x3,x4) = E [x1, x2, x3, x4]− E [x1, x2]E[x3, x4]

− E [x1, x3]E[x2, x4]− E [x1, x4]E[x2, x3] .

To facilitate understanding of the following proofs we collect intermediate steps into

auxiliary Lemmas.

Lemma A.1 Let a weakly stationary FTS {Xi}Ni=1 satisfies Assumption 1 with q = 4

then

sup
`≥1

∣∣∣λ̂` − λ`∣∣∣ ≤ ∥∥∥ĈN − C∥∥∥
L
, (A.2)∥∥∥c`ψ̂` − ψ`∥∥∥ ≤ Cδ`

∥∥∥ĈN − C∥∥∥
L
, for 2 ≤ ` ≤ L (A.3)

where c` = sign
(
〈ψ̂`, ψ`〉

)
, δ` = max1≤k≤` (λk − λk+1)

−1, and C is some positive constant.

Proof. Both results (A.2) and (A.3) follow from Bosq (2000, Lemma 4.2 and 4.3),

respectively.

Lemma A.2 A FAR process (8)-(9) satisfies Assumption 1 (i) and (iii) with joint cu-

mulants up to order 4, and condition (15) then:

(i) 1
N

∑N
i=1 ‖Xi‖2 =

∑∞
`=1 λ` +Op

(
N−1/2

)
;

(ii) λ̂−1L = Op (Lα) as N →∞, L→∞ and Lα

N1/2 → 0;

(iii)
∥∥∥Γ̂1,N

∥∥∥
L

= Op(1);

(iv)
∥∥∥Γ̂1,N

(
ψ̂`

)∥∥∥ ≤ 2λ̂
1/2
`

(
1
N

∑N
i=1 ‖Xi‖2

)1/2
;
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(v)
∑∞

`=L

∥∥∥ρ(ψ̂`)∥∥∥2 = Op

(
max

{
L2+α

N1/2 , L
1+2(α−γ)

})
;

Proof.

Proof of item (i): To establish item (i) we show that E
∣∣∣ 1N ∑N

i=1 ‖Xi‖2 −
∑∞

`=1 λ`

∣∣∣2 =

O (N−1) and then by Chebyshev inequality (i) will follow. First, notice that 1
N

∑N
i=1 ‖Xi‖ =

1
N

∑N
i=1

∑∞
`=1 θ

2
i,`, and denote Zi =

∑∞
`=1 θ

2
i,`, ZN = 1

N

∑N
i=1 Zi and m =

∑∞
`=1 λ`. Then

V ar
(
ZN

)
=

1

N2

N∑
i,j=1

∞∑
`,s=1

E
[
θ2i,`θ

2
j,s

]
−m2

=
1

N2

N∑
i,j=1

∞∑
`,s=1

(
κ`,`,s,s(0,0,|i−j|,|i−j|) + 2E [θi,`θj,s]

2) ,
where the last equality comes from relation (A.1). For the first term by Assumption 1(iii)

we have
1

N2

N∑
i,j=1

∞∑
`,s=1

κ`,`,s,s(0,0,|i−j|,|i−j|) ≤
B

N2

N∑
i=1

∞∑
`,s=1

λ`λs = O
(
N−1

)
,

and for the second

2

N2

N∑
i,j=1

∞∑
`,s=1

E [θi,`θj,s]
2 =

2

N2

N∑
i 6=j=1

∞∑
`,s=1

E [θi,`θj,s]
2 +

2

N

∞∑
`=1

λ2`

≤ 4

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`,s=1

(
B

(h)
`,s

)2
+

2

N

∞∑
`=1

λ2`

≤ B

N

N−1∑
h=1

h−2β
∞∑

`,s=1

`−γs−γ +
2

N

∞∑
`=1

λ2` = O
(
N−1

)
,

where the last result comes from Assumption 1 (i) and (iii) and condition 15.

Proof of item (ii): It follows immediately from Corollary 2 and Chebyshev inequality

λ̂` = Op

(
max

{
L−α, N−1/2

})
and λ̂−1` = Op

(
1

max{L−α,N−1/2}

)
. The item (ii) will follow

from the fact N−1/2 will go to zero faster then L−α since Lα/N1/2 → 0.

Proof of item (iii): Follows from Corollary 1 and Chebyshev inequality.

Proof of item (iv): Follows from Lemma 8.3 in Bosq (2000).

Proof of item (v): Item (v) is obtained by using the proof from Lemma 8.2 in Bosq

(2000) and the facts that
∥∥∥ĈN − C∥∥∥

L
= Op(N

−1/2),
∑L

`=1 δ` = O(L2+α) and
∑∞

`=L ‖ρ (ψ`)‖2 =

O
(
L1+2(α−γ))
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B Appendix: Proofs

Proof of Remark 1

We have

E ‖µ̂− µ‖2 =
1

N2

N∑
i,j=1

E 〈Xi − µ,Xj − µ〉 =
1

N2

N∑
i,j=1

∞∑
`,s=1

E [θi,`, θj,s]

=
1

N2

N∑
i=1

∞∑
`=1

E [θi,`, θi,`] +
1

N2

N∑
i 6=j=1

∞∑
`,s=1

E [θi,`, θj,s] .

As a consequence of Assumption 1 part (i)
∑∞

`=1 λ` < ∞ such that the first term in

the last equation above behaves as O (N−1). Rearranging the second term and invoking

Assumption 1 (ii) gives

1

N2

N∑
i 6=j=1

∞∑
`,s=1

E [θi,`, θj,s] =
2

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`,s=1

E [θi,`, θj,s]

≤ 2

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`,s=1

B
(h)
`,s

≤ C

N2

N−1∑
h=1

(N − h)h−β
∞∑

`,s=1

√
λ`λs = O

(
max

{
N−β, N−1

})
.

The last equality uses Davidson (1994, Theorem 2.27) and the fact that
∑∞

`=1

√
λ` < ∞

which follows from Assumption 1.

Proof of Theorem 1

We have,

E
∥∥∥ĈN − C∥∥∥2

S
=

∞∑
`=1

E

∥∥∥∥∥ 1

N

N∑
i=1

(〈Xi, ψ`〉Xi − E [〈Xi, ψ`〉Xi])

∥∥∥∥∥
2

=
1

N2

N∑
i,j=1

∞∑
`=1

(
∞∑
s=1

E [θi,`θj,`θi,sθj,s]− λ2`

)
(A.4)

=
1

N2

N∑
i,j=1

∞∑
`=1

(
E
[
θ2i,`θ

2
j,`

]
− λ2`

)
+

1

N2

N∑
i,j=1

∞∑
`6=s=1

E [θi,`θj,`θi,sθj,s] := a+ b. (A.5)
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It follows from relation (A.1) that

a =
1

N2

N∑
i,j=1

∞∑
`=1

(
κ`,`,`,`(0,0,|i−j|,|i−j|) + 2E [θi,`θj,`]

2) ,
where 1

N2

∑N
i,j=1

∑∞
`=1 κ`,`,`,`(0,0,|i−j|,|i−j|) = O (N−1) by Assumption 1(iii) and

2

N2

N∑
i,j=1

∞∑
`=1

E [θi,`θj,`]
2 =

2

N2

N∑
i 6=j=1

∞∑
`=1

E [θi,`θj,`]
2 +

2

N

∞∑
`=1

λ2`

≤ 4

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`=1

(
B

(h)
`,`

)2
+

2

N

∞∑
`=1

λ2`

≤ B

N

N−1∑
h=1

h−2β
∞∑
`=1

λ2` +
2

N

∞∑
`=1

λ2`

= O
(
max

{
N−2β, N−1

})
,

where the last equality comes from Assumption 1(i) and (ii).

Similar arguments apply to term b, i.e.,

1

N2

N∑
i,j=1

∞∑
6̀=s=1

E [θi,`θj,`θi,sθj,s] =
1

N2

N∑
i,j=1

∞∑
`6=s=1

(κ`,`,s,s(0,0,|i−j|,|i−j|)+ (A.6)

+ E [θi,`θj,`]E [θi,sθj,s] + E [θi,`θj,s]E [θi,sθj,`]) (A.7)

by relation (A.1). The first terms on the r.h.s of (A.6) is O (N−1) by Assumption 1(iii).

The second and the third terms on the r.h.s of (A.6) are O
(
max{N−2β, N−1}

)
by the

same arguments as above. In particular, for the third term we have

1

N2

N∑
i,j=1

∞∑
` 6=s=1

E [θi,`θj,s]E [θi,sθj,`] ≤
1

N2

N∑
i,j=1

∞∑
`6=s=1

(
B

(i−j)
`,s

)2
=

2

N2

N−1∑
h=1

N∑
i=h+1

∞∑
` 6=s=1

(
B

(h)
`,s

)2
≤ B

N

N−1∑
h=1

h−2β
∞∑

` 6=s=1

λ`λs = O
(
max

{
N−2β, N−1

})
.

Putting together rates for a and b yields the statement of the theorem.
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Proof of Theorem 2

Recall that HL = span{ψ1, ..., ψL} and let ĤL = span{ψ̂1, ..., ψ̂L} and denote πL and π̂L

projections onHL and ĤL, respectively. Then we can consider the following decomposition

(ρ̂N − ρ) (x) = (ρ̂N − ρπL(x)) + (ρπL(x)− ρπ̂L(x)) + (ρπ̂L(x)− ρ(x))

:= aN(x) + bN(x) + cN(x).

Further, denote aN(x) =
∑4

k=1 ak,N(x), where

a1,N(x) = Γ̂1,N

(
L∑
`=1

(
λ̂−1` − λ

−1
`

)
〈x, ψ̂`〉ψ̂`

)
,

a2,N(x) = Γ̂1,N

(
L∑
`=1

λ−1`

(
〈x, ψ̂`〉 − 〈x, ψ′`〉

)
ψ̂`

)
,

a3,N(x) = Γ̂1,N

(
L∑
`=1

λ−1` 〈x, ψ
′
`〉
(
ψ̂` − ψ′`

))
,

a4,N(x) =
(

Γ̂1,N − Γ
)( L∑

`=1

λ−1` 〈x, ψ
′
`〉ψ′`

)
.

For the first term we have

‖aN,1(x)‖ ≤
L∑
`=1

|λ̂` − λ`|
λ̂`λ`

|〈x, ψ̂`〉|
∥∥∥Γ̂1,N(ψ̂`)

∥∥∥ .
Using (A.2), Cauchy-Schwartz inequality and item (iv) of Lemma A.2 we obtain

‖aN,1‖L ≤ 2

(
1

N

N∑
i=1

‖Xi‖2
)1/2

‖CN − C‖L

(
L∑
`=1

λ̂
−1/2
` λ−1`

)
.

From Theorem 1 and Chebyshev inequality ‖CN − C‖L = Op(N
−1/2). Assume for now

that Lα/N1/2 → 0, then by using item (i) and (ii) of Lemma A.2 one gets

‖aN,1‖L = Op

(
L

3
2
α+1

N1/2

)
. (A.8)

Finally, to archive the consistency it is required that L
3
2
α+1/N1/2 → 0 which in turn

implies the condition Lα/N1/2 → 0 has to hold. That is, Lα/N1/2 → 0 is necessary but

not sufficient to obtain the statement of the theorem.

Turning to aN,2(x), from item (iv) of Lemma A.2 and Cauchy-Schwartz inequality we

23



have

‖aN,2‖L ≤ 2

(
1

N

N∑
i=1

‖Xi‖2
)1/2 L∑

`=1

λ̂
1/2
` λ−1`

∥∥∥ψ̂` − ψ`∥∥∥ ,
where (A.3) together with and the fact that

∑L
`=1 δ` = O(Lα+2) yield

‖aN,2‖L = Op

(
L

3
2
α+2

N1/2

)
. (A.9)

Concerning aN,3(x), Cauchy-Schwartz inequality and orthogonality of ψ̂` and ψ` yield

the bound

‖aN,3‖L ≤
∥∥∥Γ̂1,N

∥∥∥
L

(
L∑
`=1

λ−2` 〈x, ψ̂`〉
2
∥∥∥ψ̂` − ψ`∥∥∥2)1/2

.

Then using item (iii) of Lemma A.2 and the fact that
(∑L

`=1 σ
2
`

)1/2
= O(Lα+3/2) yield

‖aN,3‖L = Op

(
L2α+ 3

2

N1/2

)
. (A.10)

Finally,

‖aN,4‖L =
∥∥∥Γ̂1,N − Γ

∥∥∥
L

(
L∑
`=1

λ−2` 〈x, ψ`〉
2

)1/2

.

Then Corollary 1 entail

‖aN,4‖L = Op

(
Lα+

1
2

N1/2

)
. (A.11)

Next we turn to bN(x) and cN(x). First observe that

‖bN‖L ≤ C

(
∞∑
`=L

∥∥∥ρ(ψ̂`)∥∥∥2 +
∞∑
`=L

‖ρ (ψ`)‖2
)
. (A.12)

which behave as Op

(
max

{
L2+α

N1/2 , L
1+2(α−γ)

})
by item (v) of Lemma A.2. For cN(x) we

have ‖cN‖L =
∑∞

`=L ‖ρ (ψ`)‖2 = Op

(
L1+2(α−γ)) and statement of the theorem is proofed.
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Proof of Theorem 3

First, define ML(XN,L) :=
∑L

s,`=1 E [θN+1,s|θN,`]ψs =
∑L

s,`=1m`,s(θN,`)ψs, where in com-

parison to MN,L (xL) the kN -NN estimators of the scores have been replaced by the corre-

sponding conditional population means. Since our interest is in analyzing E‖MN,L(XN,L)−
M(XN)‖2, it suffices, upon adding and subtracting ML(XN,L) in the argument of our ob-

ject of interest, to consider the two terms

E‖ML(XN,L)−M(XN)‖2 and E‖MN,L(XN,L)−ML(XN,L)‖2 (A.13)

For simplicity of notation let θ` denote θN,`. Then for the first term in (A.13) by using

the orthonormality of the {ψ`} we have

E‖ML(XN,L)−M(XN)‖2 = E

∥∥∥∥∥
L∑

s,`=1

m`,s(θ`)ψ` −
∞∑

s,`=1

m`,s(θ`)ψ`

∥∥∥∥∥
2

=
∞∑

s,`=L+1

E
[
m`,s(θ`)

2
]

+
∞∑

s=L+1

L∑
`=1

E
[
m`,s(θ`)

2
]

+
L∑
s=1

∞∑
`=L+1

E
[
m`,s(θ`)

2
]
. (A.14)

Now observe that from Lα−1
∑∞

`=L E
[
m2
`,s(θi,`)

]
= O (λs) it follows immediately that∑∞

s,`=L+1 E [m`,s(θ`)
2] = O(L2(1−α)),

∑∞
s=L+1

∑L
`=1 E [m`,s(θ`)

2] = O(L1−α) and∑L
s=1

∑∞
`=L+1 E [m`,s(θ`)

2] = O(L1−α)

Now we consider the second term in (A.13) which can be written as

E‖MN,L(XN,L)−ML(XN,L)‖2 = E

∥∥∥∥∥
L∑

s,`=1

(m̃`,s(θl)−m`,s(θl))ψl

∥∥∥∥∥
2

=
L∑

s,`=1

E
[
(m̃`,s(θ`)−m`,s(θ`))

2] , (A.15)

where the second equality follows from the orthonormality of the sequence of eigenfunc-

tions (ψ`)
L
`=1. For fixed ` = 1, . . . , L, rates of convergence of the mean squared error

in (A.15) can be derived by following results in Yakowitz (1987). A careful inspection

of the proofs in Yakowitz (1987) reveals that analyzing the second moment of the dis-

tance between (the given) θl and its farthest (of the kN) neighbor is of key importance.

Denote this farthest neighbor to θl by θN(kN ),l and write Ri,l(θl) := |θi,l − θl| such that

R(kN ),l(θl) := |θN(kN ),l − θl| denotes the kN -th order statistic of the Ri,l(θl). Results in

Yakowitz (1987) indicate that E[R(kN ),l(θl)
2] ≤ C1(l)k

−1/2
N , where C1(l) is some constant

that depends only on l. While this holds true for fixed l, we have to consider asymptotics
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where L goes to infinity. Now observe that

E
[
R(kN ),l(θl)

2
]

= E
[
|θN(kN ),l − θl|2

]
≤ C2(N)λl

for fixed N , where C2(N) is some constant only depending on N . Combining these results

gives us E[R(kN ),l(θl)
2] ≤ C3k

−1/2
N λl, where now C3 is a constant that is independent of

both l and N . Moreover, Yakowitz (1987) shows that the number of neighbors kN has to

grow with the sample size where kN ∼ bN4/5c.
The desired result now follows from the Theorem 2.1 Yakowitz (1987) and the argu-

ments presented above.

Proof of Theorem 4

Denote, for i = 1, . . . , kN , by N(i) ∈ I(kN ; θ`) the index of the i-th nearest neigh-

bor to θ`. Then upon adding and subtracting
∑L

`,s=1 m̃`,s(θ`)ψ̂s to the argument of

E
∥∥∥M̂N,L(x̂L)−MN,L(xL)

∥∥∥2 it suffices to analyze the quantities

E

∥∥∥∥∥
L∑

`,s=1

m̃`,s(θ`)
(
ψ̂s − ψs

)∥∥∥∥∥
2

and E

∥∥∥∥∥
L∑

`,s=1

(
m̂`,s(θ̂`)− m̃`,s(θ`)

)
ψ̂s

∥∥∥∥∥
2

.

For the first term we have

E

∥∥∥∥∥
L∑

`,s=1

m̃`,s(θ`)
(
ψ̂s − ψs

)∥∥∥∥∥
2

= E

[
L∑

`,s=1

L∑
k,τ=1

m̃`,s(θ`)m̃k,τ (θk)
〈
ψ̂s − ψs, ψ̂τ − ψτ

〉]

≤ E

[
L∑

`,s=1

L∑
k,τ=1

m̃`,s(θ`)m̃k,τ (θk)
∥∥∥ψ̂s − ψs∥∥∥∥∥∥ψ̂τ − ψτ∥∥∥]

≤ 1

k2N

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

E
[
θN(i)+1,`θN(j)+1,kδsδτ

∥∥∥ĈN − C∥∥∥2
S

]
, (A.16)

where the last inequality follows from Lemma A.1. As already discussed in the proof of

Theorem 1 we have

∥∥∥ĈN − C∥∥∥2
S

=
1

N2

N∑
n,m=1

(
∞∑

h1,h2=1

θn,h1θn,h2θm,h1θm,h2

+
∞∑

h1=1

λ2h1 −
∞∑

h1=1

λh1θ
2
n,h1
−

∞∑
h1=1

λh1θ
2
m,h1

)
.
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Thus the expression in (A.16) can be rewritten as

1

k2N

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

E
[
θN(i)+1,`θN(j)+1,kδsδτ

∥∥∥ĈN − C∥∥∥2
S

]
= A1 + A2 − 2A3,

where

A1 :=
1

k2NN
2

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1,h2=1

δsδτE
[
θN(i)+1,`θN(j)+1,kθn,h1θn,h2θm,h1θm,h2

]
,

A2 :=
1

k2NN
2

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1=1

δsδτλ
2
h1
E
[
θN(i)+1,`θN(j)+1,k

]
,

A3 :=
1

k2NN
2

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1=1

δsδτλh1E
[
θN(i)+1,`θN(j)+1,kθ

2
n,h1

]
.

The analysis of the terms above now proceeds by considering the relationship between

higher order moments and joint cumulants as defined in (A.1) and noting that the random

variables θ·,h = 〈X·, ψh〉 have zero mean by construction and are independent across h by

assumption.

We start with term A2. The relevant case for us to consider is ` = k as otherwise

A2 = 0 by the above arguments. Distinguishing the cases where ` 6= h1 and ` = h1 then

yields

A2 =
1

k2NN
2

L∑
`,s=1

L∑
τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1 6=`=1

δsδτλ
2
h1
κ`,`(0,|N(i)−N(j)|)

+
1

k2NN
2

L∑
`,s=1

L∑
τ=1

kN∑
i,j=1

N∑
n,m=1

δsδτλ
2
`κ`,`(0,|N(i)−N(j)|)

=: A2,1 + A2,2. (A.17)

Now consider the term A3 and again note that it suffices to consider only the case

` = k. Again distinguishing the cases where ` 6= h1 and ` = h1 we have by (A.1) that

A3 = 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l λ

2
h1
κl(0,|N(i)−N(j)|)

+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l λlκ`,`(0,|N(i)−N(j)|,|N(i)+1−n|,|N(i)+1−n|)

+ 2
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l λlκl(0,|N(i)+1−n|)κl(0,|N(j)+1−n|)

+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l λlκl(0,|N(i)−N(j)|)κl(0,0)

=: A3,1 + A3,2 + A3,3 + A3,4. (A.18)

Note that the term A3 enters the object of interest twice with a negative sign, such that
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all terms of which A2 is comprised are canceled in view of A2,1 = A3,1 and A2,2 = A3,4

and since κl(0,0)=λl.

We now tun to term A1 and first decompose into the cases where h1 6= h2 and h1 = h2.

The second case is furthermore decomposed into cases where l = k and l 6= k. This yields

A1 = 1
k2NN

2

∑∑L
l,k=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∑∞
h1 6=h2 δlδkE

[
θN(i)+1,lθN(j)+1,kθn,h1θn,h2θm,h1θm,h2

]
+ 1
k2NN

2

∑∑L
l 6=k
∑∑kN

i,j=1

∑∑N
n,m=1

∑∞
h1=1 δlδkE

[
θN(i)+1,lθN(j)+1,kθ

2
n,h1

θ2m,h1
]

+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=1 δ

2
l E
[
θN(i)+1,lθN(j)+1,kθ

2
n,h1

θ2m,h1
]

=: A1,1 + A1,2 + A1,3. (A.19)

Now note that A1,2 = 0 by the same arguments as above. For term A1,3, we decompose

into the cases where l 6= h1 and l = h1 which yields

A1,3 = 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l E
[
θN(i)+1,lθN(j)+1,lθ

2
n,lθ

2
m,l

]
+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
E
[
θ2n,h1θ

2
m,h1

]
.(A.20)

We consider first the first term of (A.20). By (A.1) and writing, with some abuse of

notation, κ(p) for the p-th order cumulant, we have

E
[
θN(i)+1,lθN(j)+1,lθ

2
n,lθ

2
m,l

]
= κ

(6)
l + 15κ

(4)
l κ

(2)
l + 10κ

(3)
l κ

(3)
l + 15κ

(2)
l κ

(2)
l κ

(2)
l .

There are 15 instances of κ
(2)
l which are of the form

1× κl(0,|N(i)−N(j)|)

2× κl(0,|N(i)+1−n|)

2× κl(0,|N(i)+1−m|)

2× κl(|N(i)−N(j)|,|N(i)+1−n|)

2× κl(|N(i)−N(j)|,|N(i)+1−m|)

4× κl(|N(i)+1−n|,|N(i)+1−m|)

1× κl(|N(i)+1−n|,|N(i)+1−n|)

1× κl(|N(i)+1−m|,|N(i)+1−m|)

Now note that there are precisely four instances where κ
(2)
l is such that the first term in
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(A.20) takes the form

1

k2NN
2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2l λlκl(0,|N(i)+1−n|)κl(0,|N(j)+1−n|)

and precisely one instance where κ
(2)
l is such that the first term in (A.20) takes the form

1

k2NN
2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2l λ
2
l κl(0,|N(i)−N(j)|)

which are canceled by A3,3 and A3,4, respectively, since these terms enters twice with a

negative sign. By similar arguments, we have two instances in which κ
(4)
l is such that the

first term in (A.20) takes the form

1

k2NN
2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2l λlκl(0,|N(i)−N(j)|,|N(i)+1−n|,|N(i)+1−n|)

which are canceled by A3,2, again since that term enters twice with a negative sign. The

remaining terms of the first term in (A.20) do not provide the dominant rate of convergence

such that we skip the further analysis and consider next the second term in (A.20). By

(A.1) we have

E
[
θ2n,h1θ

2
m,h1

]
= κh1 (0,0,|n−m|,|n−m|)+κh1 (0,0) κh1 (|n−m|,|n−m|)+2κh1 (0,|n−m|) κh1 (0,|n−m|)

such that we obtain for the second term of (A.20)

1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
E
[
θ2n,h1θ

2
m,h1

]
= 1

k2NN
2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l λ

2
h1
E
[
θN(i)+1,lθN(j)+1,l

]
+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,0,|n−m|,|n−m|)

+2 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,|n−m|)

2.

Observe now that the first term in the above display is canceled by A3,1 as it enters twice

with a negative sign. As a consequence, the terms A2, A3 and parts of A1 cancel each

other out. The dominant rate of convergence is now obtained by considering the third
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term in the above display for which we have

2
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,|n−m|)2

= 2
(

1
kNN

∑L
l=1 δ

2
l

∑∑kN
i,j=1 E

[
θN(i)+1,lθN(j)+1,l

])
×(

1
kNN

∑∞
h1=L+1

∑∑N
n,m=1 κh1 (0,|n−m|)

2

)
. (A.21)

For the first term in brackets in (A.21) we have, for some constant C > 0,

(. . .) ≤ 1
kNN

∑L
l=1 δ

2
l

∑kN
i=1 E

[
θ2N(i)+1,l

]
+ 1

kNN

∑L
l=1 δ

2
l

∑∑kN
i 6=j

∣∣E [θN(i)+1,lθN(j)+1,l

]∣∣
≤ 1

kNN

∑L
l=1 δ

2
l
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i=1 λl + 2

kNN

∑kN−1
m=1

∑kN
i=m+1

∑L
l=1 δ

2
lBm,l

≤ 1
N

∑L
l=1 δ

2
l λl + C
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∑kN−1
m=1 (kN −m)m−β

∑L
l=1 δ

2
l λl

= O

(
k1−β̃N L3+α

N

)
,

where the last equality follows from Assumption 1. For the second term in brackets in

(A.21) we have by similar arguments for some constants C,C∗ > 0,

(. . .) ≤ 1

kNN

∞∑
h1=1

N∑∑
n,m=1

E [θn,h1θm,h1 ]
2

≤ 1

kNN
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E
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+

1
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|E [θn,h1θm,h1 ]|
2

≤ 1
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h1=1

λ2h1 +
2

kNN
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m=1

N∑
i=1
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h1=1

B2
m,h1

≤ C

kN
+

C∗

kNN

N−1∑
m=1

N∑
i=1

m−2β
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h1=1

λ2h1 = O

(
N1−2β∗

kN

)
.

where β∗ = min {β, 1/2}. Combining these results we obtain the following rate of conver-

gence

O

(
L3+α

kβ
∗

N N
2β∗∗

)
.

Note that we omit the analysis of term A1,1 for brevity as it follows by the same arguments

presented above and yields the same rate of convergence.
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C Appendix: Figures
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Figure 1. Boxplots of the prediction errors MSE (left panel) and MME (right panel) when DGP has

kernel ρ(t, s) = Ce
−(t2+s2)

2 .
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Figure 2. Boxplots of the prediction errors MSE (left panel) and MME (right panel) when DGP has
kernel ρ(t, s) = C.
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Figure 3. Boxplots of the prediction errors MSE (left panel) and MME (right panel) when DGP has
kernel ρ(t, s) = Ct.
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Figure 4. Typical daily discrete observation and reconstructed functional observation for electricity
demand in Norway (June 1, 2013).
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Figure 5. Seasonal monthly averages of the electricity demand in the Nordic countries.
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Figure 6. The first three estimated eigenfunctions of the electricity demand in the Nordic countries. The
percentages indicate the amount of total variation accounted for by each eigenfunction.
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Figure 7. Time dependencies in score series. Left panel: sample autocorrelation of the first empirical
FPC score series. Right panel: sample partial autocorrelation function of the first empirical FPC score
series.
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Figure 8. Boxplots of the prediction errors MSE (left panel) and MME (right panel).
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Figure 9. Scatter plots of the relationship between for the first FPC score and it lag.
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Hörmann, S. and P. Kokoszka (2010). Weakly dependend functional data. The Annals of

Statistics 38, 1845–1884.
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